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Abstract
This report summarizes the program and main outcomes of the Dagstuhl Seminar 17091 entitled
“Computer Science Meets Ecology”. Ecology is a discipline that poses many challenging problems
involving big data collection, provenance and integration, as well as difficulties in data analysis,
prediction and understanding. All these issues are precisely the arena where computer science
is concerned. The seminar motivation was rooted in the belief that ecology could largely benefit
from modern computer science. The seminar attracted scientists from both fields who discussed
important topics in ecology (e.g. botany, animal science, biogeochemistry) and how to approach
them with machine learning, computer vision, pattern recognition and data mining. A set of
specific problems and techniques were treated, and the main building blocks were set up. The
important topics of education, outreach, data and models accessibility were also touched upon.
The seminar proposed a distinctive perspective by promoting cross-fertilization in a unique en-
vironment and a unique set of individuals.
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Ecology is a discipline that shows clearly the potential but also the challenges of computer
supported research described as the 4th scientific paradigm by Jim Gray. It is increasingly
data driven, yet suffers from hurdles in data collection, quality assurance, provenance,
integration, and analysis.

We believe that ecology could profit from modern computer science methods to overcome
these hurdles. However, usually, scientists in ecology are not completely aware of current
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trends and new techniques in computer science that can support their daily work. Such
support could consist in the management, integration, and (semi-)automatic analysis of
resources, like experimental data, images, measurements, in the generation of useful metadata,
cloud computing, distributed processing, etc. Ecoinformatics is regarded as an important
supporting discipline by many ecologists. However, up to now, very few computer scientists
are involved in this discipline; mostly ecoinformatics (or biodiversity informatics) is done by
people with a strong background in e.g. ecology and a long (mostly self-taught) experience
in data management. It lacks a strong connection to cutting-edge computer science research
in order to profit from the results of this area. On the other hand, computer scientists know
too little about the domain to be able to offer solutions to relevant problems and to identify
potential research avenues.

Motivated by our belief that a stronger bond between the disciplines that goes beyond
viewing computer science as a “service provider” is of vital importance, we proposed this
Dagstuhl seminar. The aim of the Dagstuhl seminar was to establish such links between
(geo-)ecologists, ecoinformaticians and computer scientists.

The seminar: perspective and self-evaluation

Before the seminar. It turned out that it was not an easy task to motivate non-computer
scientists to attend the seminar. For many, travel costs were a hurdle ultimately preventing
attendance. This resulted in an unusually large number of declined invitations (often
accompanied by “I would love to attend, but. . . ” emails.

Despite these initial problems, we believe that the aim to start building links among the
communities was reached at the seminar: We had fruitful discussions in numerous working
groups resulting in some very concrete plans for future work.

Organization of the seminar. A total of 27 attendees gathered at the seminar. The wide
variety of expertise and backgrounds constituted an initial challenge for the organization. The
agenda considered a first round of presentations of the individuals and their research groups
with a clear outline and items to treat (personal background, Research Areas/Interests,
prospective links to „Computer Science meets Ecology“ seminar). After this, the main topics
of interest for a wide audience were designed: essentially, three breakout groups were set
up in the very first day of the meeting. Over the course of the seminar, these groups were
adjusted, split up, or merged, several times. This resulted in quite a number of topics being
touched upon with concrete results ranging from a working example for the application of
a new method to a modeling problem to concrete plans for publications, a proposal and
follow-up activities. Reports on these groups were given in the plenary session, and can be
found in this report.

Broad results of the seminar. Results from the seminar can be categorized in three types:
(i) collaborative and networking, as new joint works on specific topics came out of the
meeting; (ii) knowledge transfer between fields, as computer scientists learned about the
main problems in ecology involving data, while ecologists became aware of what kind of
problems data scientists can solve nowadays; and (iii) educational, as several young PhD
students and postdocs attended and participated in high level discussions.

Conclusions. The seminar brought together top scientists in the fields of ecology and
computer science. The group of individuals was largely interdisciplinary, with a wide range
of interests and expertises in each community too: from botany and animal science, to
machine learning and computer vision. The seminar was organized in two main types of
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sessions: plenary and working group sessions to better focus on particular topics. Interesting
developments and discussions took place in both, and a high level of cross-fertilization and
future collaborations was initiated. On top of this, there was a broad consensus among the
participants that the seminar should be the start of a series of yearly or bi-yearly meetings.
We hope that the success of this first seminar will encourage broader participation in follow-up
activities.
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3 Introduction

3.1 Why Computer Science needs to meet Ecology
Gustau Camps-Valls (University of Valencia, ES), Benjamin Adams (University of Auckland,
NZ), Joachim Denzler (Universität Jena, DE), Thomas Hickler (Senckenberg Research
Centre, DE), Birgitta König-Ries (Universität Jena, DE), Markus Reichstein (MPI für
Biogeochemistry – Jena, DE), and Johann Wolfgang Wägele (ZFMK – Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Gustau Camps-Valls, Benjamin Adams (University of Auckland, NZ), Joachim Denzler, Thomas
Hickler, Birgitta König-Ries, Markus Reichstein, and Johann Wolfgang Wägele

In his pioneering work, Jim Gray identified the 4th scientific paradigm, arguing that modern
science needs computer supported research. Recent developments in many scientific disciplines
prove him right: Huge amounts of heterogeneous, unstructured and multisource data can
now be collected routinely, sometimes in a fully automatic manner. Due to the development
of computer hardware and sensors even new data modalities are readily available. The main
difference to the general “big data” hype is that in science collecting data always has the
intention to gain insights into processes and mechanisms, or in general to gain knowledge
from data, typically motivated by some hypothesis. So far, the main challenge is to manage
the explosive growth in size, complexity, and rates of data accumulation. On the one hand, it
is easy to collect terabytes of data per minute. On the other hand, analysing even a fraction
out of it still remains a big problem for scientists, companies and international organizations.
A discipline that shows the potential but also the challenges of this 4th scientific paradigm is
Ecology.

Ecology is the study of the interactions amongst organisms and with their physical
environment. For a long time, ecological analyses have been realized locally both with respect
to both the geographical and phenomenological area of investigation. Today, scientists are
interested in quantifying ecological relations globally and can consider multiple dimensions of
interactions between atmospheric, oceanic, and terrestrial processes. Due to the possibilities
to record data all over the world, the increase of resolution and quality in recordings from,
e.g., satellite platforms, and international efforts to document the global distribution of
biodiversity, increasing availability of heterogeneous data sets via the World Wide Web
and computing in the cloud, new opportunities arise. These data may enable us to answer
questions that are of fundamental importance for the future of our planet. In short: ecology is
one of those sciences, affected in a significant way by the tremendous increase in possibilities
to collect and analyse data, and there is significant societal interest in taking advantage of
these possibilities.

In the following, we will look at the topic from two perspectives. First, from the perspective
of ecological research: Where would it profit from computer science? And second, from
the perspective of computer science: where could it support ecological research and gain
challenging research questions from such a collaboration? We will start with a rather general
discussion, but then narrow each topic down to one rather specific problem.

One example discipline, where the 4th scientific paradigm may revolutionize the epistemic
foundations could be ecology: Ecologists have been collecting data all over the world and
organizational scales ranging from microscopic processes to global phenomena. For instance,
latest developments in metagenomics have opened the possibility to prove the occurrence of
species across a wide range of taxonomic hierarchies via “Environmental DNA” [1] – several
thousands of samples can be collected within reasonable time frames. Satellite remote sensing
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data offer temporally continuous and spatially contiguous estimates of the states of land and
aquatic ecosystems [2]. Monitoring biologically mediated fluxes of CO2 between land and
atmosphere exchanges allow monitoring of ecological processes [3] (http://fluxnet.ornl.gov/).
Soundscapes of birds [4] offer new ways to determine species diversity. All these examples
show that novel observational methodologies are currently revolutionizing this branch of
science. In all cases, the resulting data streams are heterogeneous and often unstructured,
even when the same processes are observed by different groups, or over different regions of the
world. Nevertheless, model building is heavily supported by the collected data. Furthermore,
increasingly sophisticated models are developed, which are parameterized or calibrated with
different sources of data [5] and demand very substantial computing power. Most information
cannot be extracted from the data without computer support during the analysis, storage,
access, distribution, visualization.

Besides typical “big-data” problems caused by volume, velocity, variety and veracity of
data, there are more important challenges: providing access to the right data (and in an
appropriate structure), to extract the relevant information considering redundancies and
knowledge, and to develop computationally efficient ways for data model linkages. Therefore,
at least three general topic areas can be identified:

Obtaining and Preserving Data

This includes automatic monitoring schemes, automatic interpretation of e.g. remote sensing
or image data, sampling bias analysis and gap-filling, data quality management, synthesis
and curation. A particular challenge is the huge heterogeneity of data ranging from sequence
data to remote sensing images, and from digitized natural history museum collections to
manually collected observation data to audio files capturing acoustic diversity. A second
important challenge is the increasing volume of such data evident already for remote sensing
data and for sequence and related data, where new techniques and rapidly sinking prices
lead to an explosion in data volume.

Pattern-recognition in highly dimensional and geo-tagged data sets

The field involves developing sound and efficient algorithms able to capture structure and
feature relations in empirical data, and mostly involve finding groups (clustering), anomalies
(detection), automatic categorization and prediction (classification/regression), and learn-
ing proper representation spaces (visualization) of generally unstructured, heterogeneous,
multimodal data streams where quantifying uncertainty is mandatory.

Model development and Model-Data-Confrontation (see e.g. [6])

This includes dealing with sampling bias and scale issues, methods for fitting model to data,
scaling and parallelization for cluster or cloud computing.

Some areas of computer science that can contribute to these topic areas and derive
research questions from them are:

Data and Model Management

Data Management is certainly the part of computer science that has been used in ecology the
longest and is one of the major focus areas of Ecoinformatics. Numerous data management
platforms and workflow environments suitable for ecological data have been developed
focussing on different stages of data management from data collection in the field (supported,
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e.g., by smartphone applications) to long term preservation of data. As major challenge
remains the seamless integration of data management tasks in the usual workflows of the
researchers. A key part of this challenge is identifying what data are useful for particular
types of analysis and purposes. Capturing the pragmatic relationships between data and their
use, including the tasks and methods for which data have been successfully used, remains a
relatively unexplored area of research. Additionally, platforms are needed that can deal with
the vast heterogeneity of the data and the expected future huge volumes of data. Increasingly,
ecological data of high spatial and temporal resolution can be crowdsourced and streamed
from sensors of variable quality, and despite the great potential for this data to be used for
ecological analysis the heterogeneity of sources creates open research challenges for data
management. New challenges arise also from the vast amount and poor quality of sequencing
data; requiring new bioinformatics techniques to handle and preserve the data.

Data Integration

The ability to integrate data is vital for ecological research. However, such integration is
hampered by a number of factors where the application of modern approaches from computer
science will be helpful. Over the last few years, considerable effort went into the development
of formal, machine-readable taxonomies and metadata standards; the use of ontologies
is relatively widespread. This requires ontology matching and modularisation. Often,
integration problems are present at the instance rather than the schema level. Approaches for
duplicate detection and data quality assurance are needed here. Provenance and uncertainty
management are needed for gaining meaningful results from the integrated data. This area
poses a real challenge for computer science since the information that needs to be encoded
goes well beyond the rather simplistic e.g. simple probability distributions commonly used
today.

Modern techniques from Computer Vision, Pattern Recognition, Data Mining and
Machine Learning

Over the last years, computer vision research already tackled problems that are of high
relevance for ecological research as well. One example is the analysis of remote sensing data,
which forms one of the basis for global analysis of terrestrial processes, for which several
modern methods for automatic processing exist, for example, semantic segmentation. Other
examples include large scale analysis of the distribution of animals, plants, and (increasingly
genetically derived) populations [7], whereby the data often suffers from extremely biased
(in space and time) sampling [8] and few data are available for organism groups where it is
difficult to identify the species. Several computer-based methods have recently been developed
to support ecological research. These include object recognition software for e.g. plants.
However, since those objects offer not just very challenging problems but also call for new
methods, that lead to the area of fine-grained recognition. Although today’s state of the art
systems achieve only recognition rates of 70-80%, in some scenarios machine vision systems
are already better than the inexperienced user. Together with techniques from machine
learning, like active learning (i.e. keeping the human in the loop as in recent activities ), and
novelty detection, i.e. detecting if a new object or event is observed, preliminary life-long
learning systems are currently under development. In such an iterative manner of building
recognition systems and improving performance by specific feedback of users, it is expected
that performance of automatic analysis of animals or plants from images and videos will
reach the threshold that almost fully automatic observation of our environment will be
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possible. Having such methods will bring researchers from ecology closer to measurement
stations equipped with cameras that could record the environment at a level that has not
been possible before. Finally, computer vision techniques might support digitalization of
existing ecological data sets. Besides computer vision, modern machine learning techniques
will play an important role in the future of ecology data analysis as well. For example,
analysing huge amount of data by the human can be supported by automatic clustering
into relevant groups. Dimensionality reduction methods, like non-linear or kernel PCA
offer new potentials in data pre-processing. Detecting the unexpected, i.e. interesting in
data streams can be supported by automatic analysis using novelty and anomaly detection
methods, and thus can serve as clustering in the sense of reduction of human efforts to
the most important parts of data streams. Finally, machine learning techniques in general
might help to make the invisible visible by solving regression problems using training data.
Such mappings from input data to output might be the basis for future decision based on
measurement. Estimation of bio-geo-chemical parameters using advanced retrieval methods
currently provide accurate time-resolved estimations, but advances on uncertainty estimation
(going beyond point-wise predictions to meaningful confidence intervals) and knowledge
discovery capabilities (i.e. ranking input features to understand the underlying bio-physical
processes) are still needed.

High-Performance and Cloud Computing (bring computing power to the data)

The growing amount of data and increasingly complex models require new ways of processing.
It is no longer feasible – as is done today – to select data from some online source and
download it for local processing. Rather than launching the data to the algorithms, the
trend is to launch the algorithms to the data. Here, approaches for function shipping and/or
parallelisation can be helpful and are successfully applied, e.g., by GBIF for (re-)ingest of
data or in the Map of Life project. Ecological information analysis and modeling largely
remains restricted in the size and complexity of problems that can be addressed due to lack of
research into up-scaling ecological algorithms (e.g. analysis of ecosystem connectivity) from
desktop applications to high performance computing. This requires a systematic approach
of mapping ecological data structures and algorithms to well-understood techniques of
parallel computation and communication that have been identified by the high-performance
computing research community. Identification of how environmental simulations and analyses
map to compositions of these well-established scientific computing patterns will be a necessary
outcome of this research. Another challenge is model design to best meet recent advances in
computer science. This includes, e.g., re-designing models to run on energy-efficient graphics
processing units (GPUs). Running models on GPUs instead of conventional CPUs can
decrease electricity costs very substantially.

In order to provide a more detailed understanding of some of the problems involved, let us
have a look at three concrete examples that highlight different problem areas and different
possible links between computer science and ecology.

Example 1: Biodiversity Weather Stations/Automated Long-Term Monitoring

Traditionally, data in ecological research have been collected manually on a rather small scale.
For instance, the traditional approach to analysing species richness in a tropical rainforest
is to select a plot of manageable size and send scientists (typically PhD students) there, to
map the species that occur on this plot. This approach has several drawbacks: First, it is
extremely expensive. Second, since neither money nor personnel are unlimited resources, it

17091



118 17091 – Computer Science Meets Ecology

scales poorly. Third, the quality of the result depends a lot on the expertise of the scientists in
the field. The acknowledgements of a recent paper on tree flora in the Amazonian that aims
at developing a large scale model and uses data from around 2000 plots, e.g., states “This
paper is the result of the work of hundreds of different scientists and research institutions in
the Amazon over the past 80 years”, Basically the same drawbacks exist for other types of
data collection in ecological research. For instance, in the Biodiversity Exploratories, insect
populations on research plots are determined by installing window traps in the field which
collect insects. The species are then determined by manual analysis by large numbers of
student helpers analysing every caught individual.

In the future, such monitoring schemes could be automated. Technologies like DNA-
barcoding of environmental samples, visual and acoustic identification of animals, identifica-
tion of plants via emitted chemicals are currently being combined to build an Automated
Multisensor Station for Monitoring of Species Diversity (AMMOD). The AMMOD requires a
combination of image and sound recognition, machine-readable reference libraries for genetic
and biochemical markers, images and sounds, the storage and sorting of a large amounts
of data and finally, when several stations are combined, modeling of species distribution in
landscapes.

Example 2: Global Change Ecology

Key challenges for Ecology in our Global Change era are i.) to understand and predict the
geographical distributions and abundances of species and populations and ii.) to improve
our understanding of the role of biodiversity for the functioning of ecosystems [11] and their
supply of services to the human society under Global Change. Addressing these challenges
implies dealing with spatially biased data, e.g. for the occurrence of species, and integrating
various data types on where species or populations occur, which functional traits they have,
the environment in which they live (e.g. climate, soil types, land cover) and ecosystem
processes, such as biomass productivity and carbon cycling [12]. Thus, it is necessary to
integrate multiple types of data from the biological and geosciences, ranging from genetic
data characterising populations or species to satellite-derived estimates of land cover change
[13]. Thereby, the genetic and satellite data, in particular, have reached levels of complexity
and sizes, which are sometimes beyond the capacities of normal desktop computers. Instead,
massive RAM or parallel cluster computing are increasingly necessary to handle the data,
even for relatively simple analyses. For more complex model-data fusion techniques, such as
hierarchical Bayesian modeling, computational capacities are still highly limiting ecological
research.

Example 3: Modelling ecosystem and Earth system processes

Modelling now also plays a crucial role for ecosystem science from the local to global scale.
More and more ecological processes are currently integrated into so-called Earth System
models, which integrate climate models with biosphere models [14, 15]. Yet, there is a large
uncertainty in future model predictions for these dynamic systems [16]. One challenge now is
to provide observation-based constraints which can confine future model behaviour. We need
to understand better which patterns of the observations provide robust constraints for models.
Hence, we need to move away from simple model-data comparisons, to pattern-oriented
model evaluation, calibration and interpretation in a system-oriented way [17]. Examples of
this include approximate Bayesian computation [18] and the concept of emerging constraints
[19]. As a variety of data types, ranging from leaf-level measurement of photosynthesis
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to satellite-derived estimates of forest biomass, can be used to parameterize and constrain
ecosystem models, such models might in the future rather serve as process-based linkages
between multiple data types, instead of just being parameterized and tested with individual
data sets at a time. At lot of analogies between video data and dynamic Earth System data
have been identified and ideas generated of how applying methods of one domain in the
other.

In summary, we strongly believe that a closer interaction between ecologists and computer
scientists is needed to tackle the challenges in Ecology and that both disciplines will profit
from such interaction: Ecologists will be able to solve problems currently beyond their reach.
Computer Scientists will be exposed to a challenging set of real-world problems requiring the
development of new methods and approaches.
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4 Overview of Talks

4.1 Life-long Learning with Applications in Monitoring Biodiversity
Joachim Denzler (Universität Jena, DE)
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Most of today’s impressive results in computer vision and machine learning arise from two
major changes during the past 20 years: Firstly, the increased performance of hardware
together with the advent of powerful graphical processing units (GPU) applied in scientific
computing beyond pure displaying. Secondly, the huge amount of, in part, annotated image
data provided by today’s generation of Facebook and Twitter users and available easily over
databases (e.g., Flickr) and/or search engines. Consequently, tasks like face recognition and
identification can be solved using powerful methods, like Convolutional Neural Networks [13],
and millions of face images for training.

For visual monitoring of biodiversity, for example, to keep track of species distribution of
certain mammals, no such databases or collection of annotated or even weakly annotated
images exists at a size such that systems can be directly trained. This first challenge, the
collection of training data bases for computer vision algorithms, links directly to the citizen
science activities. We need to motivate people to also share their annotated images of animals,
insects, and other species, or at least to help collecting such databases.

Although training data is now one limiting factor for visual monitoring at a certain level
of quality, there are several other and equally important challenges from the computer vision
and machine learning perspective:
1. Number of species to be distinguished: although current computer vision systems can

differentiate between up to 10.000 different categories (see ImageNet [2]), this number is
far from being sufficient for the number of species to be expected in Germany. In addition,
the classification of such many different objects has been demonstrated at the category
level only, i.e. to differentiate dogs from cats, but not certain races of dogs and cats.

2. Generic classifiers: although certain systems already exist for analyzing images of moths,
chimpanzees, or other specific class of objects [12, 4], those systems have been carefully
developed using handcrafted and optimized features and individual domain knowledge. At
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present, it seems not possible that such specialized system can be individually developed
for all the different classes of animals and insects to be monitored. Thus, there is the
need for generic classifiers that learn their feature representation from data, at best in an
unsupervised manner [1, 11].

3. Fine-grained recognition: As mentioned earlier, most computer vision system for classific-
ation of objects in an image, are already powerful if it comes to distinction of categories,
like cups, cars, dogs, etc. Within category classification, i.e. the distinction between
a Great Spotted Woodpecker and a Middle Spotted Woodpecker, it is a much more
challenging problem, and currently the focus in fine-grained recognition. For certain
categories, like birds, cats, and dogs, solutions are already available [3]. However, there is
still a generic method missing that identifies the relevant, visual parts of objects that
allow reliable classification within a category of visually similar species.

4. Detection of the unexpected: Today’s machine learning system work under the closed-
world assumption, i.e. they will map any input image to one of the known classes. Species
not known to the system will not be correctly classified, but even worse might be wrongly
assigned to a known class. Since the unexpected is often the driver of progress in science,
such wrong assignments might prevent some insight in the monitored ecosystem. Thus,
methods for novelty and anomaly detection is another big challenge to not miss the
probably important insight from unexpected observations [5, 10].

5. Keeping the human in the loop: Today, it cannot be expected that automatic monitoring
systems will work error-free from scratch. The challenge arising from difficult and
changing recoding conditions in the wild, hiding and only partially visible animals will
result in erroneous assignment or even misses of objects visible in the image for the human.
Thus, acceptance of such systems in the monitoring community will heavily depend on
reliability of the automatically generated statistics and properties of the observed species.
Consequently, one additional challenge is to provide a feedback mechanism from the
machine to the human, to report about uncertain or undetermined results. However, the
feedback from the human to the machine is equally important by correcting results or
adding additional information for refinement and optimization of the automatic system
[7].

In summary, we believe that automatic visual monitoring should be framed in a life-long
learning cycle that has been recently applied to monitor mammals in Portugal [6]. The
key ingredients are initial, generic classifier, for example, powerful CNN architectures [13],
active learning to reduce costly annotation effort by experts [8, 5], fine-grained recognition
to differentiate between visually very similar species [3], and efficient incremental update
of the classifier’s model over time [9]. For most of these challenges, initial solutions exist.
Building first visual monitoring systems, possibly for a restricted area or set of species, will
definitely help to improve all parts over time, if biodiversity and computer vision researchers
are working closely together.
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4.2 Systematic Evaluation of Land Surface Models Using the
International Land Model Benchmarking (ILAMB) Package
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Keppel-Aleks, Charles D. Koven, David M. Lawrence, Mingquan Mu, James T. Randerson,
William W. Riley
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As Earth system models (ESMs) become increasingly complex, there is a growing need for
comprehensive and multi-faceted evaluation of model predictions. To advance understanding
of biogeochemical processes and their interactions with hydrology and climate under conditions
of increasing atmospheric carbon dioxide, new methods are needed that use observations to
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constrain model predictions, inform model development, and identify needed measurements
and field experiments. Improved process parameterizations are needed to constrain energy
and water predictions in land surface models and better representations of biogeochemistry –
climate feedbacks and ecosystem processes in ESMs are essential for reducing uncertainties
associated with projections of climate change during the remainder of the 21st century. The
International Land Model Benchmarking (ILAMB) project seeks to 1) develop internationally
accepted benchmarks for land model performance, 2) promote use of benchmarks for model
intercomparison projects, 3) strengthen linkages between experimental, remote sensing,
and modeling communities, and 4) support the design and development of an open source
benchmarking software system. Leveraging work on past model evaluation studies, we have
developed two generations of such benchmarking software packages that assess model fidelity
on 24 variables in four categories from about 45 data sets; produce graphical global-, regional-,
and site-level diagnostics; and provide a hierarchical scoring system. The ILAMBv2 package,
publicly released in May 2016, has become an integral part of model verification workflow
for rapid model development and calibration cycles for the U.S. Department of Energy’s
Accelerated Climate Modeling for Energy (ACME) model and the Community Earth System
Model (CESM). We will present results from model analysis using the ILAMB packages,
discuss techniques for routine model evaluation, propose coordinated evaluation of the Sixth
Phase of the Coupled Model Intercomparison Project (CMIP6) output, and describe new
metrics that integrate across carbon, surface energy, hydrology, and land use disciplines.

4.3 BExIS 2 – An open source data management platform for
collaborative projects in Biodiversity Research and beyond

Birgitta König-Ries (Universität Jena, DE)
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In many collaborative projects, there is a strong need for data preservation and sharing.
BExIS 2 is an open source data management platform that meets these needs and supports
data management throughout the entire data lifecycle. It is a modular platform that can
easily be adapted to the specific needs of particular projects with respect to, e.g., access
rights, data structure, or metadata schema used. Further information including an online
demo and a download link can be found on the BExIS 2 website: http://bexis2.uni-jena.de.

4.4 Real time monitoring of vegetation phenology with the PhenoCam
network

Andrew Richardson (Harvard University – Cambridge, US)
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Phenology – the seasonal rhythms of plants and animals – has been shown to be a robust
integrator of the effects of year-to-year climate variability and longer-term climate change on
natural systems. At the level of ecosystems, phenology is important because it influences
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productivity, carbon sequestration, nutrient cycling, and feedbacks to the atmosphere and
climate system.

There is a demonstrated need to better document biological responses to a changing world,
and improved phenological monitoring will contribute to achieving this goal. In this talk, I will
describe a collaborative research network called “PhenoCam” (http://phenocam.sr.unh.edu/).
PhenoCam uses networked digital cameras – webcams – for phenological monitoring in a
range of ecosystems (almost 400 sites, and 750+ site-years of archived data) across the North
American continent. Images are captured every 30 minutes, uploaded to the PhenoCam
server for display in real-time, and processed to yield quantitative measures of vegetation
“greenness.” I will conclude by talking about some of the challenges we face with managing
this ever-expanding image archive.

4.5 New technologies for biodiversity monitoring
Johann Wolfgang Wägele (ZFMK – Bonn, DE)
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Biodiversity is one of the most valuable resources of our planet. With possibly more than 10
million living species and most of these still unknown to science, the biosphere of our planet
guarantees future generations a wealth of hitherto untapped genetic resources, which are
relevant for food production, medicine, bioenergy production, and life-supporting ecosystem
functions. In contrast to global warming, a steady loss of biodiversity is irreversible and leads
to an impoverished world that will not recover its original richness within the next 5 million
years. Already more than 20 years ago the large-scale destruction of habitats and losses
of biodiversity alarmed researchers and policy makers. Until today, the biodiversity crisis
is accelerating and a trend reversal is not achievable with political treaties and resolutions
solely. One important reason is the lack of reliable high resolution, large scale data. Such
data are needed as a basis for informed decisions, to analyze causes of local extinctions, to
prove that trends are really happening, to model scenarios that explain ongoing changes and
that can predict future processes, and to define actions based on scientific information. In
analogy to climate scientists, who were able to raise awareness for ongoing climate changes at
a global scale, biologists need data to advice policy makers, to convince stakeholders and the
general public. The most significant impediment for large-scale and fine-grained biodiversity
monitoring is the taxonomic one. Even when sampling campaigns are well planned and
executed, the samples have little value if the majority of species cannot be identified. This
difficulty is mainly due to the lack of time to sort and identify all species found, combined
with the fact that taxonomist are scarce and largely specialized for selected taxa, which
again makes the majority of identifications very time-consuming and not doable by untrained
ecologists. Another problem is that monitoring schemes usually are not comparable, and
programs do not run long enough to document trends. Climate monitoring using satellite
images and automatized weather stations has been organized at a large scale everywhere
on earth. In contrast, large-scale and long-term monitoring of biodiversity does not exist,
among others, because the required technology has not been developed. It is therefore crucial
to adapt existing technologies for the development of automatized biodiversity motoring.
We need “weather stations for species diversity”. It is possible to construct an automatized
multisensor station for monitoring of species diversity (an AMMOD) using already available
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technology: bioacoustics sensors, automated image analyses, DNA-barcoding, analyses of
volatile organic compounds (VOCs). Thus it is possible to detect mammals and birds (mainly
via images and sounds), insects (mainly with DNA barcoding), plants (via barcoding of pollen
and VOCs), and soil microorganisms (via emitted VOCs). AMMODs allow for a continuous
detection of a large number of species, Main challenges are in the field of computer science:
pattern recognition and comparison of environmental signals with reference databases has to
be improved to increase resolution.

5 Working groups

5.1 Biodiversity Weather Stations
Tilo Burghardt (University of Bristol, GB), Yun-Heh Jessica Chen-Burger (Heriot-Watt
University – Edinburgh, GB), Joachim Denzler (Universität Jena, DE), Birgitta König-
Ries (Universität Jena, DE), Miguel Mahecha (MPI für Biogeochemistry – Jena, DE),
Shawn Newsam (University of California – Merced, US), Natalia Petrovskaya (University of
Birmingham, GB), and Johann Wolfgang Wägele (ZFMK – Bonn, DE)
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The working group focused on the question how an increasing need for data availability on
global biodiversity information can be met by introduction of automated field stations for
in-habitat sampling. The discussion was underpinned by previous conceptual work on a
concept laid down in proposals for BioM-D (Deutsches Zentrum fuer Biodiversitätsmonitor-
ing)/AMMOD (Automatic Multi-sensory station for Monitoring Of species Diversity).

Motivation

The group emphasised that biodiversity is one of the most valuable resources of the planet;
and that changes due to species extinction are irreversible. Monitoring biodiversity must
therefore be a key component and precursor for taking informed decisions about ecosystem
management and conservation. Currently, major obstacles prevent large-scale monitoring of
biodiversity at species level: 1) the difficulty of taxonomic identification, 2) the difficulty of
spatial-temporal coverage, 3) the difficulty of meaningful spatio-temporal reference, and 4)
the workload problem: automatic workflows are in their infancy.

Concept

Faced with these impediments, the group supported the concept that, to be able to observe
global change of our biosphere, we need an infrastructure comparable to that used by
climate researchers; that is ‘weather stations for species diversity’”, which operate in a
similar fashion to traditional weather stations sampling the breadth of species presence
at a particular sampling location over time. In fact, biologists have started to adopt
various technologies to enable such measurements – bringing these technologies together for
an automatic multi-sensory station for monitoring of species diversity establishes a clear,
interdisciplinary development goal. The group reiterated previously identified candidate
modalities for automated monitoring; these include DNA barcoding, bio-acoustic monitoring,
computer vision-based surveillance, and the analyses of ‘smell-scapes’.
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Discussions

Driven by the difficulties experienced in raising appropriate funding to progress this agenda at
scale, the group discussed proof-of-concept options for the introduction of a few prototypical
stations that could demonstrate the value and practical operation of the concept first hand.
Key conclusions here included the identification of existing tower infrastructures for the
commissioning of systems, the focus on well established sites for best cross-referencing of
data, and the limitation of developments for a few species most relevant for showcasing the
capabilities of a prototype. We also discussed the technologies underpinning these stations
and practical ways of utilising the expertise of scientists and research groups to best conduct
development work towards the establishment of prototypes.

Conclusions

The group concluded to work on a detailed positioning paper that may include authorship of
the wider community over the following months, and continued efforts towards funding of
the concept as next steps. The working group made clear that the technological foundations
for an AMMOD concept are widely available today, and that a strong effort is needed to
turn this foundation into a practical, working infrastructure to support the gathering of
biodiversity information at scale.

5.2 Blending machine learning methods and process-based approaches
in dynamic ecological models

Florian Hartig (Universität Regensburg, DE), Martin Bücker (Universität Jena, DE), Gustau
Camps-Valls (University of Valencia, ES), Forrest Hoffman (Oak Ridge National Laboratory,
US), Kazuhito Ichii (JAMSTEC – Yokohama, JP), Martin Jung (MPI für Biogeochemistry –
Jena, DE), Bertram Ludäscher (University of Illinois at Urbana-Champaign, US), Markus
Reichstein (MPI für Biogeochemistry – Jena, DE), and Jakob Zscheischler (ETH Zürich,
CH)
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In many areas of ecology and earth-system sciences, process-based computer simulations are
central for understanding the dynamic response of ecological systems to external forcings. An
example are dynamic vegetation models, which describe the response of vegetation ecosystems,
typically represented by soil water, nutrient and plant state variables, to disturbances and
climatic forcings (Zaehle & Friend, 2010; Forkel et al. 2016). The processes governing these
dynamics are often complex, and can only partially be observed. It has therefore become
common to statistically calibrate model parameters to field observations, for example to
vegetation inventories, measured gas exchange, or remote-sensing data (e.g. Hartig et al.,
2012).

The issue with this approach is that statistical methods, while accounting for the fact that
parameter values are uncertain and some stochastic error is present, are contingent on the
assumption that the underlying data-generating model is correct. In other words, statistical
conclusions are generally only correct if the fitted model is approximately correct. While this
assumption is of lesser concern in simple regression problems, it becomes a major concern
in complex, dynamic models, where errors may propagate through nonlinear processes into
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other model compartments or times, which can create a range of problems for the correct
estimation of model parameters, their uncertainty, and associated forecasts.

An obvious solution is making the structure of process-based models more flexible.
This could mean, for example, that process-descriptions, which are typically specified by
relatively rigid formulae, are replaced by a flexible statistical approach. An early attempt at
implementing such an approach is Wood et al. (2001), who replaced fixed formulae by flexible
generalized additive models (see also Nisbet et al., 2004). Another possibility is to make the
model structure itself flexible, by adding or removing state variables, or their connections
(e.g. Babtie et al., 2014).

In this working group, we discussed those and other technical approaches to tackle the
problem of creating flexible models that blend machine learning and process-based models.
In particular, we considered the problem of a complex dynamic system, where very little
prior information about a particular subprocess is available. The challenge is thus to train a
flexible statistical algorithm to learn the dynamical response of the subprocess from observing
the system as a whole, while at the same time keeping the problem computationally tractable.
A possible solution identified by the group was the use of automatic differentiation methods
(Griewank and Walther, 2008), which seemed promising for creating a computationally
efficient blend of process-models with machine-learning methods.

Acknowledgements: the working group would like to acknowledge useful suggestions
from Shawn Newsam and Andrew Richardson.
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5.3 Improving data discovery and integration for global ecological
analyses

Ivaylo Kostadinov (Jacobs University Bremen, DE), Martin Bücker (Universität Jena, DE),
Matthew Evans (University of Hong Kong, HK), Thomas Hickler (Senckenberg Research
Centre, DE), Donald Hobern (GBIF – Copenhagen, DK), Birgitta König-Ries (Universität
Jena & iDiv, DE), Bertram Ludäscher (University of Illinois at Urbana-Champaign, US),
Frank Pennekamp (Universität Zürich, CH), Brody Sandel (Santa Clara University, US),
and Bernhard Seeger (Universität Marburg, DE)
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This working group collected key challenges in contemporary ecological research, which are
based on different aspects of data, including discoverability, standardization, integration, size,
and metadata description. Current and future approaches in addressing these challenges
were discussed in a dialogue between scientists covering the whole range between ecology
and informatics. In the later part of the seminar the group focused on the (semi-)automated
distribution and harvesting of data and metadata for ecological analyses.

Motivation

Understanding ecological systems, for example detecting biodiversity change and pinpointing
its main drivers, is a major challenge which nowadays requires close cooperation between
ecology and computer science to tackle. Studying global patterns requires the acquisition,
management and integration of large, heterogeneous datasets, whose complexity increases
rapidly. Heterogeneity is among the key challenges in working with biodiversity data.
Differences in acquisition protocols, study areas and strategies in dealing with gaps in
the observations are only some of the problems in integrating data from different sources,
disciplines and scale.

Discussion

Ecological communities can be described by four main data types (abundance, distribution,
traits, genetic) and their environment is described by direct measurements and remote-
sensing approaches. One of the key challenges is trying to bring together different layers of
biodiversity change and some of the drivers of that change. For example, traits can constrain
species distribution and are therefore one key factor to explore. However, not many dedicated
databases for trait data exist and linking to other data (sources) is often difficult. Optimally,
there would be a single point for searching and doing at least basic analysis. One possibility
would be including traits (e.g. habitat preference) in distribution plots or mapping traits
instead of species distributions. This could be attempted in the near future with the GFBio
Visualization, Analysis and Transformation (VAT) system (https://vat.gfbio.org) which
already offers different plots of publicly available data resources like the Global Biodiversity
Information Facility (GBIF, www.gbif.org). Including habitat, temporal, climate continuity
in analyses was also identified as a desirable future outcome. This could also be achieved with
VAT, by developing a spatio-temporal database in cooperation with scientists, for example
to determine apparent correlations between species co-occurrence maps, based on GBIF
data. GBIF also strives to improve the data it offers for re-use, for example by including the
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taxonomic target and completeness as part of the metadata of the sampling event, so that
presence/absence can be inferred more correctly.

Data discovery and integration. A common example of the difficulties researchers face
when searching and integrating ecological datasets is that even basic metadata like units of
measurement is often not available or impossible to compare. Therefore, dedicated tools to
systematically extract candidate metadata (e.g. locations, times) from journal texts would
be very helpful. A solution, currently employed by GBIF and others, is a wizard-style
interface for authors to input basic metadata. However, minimal requirements almost
always differ in scope and detail, as shown by some of the most widely used frameworks:
Ecological Metadata Language (EML,https://knb.ecoinformatics.org/#tools/eml), Dublin
Core (http://dublincore.org/), Darwin Core (DwC, http://rs.tdwg.org/dwc/). In general,
one could distinguish between rich and complex data (e.g. most XML-Schema based data)
and simple, flat records. One idea to obtain a rich information network is to increase the
semantic load of lightweight DwC properties. Some of the main emerging themes to work on
the next years were identified to be (1) the development of an integrated data ecosystem,
where global players like GBIF provide highly linked data, (2) the automatic extraction of
descriptions for curation, integration and (3) increasing the incentives for data producers
to deliver high-quality, standardized metadata, for example by introducing or supporting
alternative or additional measures of scientific contribution (e.g. micro-crediting system for
data publication).

Metadata enrichment. Metadata is essential for the correct integration of data from differ-
ent resources. However, it is often not readily available or suffers from lack of standardization.
The group outlined a multifaceted approach for addressing this challenge. The main roles
would be the original data producer, the later data consumer and any software compon-
ents for automated metadata extraction. The usual workflow was identified to be: the
data producer publishes the data together with the associated journal article (some of the
metadata might reside in the article or its appendices). Therefore, the possible sources to
extract additional metadata from are (1) author-provided metadata, (2) the data itself, (3)
the paper. Optimally, part of the metadata will provide (machine readable) links and to
further literature, related projects, funding sources, and involved institutions. A combination
of different methodologies was deemed as the best way to cover the different aspects of
metadata enrichment. One possibility is to use machine learning techniques for text mining
and deducing the research domain context, improving user interfaces for user annotation,
curation, and validation, all the while applying established terminologies to standardize the
outcome. Finally, a feedback-loop to feed back manually annotated and approved content
back to the automation steps would improve their performance.

Conclusion and Outlook

The major challenges for improving descriptive metadata of datasets, and consequently their
discoverability and interoperability, are (1) providing the right tools and the right incentives
for the data producers to provide the metadata in a standardized way, (2) determining the
minimal set of parameters, required for interoperability and (3) providing the tools to harvest
the required metadata from available resources like the data itself, the corresponding journal
article or even program code automatically.

Several informatics techniques like machine learning offer promising solutions for increas-
ing the automation of metadata extraction. In order for them to be applied meaningfully,
priorities for improved information capture must be identified. This includes determining
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what essential biodiversity variables ought to be captured. Recording of re-usable workflows
from user operations, as already employed by VAT, can deliver some insight to the way
scientists (re-)use biodiversity data.
Further improving and standardizing the interfaces for data exchange between data reposit-
ories, taking into account emerging serialization formats and access means (e.g. protocols), is
important. Large, integrated data resources like GBIF will continue to play a key role in
paving the road to Linked Open Data for ecology and biodiversity research.
Raising community awareness to the problems at hand is important. This includes clarifying
the added-value of high quality metadata and supporting an appropriate credit system for
data publication.
As a continuation of the efforts initiated during the seminar, the working group will organize
a Hackathon with the following preliminary topics in mind:

Rapid prototyping tools for automatically extracting metadata
Integration of different metadata schema
Exploring different techniques, e.g. deep learning and traditional statistics, and data
sources, e.g. Catalogue of Life (www.catalogueoflife.org) for improving data discovery and
linkage.

6 Panel discussions

6.1 Reproducibility and teaching needs – a dialogue between ecology
and computer science
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This document summarizes the plenary discussion about reproducibility and teaching needs
during the seminar. The discussion started with perspectives from ecologists and computer

www.catalogueoflife.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Gustau Camps-Valls, Thomas Hickler, and Birgitta König-Ries 131

scientists about the state of the art and challenges of reproducibility in their fields. A key
question discussed was the time-scale of reproducibility, which may pose large challenges for
computational researchers. On the practical side, data and code archiving practices were
discussed, and efforts to provide incentives for reproducible research highlighted. The second
part of the discussion covered whether there is a need for joint training efforts by ecologists
and computer scientists to generate the next generation of eco-informaticians trained for
the challenges of a largely data-driven science. We concluded the plenary discussion with
agreement that both disciplines would benefit from a better dialogue.

Reproducibility in ecology and computer science

Ecology is increasingly becoming a data-driven science and hence ecologists need to work
with large, complex datasets for which they often lack the appropriate training [2]. This can
lead to issues with reproducibility, which is not unique to the field of ecology, but for science
in general [4].

The discussion was started with perspectives from ecologists and computer scientists.
The available ecologists believed that a large fraction of papers currently published is not
fully reproducible, the attitude toward reproducibility is changing within the field. This is
partly due to tools like the statistical computing environment R [5] which is increasingly
used for analyses in ecology, biology and the life sciences. It is also due to the rise of literate
programming tools in R such as knitr and Rmarkdown [3], which allow to intersperse code
and text and are increasingly used.

The change is also fostered by changing journal policies that increasingly require data
archiving [9] and also the provisioning of computer code for modeling/simulation studies and
methods development [1]. Nowadays most of the major journals in ecology and evolution
require data archiving for publication, and guidelines and best practices how to make data
available can be found [10]. Nevertheless, current practice is still lacking behind [6]. Whereas
many of the modern tools for reproducible research were developed by computer scientists
(e.g. version control, unit tests, code review), the available computer scientists in the audience
expressed doubts whether the practice of reproducibility is actually better developed within
their field [4].

A major discussion topic was what reproducibility actually implies. Whereas data
archiving and providing scripts may guarantee the correctness and validity of the results at
the time of publication, it is not guaranteed that results will be reproducible in the future
(e.g. in ten years time). A major challenge is, for instance, the use of high performance
computing in many fields of computer science, including computer vision. Ideally, information
about software and hardware architecture should be preserved to reproduce results in the
future, but this is often prohibitive. Whereas these issues require careful consideration, they
probably only concern a small fraction of ecologists, whose research questions still can be
addressed on common desktop or laptop computers most of the time.

Towards more reproducible research

Several guidelines for better reproducible results are available [11, 7]. A first step is better
data archiving practices. Several recent publications highlight the value of data archiving and
give practical advice how to prepare data for long-term archiving. In addition, journals could
require that the scripts used for data analysis are submitted for peer review and check that
the output of the scripts corresponds to the results reported in a paper [3]. The Association
for Computing Machinery, for example, uses a system in which badges are assigned for
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research results which can independently be reproduced. In the Life Sciences the ReScience
Journal aims to publish independent reproductions of published research. They implemented
a fully transparent review process in which the reproduction is first peer-reviewed and then
published online, providing researchers with incentives to reproduce other’s work.

Another possible avenue for improved reproducibility is the use of work flows that docu-
ment data input and provenance [8]. These work flows often produce visual representations
of data sources and processing steps, which can be understood without knowing the data
processing language itself.

Students and researchers should also be exposed to reproducible research early on in
their careers. One possible way to do so is a reproducible research journal club. Instead of
just reading and discussing research papers, the goal is to reproduce the analysis or model
of a given paper. To do so, the students have to access the data from a publicly available
source such as Dryad or contact the authors directly. Consequently, the analysis of the paper
is performed independently from the authors of the study, just based on the information
provided in the paper. Ideally, one does not only reproduce the results of the study, but
also learns and understands a method, and learns about the steps a researcher has taken
during the analysis. An example of such a reproducible research journal club is run by
Owen Petchey at the University of Zurich1, with successful reproductions publicly available:
http://opetchey.github.io/RREEBES/.

Training needs for better computing practices in ecology?

The challenges in managing increasingly large and complex datasets require appropriate
training of ecologists. Two non-profit organizations are dedicated to provide training for
scientific computing and data management: Software Carpentry2 is primarily dedicated to
train scientists and engineers basic principles to make their scientific computing applications
reliable. Data Carpentry3 on the other hand focuses on providing training in teaching
the basic skills to conduct data-driven research such as cleaning, integrating, managing
and visualizing large datasets covering the full data life cycle for a variety of research
fields (e.g. biology, life sciences, ecology, social sciences). Both organizations organize short,
domain-specific workshops of two to three days in which basic principles are taught by trained
instructors. Both organizations adhere to a particular teaching style that values hands-on
programming by participants, and live coding of instructors. Whereas Data Carpentry is
primarily directed at learners without prior programming experience, Software Carpentry
workshops often require a basic knowledge of programming languages such as R or Python.

Besides focused workshops, the challenges of data-driven science may ask for more formal
training in terms of dedicated Master’s programs. Such Master’s programs could provide
specialized training at the cross-section of ecology and computer science, covering advanced
topics such as database creation and management, computer vision and machine learning
algorithms, geographical information systems (GIS) and modeling of complex ecological
systems.

We concluded the plenary discussion with agreement that both disciplines would benefit
from a better dialogue.

1 https://github.com/opetchey/RREEBES
2 https://software-carpentry.org/
3 http://www.datacarpentry.org/
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