
Report from Dagstuhl Seminar 17131

Mixed Criticality on Multicore / Manycore Platforms
Edited by
Liliana Cucu-Grosjean1, Robert Davis2, Sanjoy K. Baruah3, and
Zoë Stephenson4

1 INRIA – Paris, FR, liliana.cucu@inria.fr
2 University of York, GB, rob.davis@york.ac.uk
3 University of North Carolina at Chapel Hill, US, baruah@cs.unc.edu
4 Rapita Systems Ltd. – York, GB, zstephenson@rapitasystems.com

Abstract
This report provides an overview of the discussions, the program and the outcomes of the second
Dagstuhl Seminar on Mixed Criticality on Multicore/Manycore Platforms. The seminar brought
together researchers working on mixed criticality real-time applications, industrialists from the
aerospace, railway, and automotive industries, and experts in certification.

Seminar March 26–31, 2017 – http://www.dagstuhl.de/17131
Keywords and phrases mixed-criticality multicore manycore real-time-systems
Digital Object Identifier 10.4230/DagRep.7.3.70
Edited in cooperation with Adriana Gogonel

1 Executive Summary

Liliana Cucu-Grosjean
Robert I. Davis
Sanjoy K. Baruah
Zoë Stephenson

License Creative Commons BY 3.0 Unported license
© Liliana Cucu-Grosjean, Robert I. Davis, Sanjoy K. Baruah, Zoë Stephenson

Real-time applications are characterized by the need for both functional correctness and
temporal correctness (appropriate timing behaviour). Real-time systems are present in many
diverse areas such as avionics, automotive, space, robotics, and medical applications to
cite only a few. Mixed Criticality Systems (MCS) have become an important topic for the
real-time systems community. The first cluster of the European collaborative projects on
MCS has been completed in September 2016, indicating a maturing of the related concepts
within both industry and academia. Nevertheless many of the challenges brought about by
the integration of mixed criticality applications onto multicore and manycore architectures
remain to be solved. In reality mixed criticality problems have inherited the difficulty of
real-time systems: being at the frontier of several domains including real-time scheduling,
real-time operating systems / runtime environments, and timing analysis, as well as hardware
architectures. This seminar promoted lively interaction, cross fertilization of ideas, synergies,
and closer collaboration across different sub-communities of academics and industrialists
from aerospace, automotive, and railway industries with specific interests in MCS, as well as
with experts in certification.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Mixed Criticality on Multicore / Manycore Platforms, Dagstuhl Reports, Vol. 7, Issue 3, pp. 70–98
Editors: Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah and Zoë Stephenson

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17131
http://dx.doi.org/10.4230/DagRep.7.3.70
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 71

In common with the first Dagstuhl Seminar on Mixed Criticality Systems, this seminar
also focused on the two key conflicting requirements of MCS: separation between criticality
levels for assurance and sharing for resource efficiency, along with the related requirement of
time composability. An important aspect of this seminar was the presentation of different
industry perspectives on the key problems. These perspectives formed the starting point of
our seminar, with the first day mainly dedicated to industry statements on current practice
and their perception of current work on MCS. The academic participants benefited from
substantial and detailed arguments from the industry speakers. There were lively interactive
discussions during the talks which led to much improved understanding of current industry
practice, as well as helping to build a common vocabulary between academic and industry
participants. The first day concluded with presentations by academic speakers presenting
their thoughts on more practical mixed criticality models.

The next three days each included sessions devoted to an invited tutorial from a academic
speaker. These covered the one-out-of-m multicore problem, Networks-on-Chip and mixed
criticality, resource management, and statistical approaches to worst-case execution time
estimation. The remaining sessions covered a range of fascinating open problems. In addition,
a number of ad-hoc small working groups formed to collaborate on specific topics. We
are pleased to report that a significant number of these initial collaborations have gained
traction resulting in further work after the seminar, and in some cases the development and
submission of papers.

Organization of the seminar report. Section 3 is an overview of the industry talks and
Section 4 provides an overview of the academic talks. Section 5 presents working group
discussions. Section 6 summarizes open problems discussed during the seminar. Finally
outcomes from the seminar are listed in Section 7.

As organizers, we would like to thank Prof. Reinhard Wilhelm for joining us, Dagstuhl’s
Scientific Directorate for allowing us to run a second seminar on mixed criticality systems,
and to the staff at Schloss Dagstuhl for their superb support during the seminar itself.

Finally, we would like to thank all of the participants for the very lively and open
discussions. As organizers, we appreciated the feedback and enthusiasm which made running
the seminar a great pleasure.

17131

72 17131 – Mixed Criticality on Multicore / Manycore Platforms

2 Table of Contents

Executive Summary
Liliana Cucu-Grosjean, Robert I. Davis, Sanjoy K. Baruah, Zoë Stephenson 70

Overview of industrial talks
Mixed Criticality Systems – view from the industry side
Cristian Maxim . 74

Real-Time Systems in Railway
Stefan Resch . 74

An independent assessors perspective
Philippa Ryan . 76

Mixed Criticalities in Avionic Systems
Sascha Uhrig . 76

Mixed Criticality and Real-Time in Automotive
Dirk Ziegenbein . 76

Overview of academic talks
Deriving precise execution-time distributions of tasks
Sebastian Altmeyer . 77

Realistic task model for multicore processors
Sebastian Altmeyer . 77

Towards a (more) realistic task model for multicore processors
Sebastian Altmeyer . 78

The One-Out-of-m Multicore Problem
James H. Anderson . 78

Schedulability Analysis as Evidence?
Björn B. Brandenburg . 79

How to Gracefully Degrade
Alan Burns . 80

Resilient Mixed-Criticality Systems
Alan Burns . 80

Reliability Optimization in MC2 Systems
Thidapat Chantem . 80

Worst Case Execution Time measurement-based approach
Liliana Cucu-Grosjean, Adriana Gogonel, and Cristian Maxim 81

Practical Mixed-Criticality Model: Challenges
Arvind Easwaran . 82

Runtime Verification, Runtime Enforcement, and Mixed Criticality System Design
Sébastien Faucou . 82

Energy efficiency in factories: Benefit of renewable energy, loT and Automatic
Demand Response
Laurent George . 83

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 73

Real-Time Mixed-Criticality Wormhole Networks
Leandro Soares Indrusiak . 83

Fixed-Priority Scheduling without Any Adaptation in Mixed-Criticality Systems
Jian-Jia Chen . 84

Improve the scalability of mixed-criticality parallel real-time systems
Jing Li . 84

Resource management in DREAMS
Claire Pagetti . 85

Probabilistic Analysis for Mixed Criticality Scheduling with SMC and AMC
Dorin Maxim, Liliana Cucu-Grosjean, Robert Davis, and Arvind Easwaran 86

Timing Compositionality – Challenges and Opportunities
Jan Reineke . 86

Working Group Discussions
The Meaning and Use of probabilistic Worst-Case Execution Time (pWCET)
Distributions
Robert I. Davis and Alan Burns . 87

Open problems
Mixed criticality scheduling under resource uncertainty
Kunal Agrawal . 91

Deriving Optimal Scheduling Policies for MC Task Systems
Sathish Gopalakrishnan . 91

Guaranteeing some service upon mode switch in mixed-criticality systems
Zhishan Guo . 91

Regarding the Optimality of Speedup Bounds of Mixed-Criticality Schedulability
Tests
Zhishan Guo . 93

MC-ADAPT: Adaptive Mixed Criticality Scheduling through Selective Task Drop-
ping
Jaewoo Lee . 94

Schedulability, Probabilities and Formal Methods
Luca Santinelli . 95

Safety Calling
Zoë Stephenson . 95

Outcomes of the seminar . 97

Participants . 98

17131

74 17131 – Mixed Criticality on Multicore / Manycore Platforms

3 Overview of industrial talks

3.1 Mixed Criticality Systems – view from the industry side
Cristian Maxim (Airbus S.A.S. – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Cristian Maxim

In avionics industry criticality is a designation of the level of assurance against failure
needed for a system component and the notion of mixed-criticality is treated differently
than in research domain. In my presentation I spotted the differences between the Vestal
model and the approach in industry, explaining notions like safety integrity level and design
assurance level (DAL). In industry the DAL is determined from the safety assessment process
and hazard analysis and each software is included in one of the five distinct levels. The
presentation focused on the way these levels are obtained and gave examples of softwares
and the corresponding DALs. The main discrepancies between the levels of criticality in
avionics and Vestal’s model are:
1. In industry the criticality is given to a function while in research the criticality applies to

a task.
2. For certification, the airplane manufacturers are supposed to give one WCET value while

in research the concept of multiple WCET values for higher criticality tasks is observed.
3. The difficulty of implementation of Vestal’s model makes it hard to benefit from the

better CPU usage given by the existence of WCET for low criticality of certain tasks.
4. Task dropping is not conceivable in industry and the spatial isolation doesn’t allow failure

in a function to affect other functions.
5. The mode change in case of time violations would imply a new certification procedure

and that is to costly to be practical. In the second part of the presentation, the IMA
(integrated modular avionics) concept was presented as a midway between research and
industry, focusing on the isolation procedures.

3.2 Real-Time Systems in Railway
Stefan Resch (Thales – Wien, AT)

License Creative Commons BY 3.0 Unported license
© Stefan Resch

In the railway domain systems with various timing requirements are to be found. By nature
these systems are distributed over long distances. There are elements on track side such as
axel counters, point control and signals, as well as interlocking systems in data centers and
operation management centers controlling large parts of a country’s railway network. On the
trains there are on-board systems supervising and assisting the driver and communicating
with the interlocking systems and operation control through balises (electronic beacons) or
via GSM-R and radio block centers. The timing requirements of all these systems are highly
dependent on their provided functions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 75

To avoid re-developing services for fault-tolerance, communication, real-time, etc., Thales
provides a generic platform for its safety-critical railway applications – the TAS Control
Platform1. It provides hardware boards, software runtimes, development tools and a system
safety case according to CENELEC EN 50129. TAS Control Platform is certified to the
highest safety integrity level SIL4 as generic safety product. This is achieved by implementing
a safety middleware on top of a COTS operating system and hardware. This layer provides
replication and supervises all capabilities that are used by the safety-critical applications and
provided by the underlying COTS layer, also with respect to the real-time. With a stable
API to the applications hardware obsolescence is mitigated in the middleware and the COTS
OS.

In the railway domain high integrity is required for safety, but availability is not a direct
safety property since railway systems are fail-safe. This can be illustrated with the example
of setting a route for a train in a railway network. First all elements of the route, such as
points, tracks and signals are reserved. Then all points are commanded to be set into the
correct position for the route. The points then report their updated positions. As soon as
all elements of the route are in a correct state, the entry signal is set to permissive. In case
one of these steps cannot be completed, the setting of the route is aborted. This example
illustrates that rather than relying on a concrete action to be completed within a certain
amount of time the railway approach is to wait until the system has reached the correct state.
An example with tighter timing requirements is that of sending an emergency stop signal
via the radio block center to a train. Here, as well as in the previous example, the overall
reaction time must be guaranteed by all involved systems.

As in other safety-critical domains, in railway the criticality of a function is derived from
the potential damage and likelihood of it being faulty. The application designer then has to
ensure that the system design satisfies the according requirements. With respect to scheduling
this means that the tasks of the application will have sufficient resources on the computing
platform available. In case of mixed criticality, where several applications are integrated
on top of the same hardware platform, the required resources must be guaranteed for all
the integrated applications. In exceptional overload situation the platform might provide
only limited resources to tasks that are marked by the application designer as low priority,
independent of their application’s level of criticality. This allows graceful degradation of the
system, but is a result of the application design and has no direct relation to the criticality
level of an application.

Applications on top of TAS Control Platform are supervised through timeouts and the
periodic synchronization between different computing boards in redundant architectures.
Based on their communication and computation demand and the TAS Control Platform
synchronization granularity they can define and supervise whether their reaction time meets
the requirements. The actual reaction time is then determined through measurements and
verified during the system integration tests.

In the future TAS Control Platform wants to provide the applications the possibility
to execute a generic integration test with respect to application requirements and then be
deployed in different environments.

1 This project has received funding from the ECSEL Joint Undertaking under grant agreement No
692455. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and
innovation program and Austria, Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal,
Poland, Ireland, Belgium, France, Netherlands, United Kingdom, Slovakia, Norway.

17131

76 17131 – Mixed Criticality on Multicore / Manycore Platforms

3.3 An independent assessors perspective
Philippa Ryan (Adelard – London, GB)

License Creative Commons BY 3.0 Unported license
© Philippa Ryan

Independent audits and assessments provide essential unbiased review of computer systems.
In domains such as nuclear, defence, avionics and railway they are required by regulators.
Few standards offer up to date guidance to deal with the complexity of mixed criticality and
multi-core. Current focus is on safety, but security informed safety is increasingly important.
With a limited amount of time and budget to perform an audit, how can the assessor be
persuaded the system is acceptably safe and secure?

3.4 Mixed Criticalities in Avionic Systems
Sascha Uhrig (Airbus – München, DE)

License Creative Commons BY 3.0 Unported license
© Sascha Uhrig

Mixed criticality systems on multicores will become very important in the avionic domain in
the future. This is because more and more functionality needs to be integrated on light-weight
computers demanding for less space and energy. In addition to that the new functionalities
need to be even more reliable and available than current high criticality systems, for example
because of the demand on autonomous flying vehicles. Current approaches exploiting high
multicore performance by switching between two modes according to the actual execution
state, i.e. execution times, are good starting points. Nevertheless, these approaches can be
difficult to implement (and certify) in avionic systems because of their nature to change
the timing (schedule) and consequently the behaviour of the complete system dynamically.
Such mode switches will most probably not occur in standard situations tested on ground
but in unforeseen situations in which a different behaviour can have unpredictable results.
Accordingly, such systems must be designed even more careful than current highly critical
systems and future mixed criticality systems are still challenging.

3.5 Mixed Criticality and Real-Time in Automotive
Dirk Ziegenbein (Robert Bosch GmbH – Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Dirk Ziegenbein

The talk gives a short overview of safety criticality, current approaches to real-time assurance
as well as future challenges. In automotive systems, the criticality is given as ASIL (Auto-
motive Safety Integrity Level) of a certain function. Since typically several SW and HW
units work together to implement the function as well as to fulfil ASIL requirements, the
paradigm to drop lower criticality tasks is not applicable in general. This is explained using
an example. Timing assurance today is typically based on measured execution times and
scheduling analysis or simulation. With the advent of multi-cores this well-known WCET
abstraction does no longer hold due to cross-core influences. The trend towards large-scale
software integration on heterogeneous HW platforms increases the need to find a new way to
characterize the sequential SW units for system-level performance analysis.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 77

4 Overview of academic talks

4.1 Deriving precise execution-time distributions of tasks
Sebastian Altmeyer (University of Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Sebastian Altmeyer

Research on the timing behaviour of embedded real-time systems has been primarily focused
on determining the worst-case execution time (WCET). This focus is clearly motivated by
the need for timing verification, i.e, the need to guarantee at design time that all deadlines
will be met. While a WCET estimate can be used to verify that a system is able to meet
deadlines, it does not contain any further information about how the system behaves most of
the time. An execution time distribution does contain this information and can provide useful
insights regarding the timing behaviour of a system. Furthermore, a correct execution time
distribution can be used to evaluate the precision and correctness of (worst-case) execution
time analyses. We have recently developed a measurement-based framework that derives
execution time distributions by exhaustive evaluation of program inputs. We overcome the
scalability and state-space explosion problem by i) using static analysis to reduce the input
space and ii) using an anytime algorithm which allows deriving a precise approximation on
the execution time distribution. We would like to extend this research to overcome some
restrictions on the hardware and execution environment. But foremost, we would like to use
the framework to evaluate the precision of recently developed timing analysis approaches.

4.2 Realistic task model for multicore processors
Sebastian Altmeyer (University of Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Sebastian Altmeyer

While processor architectures have changed fundamentally within the last decades, the task
model that we still use today remained remarkably simple. Besides periods and deadlines,
we mostly argue about execution time bounds. Each variation of this task model creates a
plethora of new research questions, be it by defining different execution time bounds per
criticality level, or per processor type. What rarely changes, however, is the assumption that
the execution time bounds are complete and safe and encompass the entire processor system,
irrespective of any interference on shared resources. Such a coarse abstraction mismatches
the complexity of modern processors, especially for multi-core architectures with complex
bus architectures and memory hierarchies: The processor itself is often not the only scarce
resource anymore that needs to be scheduled. Arguing about the computation time is not
very useful, when instead the memory bandwidth is the performance bottleneck.

The research problem that I would like to work on within this context are, amongst
others:

How realistic is the current assumption of a single execution time bound, valid for all
scenarios, and how much performance do we lose?
How can we define a more realistic task model that accurately represents not only the
computation time, but also other shared resources?

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

78 17131 – Mixed Criticality on Multicore / Manycore Platforms

4.3 Towards a (more) realistic task model for multicore processors
Sebastian Altmeyer (University of Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Sebastian Altmeyer

While processor architectures have changed fundamentally within the last decades, the task
model that we still use today remained remarkably simple. Besides periods and deadlines,
we mostly argue about execution time bounds. Each variation of this task model creates a
plethora of new research questions, be it by defining different execution time bounds per
criticality level, or per processor type. What rarely changes, however, is the assumption that
the execution time bounds are complete and safe and encompass the entire processor system,
irrespective of any interference on shared resources. Such a coarse abstraction mismatches
the complexity of modern processors, especially for multi-core architectures with complex
bus architectures and memory hierarchies: The processor itself is often not the only scarce
resource anymore that needs to be scheduled. Arguing about the computation time is not
very useful, when instead the memory bandwidth is the performance bottleneck.

The research problems that I would like to work on within this context are, among-st
others:

How realistic is the current assumption of a single execution time bound, valid for all
scenarios, and how much performance do we lose?
How can we define a more realistic task model that accurately represents not only the
computation time, but also other shared resources?

4.4 The One-Out-of-m Multicore Problem
James H. Anderson (University of North Carolina at Chapel Hill, US)

License Creative Commons BY 3.0 Unported license
© James H. Anderson

The multicore revolution is having limited impact in safety-critical application domains.
A key reason is the “one-out-of-m” problem: when validating real-time constraints on an
m-core platform, excessive analysis pessimism can effectively negate the processing capacity
of the additional m − 1 cores so that only “one core’s worth” of capacity is utilized even
though m cores are available. Two approaches have been investigated previously to address
this problem: mixed-criticality allocation techniques, which provision less-critical software
components less pessimistically, and hardware-management techniques, which make the
underlying platform itself more predictable. A better way forward may be to combine both
approaches, but to show this, fundamentally new criticality-cognizant hardware-management
trade offs must be investigated. To enable such an investigation, my research group has
developed a mixed-criticality scheduling framework called MC2 that supports configurable
criticality-based hardware management. This framework allows specific DRAM memory
banks and areas of the last-level cache (LLC) to be allocated to certain groups of tasks. A
linear-programming-based optimization framework is available for sizing such LLC areas. In
this talk, I will discuss the design of MC2 and the analysis that underlies it and present
the results of an experimental study conducted to evaluate its efficacy. This study shows
that mixed-criticality allocation and hardware-management techniques can be much more
effective when applied together instead of alone.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 79

4.5 Schedulability Analysis as Evidence?
Björn B. Brandenburg (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Björn B. Brandenburg

URL http://prosa.mpi-sws.org

As part of the certification of safety-critical systems, it is required to make a safety case.
Such a safety case rests on a series of arguments that establish that all unacceptable risks
are being mitigated. These arguments in turn must be supported by evidence that has been
produced using an effective, and widely accepted, methodology.

In the context of real-time systems – and in particular in the context of mixed-criticality
real-time systems, which distinguish themselves by consisting of complex mixes of workloads
with diverse timing requirements and non-obvious correctness criteria, which makes their
analysis exceedingly difficult – the generally accepted methodology of ruling out the risk of
timing errors is schedulability analysis, i.e., static analysis that determines whether all timing
constraints will be met at runtime in all possible execution scenarios.

The general consensus of real-time researchers is that schedulability analysis should be
employed as part of safety certification of critical real-time systems (e.g., as found in avionics
or the automotive industry), as the alternative – purely testing-based methods – cannot yield
strong guarantees, and thus inherently constitute a considerable source of uncertainty (or
residual risk). In contrast, published and peer-reviewed schedulability analyses are considered
to yield sound results that leave no room for doubts.

Unfortunately, this trust in published and peer-reviewed schedulability analyses is, histor-
ically speaking, not justified: over the years, significant flaws and gaps in proofs have been
found in a surprisingly large number of well-known results, including in the foundational
Liu & Layland analysis of rate-monotonic scheduling, in the response-time analysis of tasks
with arbitrary deadlines, in the response-time analysis of non-preemptive tasks (or network
messages as in CAN), in the literature on self-suspensions, in the analysis of multiprocessor
real-time scheduling with affinity constraints, and in the worst-case blocking analysis of
several classic multiprocessor real-time locking protocols (to name just a few examples; there
exist many more).

For the design and certification of mixed-criticality systems, which by definition include
critical components, this represents a major open problem: how can we make complex
schedulability analysis truly trustworthy?

Given the community’s collective past record, just following the same procedure as before
– primarily, manual “pen and paper” proofs and vetting to a varying degree of rigor by
peer-reviewers – is arguably not going to work. Rather, a fundamentally more rigorous
approach is needed.

Motivated by these observations, I argue that schedulability analyses intended for use in
safety-critical systems should be formally proven with the help of a proof assistant such that
all proofs are machine-checked to rule out human error. Following such an approach, the trust
relies solely in the specification, and no longer in the much longer and much more intricate
proofs (which no longer have to be trusted to be correct, as they can be automatically verified
at the push of a button).

Given both that, historically, specification errors are much rarer than flaws in proofs, and
that it is much easier to manually check a specification than it is to follow a proof in full
detail, the adoption of machine-check-able proofs would represent a major advancement in
the analysis and certification of real-time systems, and would enable unprecedented assurance
in the temporal correctness of critical systems.

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://prosa.mpi-sws.org

80 17131 – Mixed Criticality on Multicore / Manycore Platforms

Towards this goal, I highlight one particular project – PROSA, a framework based on the
Coq proof assistant – that is spearheading the drive towards a comprehensive foundation
for formally verified schedulability analysis, and discuss and explain its major advantages as
well as the remaining risks (such as specifications with contradicting hypotheses), and what
is being done to mitigate them.

4.6 How to Gracefully Degrade
Alan Burns (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Alan Burns

Many approaches have been proposed for managing criticality-induced mode changes. A
quick review is given, issues of integration are addressed as is the role that HI-crit tasks
should take when there is a system overrun.

4.7 Resilient Mixed-Criticality Systems
Alan Burns (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Alan Burns

Certification authorities require correctness and resilience. In the temporal domain this
requires a convincing argument that all deadlines will be met under error free conditions,
and that when certain defined errors occur the behaviour of the system is still predictable
and safe. This means that occasional execution-time overruns should be tolerated and
where more severe errors occur levels of graceful degradation should be supported. With
mixed-criticality systems, fault tolerance must be criticality aware, i.e. some tasks should
degrade less than others. In this talk resilience is defined, and ways in which all levels of
criticality can contribute to resilience are outlined. Discussions following this talk lead to a
paper being produced that was offered for publication to the 2017 IEEE Real-Time Systems
Symposium.

4.8 Reliability Optimization in MC2 Systems
Thidapat Chantem (Virginia Polytechnic Institute – Arlington, US)

License Creative Commons BY 3.0 Unported license
© Thidapat Chantem

Reliability is an important consideration for many safety- and mission-critical systems.
Broadly, reliability is influenced in part by soft (transient) errors and in part by permanent
device or component failures. In addition, system reliability cannot typically be improved by
independently minimizing the occurrence of soft and hard errors. This is because preventing
the occurrence of a soft error by increasing the voltage, for instance, may inadvertently
reduces component lifetimes due to the potentially high temperature. Either a soft or

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 81

hard error could cause deadline misses, or worse. With the increasing prevalence in mixed-
criticality systems due to the size, weight, and power constraints, providing predictable and
reliable performance in hard real-time systems becomes more important than ever. Since
task assignment and scheduling is the main influencer of voltage and frequency assignment,
a system-level, reliability-aware task assignment and scheduling framework is needed. I am
interested in designing an adaptive fault tolerance framework that is able to (probabilistically)
guarantee the schedulability of high-criticality tasks in face of soft errors and component
failures.

4.9 Worst Case Execution Time measurement-based approach
Liliana Cucu-Grosjean (INRIA – Paris, FR), Adriana Gogonel (INRIA – Paris, FR), and
Cristian Maxim (Airbus S.A.S. – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Liliana Cucu-Grosjean, Adriana Gogonel, and Cristian Maxim

The time behaviour of Cyber-Physical Systems relies on the execution time of programs
representing the cyber parts of such systems. Our time estimation method is based on a
measurement-based one providing results in absence of sufficiently large intervals of simulation
while using the Extreme Value Theory (EVT). According to EVT if the maximum of execution
times of a program converges, then this maximum of the execution times Ci, ∀i ≥ will converge
to one of the three possible curves Frechet, Weibull, and Gumbel corresponding to a shape
parameter ξ < 0, ξ > 0 and ξ = 0, respectively.

Block size estimation. We compare all GEV curves obtained by varying the block size
from 4 to n

4 where n is the cardinal of the set of execution times. We keep the block size
corresponding to the shape parameter closest to 0, which corresponds to a Gumbel. We
calculate the generalized EV curve corresponding to this parameter.
Threshold level estimation. We compare all GPD curves obtained by varying the threshold
levels u from 0% to 100%. We keep the threshold level u0 such that the curve defined
by E(X − u0) ≈ u− u0 experiences linearity. The linearity of E indicates that the GPD
curve goes close to a Gumbel. We calculate the generalized EV curve corresponding to
u0.
Comparing GEV and GPD pWCET estimates. The comparison of the GEV and GPD
curves is done using the distance between the two distributions defined as
CRPS(GEV,GPD) =

∑z=xmax

z=xmin
[fGEV (z)− fGP D(z)]2. We consider in our experiments

GEV and GPD as sufficiently close when CRPS(GEV,GPD) ≤ e with e ≈ 10−12. Other
possible values of e, based for instance on the criticality level the pWCET estimation, may
be decided. In order to decrease the error introduced by such estimation, we recommend
calculating the pWCET estimate as a combination of GEV and GPD results. A joint
pWCET estimate is obtained by choosing for each probability the largest value between
GEV and GPD.

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

82 17131 – Mixed Criticality on Multicore / Manycore Platforms

4.10 Practical Mixed-Criticality Model: Challenges
Arvind Easwaran (Nanyang TU – Singapore, SG)

License Creative Commons BY 3.0 Unported license
© Arvind Easwaran

Joint work of Arvind Easwaran, Vijayakumar Sundar, Bibin Nair
Main reference A. Easwaran, V. Sundar, B. Nair, “Mixed Criticality Scheduling Research in Automotive: Making

Research More Practical”, Workshop on Collaboration of Academia and Industry for Real World
Embedded Systems (CAIRES) 2016.

URL https://caires2016.inria.fr/

The current trend in the automotive industry is focused towards Electronic Control Unit
(ECU) consolidation. Increasing the number of ECUs to satisfy increased demand in the
safety and comfort features of the vehicle is not a sustainable solution. Mixed criticality
scheduling can be one of the key factors to drive ECU consolidation. Academic research
has been focusing on different scheduling techniques and mode change protocols for mixed
criticality systems. The research is further motivated with the introduction of ISO26262
which is a functional safety standard for safety critical applications in automotive. Functional
safety of the automotive applications is represented in terms of Automotive Safety Integrity
Levels (ASIL). Although the terms ‘ASIL’ of ISO26262 and ‘criticality’ of the existing research
work looks similar, there is no clarity in the exact relationship between them. This can be
attributed to the factors involved in determining the ASILs. There is also a need to validate
the assumptions made in the existing research work with the safety critical behaviour of the
applications. Certain assumptions may not even reflect the actual behaviour of automotive
applications. This talk focuses on such issues for building mixed criticality systems. Solutions
can be arrived at by considering various factors that might be missing in the current mixed
criticality models considered by the research community.

4.11 Runtime Verification, Runtime Enforcement, and Mixed
Criticality System Design

Sébastien Faucou (University of Nantes, FR)

License Creative Commons BY 3.0 Unported license
© Sébastien Faucou

Mixed criticality is a way to think about uncertainty of parameters during the design of a
critical system. A mixed criticality system must be capable of graceful degradation in order
to preserve its critical functions when something goes wrong, i.e. when a design assumption is
violated at runtime. To do so, it must (i) detect the violation; and (ii) react to this violation
to ensure the preservation of its critical activities.

Similar problems have been studied in the formal methods community. Problem (i) is
akin to runtime verification. Problem (ii) is akin to runtime enforcement. The objective of
the talk is to establish a parallel between these problems and mixed criticality system design,
and draw attentions to some works developed in the formal method community that could
provide rigorous techniques to build proved components for mixed criticality systems.

Runtime verification has already been used in the context of mixed criticality system
design, with promising results. Still, further investigations are required to identify its benefits
and limits. For runtime enforcement, it is still not clear if it is powerful and/or scalable
enough to provide satisfying answer to our problem.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://caires2016.inria.fr/
https://caires2016.inria.fr/
https://caires2016.inria.fr/
https://caires2016.inria.fr/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 83

4.12 Energy efficiency in factories: Benefit of renewable energy, loT
and Automatic Demand Response

Laurent George (ESIEE – Champs sur Marne, FR)

License Creative Commons BY 3.0 Unported license
© Laurent George

Demand Response is a new approach to smooth pics of energy consumption at the scale of a
country. Demand response can be used by a legacy energy provider to prevent from buying
energy at the highest price on spot markets. When receiving a demand response request, a
factory is requested to decide whether it could stop (or reduce) its energy consumption and
for how long. Re-scheduling the activity of equipments in a production line by using standby
or shutdown modes can help reducing energy consumption in factories. This requires taking
scheduling decisions concerning the production line on relatively short reaction times (few
minutes) upon demand response request. The benefit of Demand Response for a factory is
that it gets paid for not consuming by legacy energy provider.

4.13 Real-Time Mixed-Criticality Wormhole Networks
Leandro Soares Indrusiak (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Leandro Soares Indrusiak

Joint work of Leandro Soares Indrusiak, Alan Burns, James Harbin
Main reference L. S. Indrusiak, J. Harbin, A. Burns, “Average and Worst-Case Latency Improvements in

Mixed-Criticality Wormhole Networks-on-Chip”, in Proc. of the 27th Euromicro Conference on
Real-Time Systems (ECRTS 2015), pp. 47–56, IEEE, 2015.

URL https://doi.org/10.1109/ECRTS.2015.12
Main reference A. Burns, J. Harbin, L. S. Indrusiak, “A Wormhole NoC Protocol for Mixed Criticality Systems”,

IEEE Real-Time Systems Symposium (RTSS 2014), pp. 184–195, IEEE, 2014.
URL https://doi.org/10.1109/RTSS.2014.13

Wormhole switching is a widely used network protocol due to small buffering requirements
on each network router, which in turn results in low area and energy overheads. This is of
key importance in multi-core and many-core processors based on Networks-on-Chip, as the
area and energy share of the on-chip interconnect itself can reach up to 30% of the area and
energy used by the whole processor. However, the nature of wormhole switching allows a
single packet to simultaneously acquire multiple links as it traverses the network, which can
make worst-case packet latencies hard to predict. This becomes particularly severe in large
and highly congested networks, where complex interference patterns become the norm.

This talk focuses on the use of priority-preemptive wormhole networks, and the latest
research on analytical methods aimed at predicting worst-case packet latency over such
networks. Then, I’ll show how to extend the network and the respective analysis to provide
different levels of guarantees to network packets of different criticality sharing the same
network. By doing that, highly-critical packets will always be given sufficient service, even in
situations of overload or degraded network capacity.

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1109/ECRTS.2015.12
https://doi.org/10.1109/ECRTS.2015.12
https://doi.org/10.1109/ECRTS.2015.12
https://doi.org/10.1109/ECRTS.2015.12
https://doi.org/10.1109/RTSS.2014.13
https://doi.org/10.1109/RTSS.2014.13
https://doi.org/10.1109/RTSS.2014.13

84 17131 – Mixed Criticality on Multicore / Manycore Platforms

4.14 Fixed-Priority Scheduling without Any Adaptation in
Mixed-Criticality Systems

Jian-Jia Chen

License Creative Commons BY 3.0 Unported license
© Jian-Jia Chen

Main reference G. von der Bruggen, K.-H. Chen, W.-H. Huang, J.-J. Chen, “Systems with Dynamic Real-Time
Guarantees in Uncertain and Faulty Execution Environments”, IEEE Real-Time Systems
Symposium (RTSS 2016), pp. 303–314, IEEE, 2016.

URL http://dx.doi.org/10.1109/RTSS.2016.037

In many practical real-time systems, the physical environment and the system platform can
impose uncertain execution behaviour to the system. For example, if transient faults are
detected, the execution time of a task instance can be increased due to recovery operations.
Such fault recovery routines make the system very vulnerable with respect to meeting hard
real-time deadlines. In theory and in practical systems, this problem is often handled by
aborting not so important tasks to guarantee the response time of the more important tasks.
However, for most systems such faults occur rarely and the results of not so important
tasks might still be useful, even if they are a bit late. This implicates to not abort these
not so important tasks but keep them running even if faults occur, provided that the more
important tasks still meet their hard real time properties. In this paper, we present Systems
with Dynamic Real-Time Guarantees to model this behaviour and determine in [1] if the
system can provide full timing guarantees or limited timing guarantees without any online
adaptation after a fault occurred. We present a schedulability test, provide an algorithm
for optimal priority assignment, determine the maximum interval length until the system
will again provide full timing guarantees and explain how we can monitor the system state
online. The approaches presented in [1] can be applied to mixed criticality systems with dual
criticality levels.

References
1 Georg von der Bruggen, Kuan-Hsun Chen, Wen-Hung Huang, Jian-Jia Chen: Systems with

Dynamic Real-Time Guarantees in Uncertain and Faulty Execution Environments. RTSS
2016: 303-314

4.15 Improve the scalability of mixed-criticality parallel real-time
systems

Jing Li (Washington University – St. Louis, US)

License Creative Commons BY 3.0 Unported license
© Jing Li

Recent years have witnessed the convergence of two important trends in real-time systems:
growing computational demand of applications and the adoption of processors with more
cores. As real-time applications now need to exploit internal parallelism to meet their
real-time requirements, they face a new challenge of scaling up computations on a large
number of cores.

Randomized work stealing has been adopted as a highly scalable scheduling approach
for general-purpose computing for parallel programs. In randomized work stealing, each
core steals work from a randomly chosen core in a randomized and decentralized manner.
Randomized work stealing has been proved to have a high-probability bound on the execution

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/RTSS.2016.037
http://dx.doi.org/10.1109/RTSS.2016.037
http://dx.doi.org/10.1109/RTSS.2016.037
http://dx.doi.org/10.1109/RTSS.2016.037
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 85

time of a parallel job on multiple cores. In other words, it can complete the execution of a
parallel job by the job’s deadline with a high probability, when given sufficient number of
cores. However, in the worst case (with very low probability), it could still run a parallel
job sequentially. Therefore, if a parallel task is executed by randomized work stealing, the
variation in the parallel execution times of the task depends not only upon the fluctuation in
its computational demand, but also upon the randomness of its internal scheduling by work
stealing.

The mixed-criticality real-time model typically captures the uncertainty of task executions
to improve the average resource efficiency while providing hard guarantees in the worst
case. Therefore, to improve the scalability of parallel real-time tasks, we could consider
exploiting the work stealing strategy and model its variation in task execution times under
the mixed-criticality framework. To do so, we need to consider the following problems.

First, consider the simple scenario where a parallel task always releases jobs with the
same parallel structure and computation. How can we modify the work stealing strategy
to provide different (parallel) execution time estimates, so that it fits the Vestal model for
mixed-criticality systems? In particular, the modified work stealing strategy must provide
a worst-case progress guarantee that is better than executing a parallel task sequentially.
Based on the modified work stealing strategy, can we design a mixed-criticality scheduling
algorithm for parallel tasks executed by work stealing? Can we design a global mixed-
criticality scheduling algorithm, so that low-criticality tasks can use the under-utilized
cores by the high-criticality tasks while providing progress guarantee to high-criticality
tasks?
Finally, we need to consider the more general case where a parallel task releases jobs
with different parallel structures and different computational demands and these parallel
jobs are executed by work stealing. How can we simultaneously model the fluctuation
in task’s computational demand and the randomness of its internal scheduling by work
stealing to improve the resource efficiency of the system?

4.16 Resource management in DREAMS
Claire Pagetti (ONERA – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Claire Pagetti

Joint work of Guy Durrieu, Gerhard Fohler, Gautam Gala, Sylvain Girbal, Daniel Gracia Pérez, Eric Noulard,
Claire Pagetti

Main reference G. Durrieu, G. Fohler, G. Gala, S. Girbal, D. Gracia Pérez, E. Noulard, C. Pagetti, S. Pérez, ,
“DREAMS about reconfiguration and adaptation in avionics”, in Proc. of the 8th Conf. on
Embedded Real Time Software and Systems (ERTS’16).

URL https://hal.archives-ouvertes.fr/hal-01258701
URL https://www.youtube.com/watch?v=Wr6gxlS8c0w&feature=youtu.be

The DREAMS (Distributed REal-Time Architecture for Mixed Criticality Systems) FP7 pro-
ject addresses the design of a cross-domain architecture for executing applications of different
criticality levels in networked multi-core embedded systems. A DREAMS architecture is
composed of several multi-code chips (such as the ST Micro Spidergon NOC or the Freescale
T4240) connected through a TTEthernet network.

This presentation focuses on the adaptation strategies and their implementation in the
avionic demonstrator. Adaptations only take place upon failures on a core, with the purpose
to bring the system back to a functioning state. We consider two types of failures:

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://hal.archives-ouvertes.fr/hal-01258701
https://hal.archives-ouvertes.fr/hal-01258701
https://hal.archives-ouvertes.fr/hal-01258701
https://hal.archives-ouvertes.fr/hal-01258701
https://www.youtube.com/watch?v=Wr6gxlS8c0w&feature=youtu.be

86 17131 – Mixed Criticality on Multicore / Manycore Platforms

1. A permanent core failure. Intensive integration of small devices on chip increases the
permanent failures occurrence due to various phenomena such as aging, wear-out or infant
mortality.

2. A temporal overload situation, resulting in deadline miss without corrective action.

We will describe the resource management proposed in the DREAMS middle-ware. We
will then detail the adaptation strategies defined for mitigating the above-defined failures.
Finally we will give the main ideas of the implementation for the avionic demonstrator.

4.17 Probabilistic Analysis for Mixed Criticality Scheduling with SMC
and AMC

Dorin Maxim (LORIA & INRIA – Nancy, FR), Liliana Cucu-Grosjean (INRIA – Paris, FR),
Robert Davis (University of York, GB), and Arvind Easwaran (Nanyang TU – Singapore,
SG)

License Creative Commons BY 3.0 Unported license
© Dorin Maxim, Liliana Cucu-Grosjean, Robert Davis, and Arvind Easwaran

Main reference D. Maxim, R. Davis, L. Cucu-Grosjean, A. Easwaran, “Probabilistic Analysis for Mixed Criticality
Scheduling with SMC and AMC”, in Proc. of the Workshop on Mixed Criticality Systems (WMC
2016), collocated with RTSS 2016.

URL https://www-users.cs.york.ac.uk/ robdavis/papers/WMC2016pAMC.pdf

This work introduces probabilistic analysis for fixed priority preemptive scheduling of mixed
criticality systems on a uniprocessor using the Adaptive Mixed Criticality (AMC) and Static
Mixed Criticality (SMC) schemes. We compare this analysis to the equivalent deterministic
methods, highlighting the performance gains that can be obtained by utilising more detailed
information about worst-case execution time estimates described in terms of probability
distributions.

4.18 Timing Compositionality – Challenges and Opportunities
Jan Reineke (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Jan Reineke

Joint work of Sebastian Hahn and Michael Jacobs
Main reference S. Hahn, M. Jacobs, J. Reineke, “Enabling Compositionality for Multicore Timing Analysis”, in

Proc. of the 24th Int’l Conf. on Real-Time Networks and Systems (RTNS’16), pp. 299–308, ACM,
2016.

URL http://doi.acm.org/10.1145/2997465.2997471

How does the execution time of a task respond to interference on shared resources like
processor cores, caches, or buses? A common assumption is that a task’s response time
increases by the amount of interference it experiences. We call this the “compositionality
assumption”. It underlies most of the approaches to response-time analysis for multi-cores
systems known today.

In recent work, we have shown that this assumption is both unsound and imprecise even
for simple microarchitectures. I would like to discuss, how to overcome this problem to
enable sound and more precise multi-core timing analysis.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www-users.cs.york.ac.uk/~robdavis/papers/WMC2016pAMC.pdf
https://www-users.cs.york.ac.uk/~robdavis/papers/WMC2016pAMC.pdf
https://www-users.cs.york.ac.uk/~robdavis/papers/WMC2016pAMC.pdf
https://www-users.cs.york.ac.uk/~robdavis/papers/WMC2016pAMC.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://doi.acm.org/10.1145/2997465.2997471
http://doi.acm.org/10.1145/2997465.2997471
http://doi.acm.org/10.1145/2997465.2997471
http://doi.acm.org/10.1145/2997465.2997471

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 87

5 Working Group Discussions

5.1 The Meaning and Use of probabilistic Worst-Case Execution Time
(pWCET) Distributions

Robert I. Davis and Alan Burns

License Creative Commons BY 3.0 Unported license
© Robert I. Davis and Alan Burns

Research into probabilistic Worst-Case Execution Time (pWCET) analysis can be classified
into two main categories:

Analytical methods: referred to as Static Probabilistic Timing Analysis (SPTA) [4, 7, 2, 1,
12]. SPTA is applicable when some part of the system or its environment contributes
random or probabilistic timing behaviour. SPTA methods analyse the software and use a
model of the hardware behaviour to derive an estimate of worst-case timing behaviour
represented by a pWCET distribution, that is valid for any possible inputs and paths
through the code. SPTA does not execute the code on the actual hardware.
Statistical methods: referred to as Measurement-Based Probabilistic Timing Analysis
(MBPTA) [3, 10, 11, 6, 15, 13]. MBPTA makes use of measurements (observations) of
the overall execution time of a software component, obtained by running it on the actual
hardware, using test vectors i.e. inputs that exercise a relevant subset of the possible
paths through the code. These methods use a statistical analysis of the observations
based on Extreme Value Theory (EVT) to estimate the pWCET distribution.

It is important to understand the precise meaning of a pWCET distribution since this
impacts how such information can be used. In fact there are two subtly different meanings
originating from SPTA and MBPTA.

The timing behaviour of a system may be characterised as deterministic or it may depend
on some element that can be characterised by a random variable, for example a random
replacement cache. In general, uncertainty about the timing behaviour of a system can be
classified into two categories:

Aleatoric variability depends on chance or random behaviour within the system itself or
its environment.
Epistemic uncertainty is due to things that could in principle be known about the system
or its environment, but in practice are not, because the information is hidden or cannot
be measured or modelled.

While complex software running on advanced time-predictable hardware may in theory
exhibit deterministic timing behaviour and therefore have a single absolute WCET, in
practice this actual WCET often cannot be determined and must therefore be estimated.
Such an estimate is subject to epistemic uncertainty. In contrast, software running on simple
time-randomised hardware exhibits aleatoric variability in its execution time. SPTA can
be used to model aleatoric variability, but must deal with any epistemic uncertainty by
upper bounding its effects in the model used. MBPTA can be used with systems that are
characterised by either or both aleatoric variability and epistemic uncertainty.

As an example, it is instructive to consider a thought experiment involving two hypothet-
ical systems. Both systems have 10 inputs which can take values in the range 1-6.

System A: has two paths through the code. The first path is taken if the sum of the
input values is odd, and takes 40 cycles to execute. The second path is taken if the sum
of the input values is even, it has 10 instructions, each of which takes a random amount

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

88 17131 – Mixed Criticality on Multicore / Manycore Platforms

of time from 1-6 cycles to execute (independent of any other instruction or input value).
Thus the overall execution time of this path resembles the total from rolling 10 fair dice.
System B: has a single path, it uses a huge internal 10-dimensional array (with 610

entries) that maps from the values of the 10 inputs to a delay. The values for the delays
are the totals for each possible permutation of 10 dice rolls; however, they are randomly
arranged in the array, and we do not necessarily know what that arrangement is. Further,
half of the values have been set to 40 cycles; again, we do not necessarily know which
ones. This system looks up its execution time from the table, using the input values, and
executes in total for that amount of time.

Intrinsically, System A has only aleatoric uncertainty, while System B has only epistemic
uncertainty.

Consider applying SPTA to System A. With an accurate model of the instruction timing
behaviour, SPTA could be used to compute a pWCET distribution that upper bounds the
timing behaviour of this system irrespective of its inputs.

In the context of SPTA, the meaning of a pWCET distribution can be defined as follows,
building on the definition in [7]:

I Definition 1. The pWCET distribution from SPTA is a tight upper bound2 on all of the
probabilistic execution time (pET) distributions that could be obtained for each individual
combination of inputs, software states, and hardware states, excluding the random variables
which give rise to variation in the timing behaviour. (Note, each individual pET distribution
depends on the random variables, but not on the inputs or states, which are fixed in a
particular combination).

In the absence of any random variables contributing to probabilistic timing behaviour,
then the above definition of a pWCET distribution reduces to the familiar one for a single
valued WCET obtained via conventional static WCET analysis. It is a tight upper bound on
all the execution times that may be obtained for different combinations of inputs, software
states, and hardware states.

If the random variables contributing to a probabilistic execution time behaviour are
independent, then it follows that the pWCET distribution obtained by SPTA is independent
with respect to any particular execution of that component. (This is the case, since the
pWCET distribution from SPTA upper bounds every possible pET distribution). This
has implications for the use of pWCET distributions, since they are independent they may
be composed using basic convolution to derive probabilistic Worst-Case Response Time
(pWCRT) distributions [8, 14], which can then be compared to the appropriate deadline to
determine the probability of a deadline miss.

Next, consider System B. Applying SPTA using a precise model of the software and
hardware would result in a single WCET, since there are no random variables involved,
and we assume no information about the frequency of any combination of input values. By
contrast, if we apply MBPTA, then we can estimate the WCET; however, this estimate has
epistemic uncertainty. There are things we do not know about the system when we consider
it as a “black box”, and we have only taken a sample of execution time observations, hence
we cannot be 100% confident that our estimate is correct.

In the context of MBPTA, the meaning of a pWCET distribution can be defined as
follows:

2 In the sense of the greater than or equal to operator defined on the 1 - CDF of the distributions [9].

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 89

I Definition 2. The pWCET distribution from MBPTA is a statistical estimate giving an
upper bound p on the probability that the execution time of a component will be greater
than some arbitrary value x, valid for any possible distribution of input values that could
occur during deployment.

Thus the pWCET distribution characterises the probability (1− p) that the WCET of
a component will be no greater than some arbitrary value x [5], or as noted by Edgar and
Burns [10] the pWCET distribution reflects the confidence we have that the statement, “the
WCET does not exceed x for some threshold x” is true.

We note that the definitions of a pWCET distribution originating from MBPTA and by
SPTA are different. The definition from SPTA reflects aleatoric variability, while that from
MBPTA reflects epistemic uncertainty.

Since the pWCET definition from MBPTA reflects epistemic uncertainty, i.e. what isn’t
known about the system, then if it turns out that a WCET estimate x is exceeded, it is
possible that it could be exceeded for every one of a number of runs of the component in a
sequence, depending on the input values used. This is the case since the pWCET distribution
effectively gives the probability that at least one run of the component has an execution
time which exceeds x, but given that event, it provides no additional information about the
execution times of individual runs.

For example, for System B, let us assume that MPBTA [6] estimates that there is a
probability of 10−y that the WCET exceeds x. However, if that WCET estimate is exceeded,
then it could be that it is exceeded every time the component runs, depending on the
particular input values used. This has implications for how the pWCET distribution may
be used in probabilistic schedulability analysis. Assuming a pWCET distribution derived
via MBPTA where a WCET of x has an exceedance probability of 10−y. We may only infer
that N runs of the component have a probability of no more than 10−y of exceeding a total
execution time of Nx. Contrast this with a similar pWCET distribution derived via SPTA.
In this case, assuming the aleatoric variability was due to independent random variables, then
it would be valid to apply basic convolution to upper bound the overall execution time of N
runs. This conclusion would not in general be sound with a pWCET distribution derived via
MBPTA, due to its different meaning.

In the case of System A, the pWCET distribution from SPTA tells us that the probability
that the execution time on any single run will exceed x is 10−y. If we observe a value larger
than x at some point in a large number of runs, then that is not in itself incompatible with
the information that we have, which characterises aleatoric variability. By contrast, in the
case of system B, the pWCET distribution from MBPTA gives us a measure of confidence
that the WCET is no more than x. If we observe a value larger than x then that confidence
falls to zero.

Acknowledgments. The ideas in this short paper were presented and discussed in an ad-hoc
working group comprising Liliana Cucu-Grosjean, Adriana Gogonel, Cristian Maxim, Iain Bate,
Philipa Conway, Zoe Stephenson, Alan Burns and Robert Davis.

References
1 S. Altmeyer, L. Cucu-Grosjean, and R. I. Davis. Static probabilistic timing analysis for real-

time systems using random replacement caches. Springer Real-Time Systems, 51(1):77–123,
2015.

2 S. Altmeyer and R. I. Davis. On the correctness, optimality and precision of static probab-
ilistic timing analysis. In Proceedings of the Conference on Design, Automation and Test
in Europe (DATE), pages 26:1–26:6, 2014.

17131

90 17131 – Mixed Criticality on Multicore / Manycore Platforms

3 A. Burns and S. Edgar. Predicting computation time for advanced processor architectures.
In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS), pages 89–96,
2000.

4 F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim. Proartis:
Probabilistically analyzable real-time systems. ACM Transactions on Embedded Computing
Systems, 12(2s):94:1–94:26, May 2013.

5 L. Cucu-Grosjean. Independence a misunderstood property of and for probabilistic real-
time systems. In Real-Time Systems: the past, the present and the future, pages 29–37,
2013.

6 L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,
E. Mezzetti, E. Quiñones, and F. J. Cazorla. Measurement-based probabilistic timing
analysis for multi-path programs. In Proceedings of the Euromicro Conference on Real-
Time Systems (ECRTS), pages 91–101, July 2012.

7 R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean. Analysis of
probabilistic cache related pre-emption delays. In Proceedings of the Euromicro Conference
on Real-Time Systems (ECRTS), pages 168–179, July 2013.

8 J. L. Diaz, D. F. Garcia, K. Kim, C-G. Lee, L. Lo Bello, J. M. Lopez, S. L. Min, and
O. Mirabella. Stochastic analysis of periodic real-time systems. In Proceedings of the IEEE
Real-Time Systems Symposium (RTSS), pages 289–300, 2002.

9 J. L. Diaz, J. M. Lopez, M. Garcia, A. M. Campos, Kanghee Kim, and L. L. Bello. Pessim-
ism in the stochastic analysis of real-time systems: concept and applications. In Proceedings
of the IEEE Real-Time Systems Symposium (RTSS), pages 197–207, Dec 2004.

10 S. Edgar and A. Burns. Statistical analysis of wcet for scheduling. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS), pages 215–224, Dec 2001.

11 J. Hansen, S. A. Hissam, and G. A. Moreno. Statistical-based WCET estimation and valid-
ation . In Proceedings of the Workshop on Worst-Case Execution Time Analysis (WCET),
volume 252, 2009.

12 B. Lesage, D. Griffin, S. Altmeyer, and R. I. Davis. Static probabilistic timing analysis for
multi-path programs. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS),
pages 361–372, Dec 2015.

13 G. Lima, D. Dias, and E. Barros. Extreme value theory for estimating task execution time
bounds: A careful look. In Proceedings of the Euromicro Conference on Real-Time Systems
(ECRTS), July 2016.

14 D. Maxim and L. Cucu-Grosjean. Response time analysis for fixed-priority tasks with mul-
tiple probabilistic parameters. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS), pages 224–235, Dec 2013.

15 L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart. On the Sustainability of the
Extreme Value Theory for WCET Estimation. In Proceedings of the Workshop on Worst-
Case Execution Time Analysis (WCET), pages 21–30, 2014.

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 91

6 Open problems

6.1 Mixed criticality scheduling under resource uncertainty
Kunal Agrawal (Washington University - St. Louis, US)

License Creative Commons BY 3.0 Unported license
© Kunal Agrawal

Most real time scheduling theory for mixed criticality systems deals with uncertainty about task
parameters and assumes that resources remain the same as the system executes. For cloud and shared
environments, however, one can imagine that resource availability changes as the system executes. I
would like to explore if we can use the ideas developed in mixed criticality scheduling to provide
tiered guarantees of the following form: If “adequate” resources are available, the scheduler must
schedule all tasks. If fewer resources are available, the scheduler is allowed to drop “low-criticality”
tasks, but must still schedule the important tasks.

6.2 Deriving Optimal Scheduling Policies for MC Task Systems
Sathish Gopalakrishnan (University of British Columbia - Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© Sathish Gopalakrishnan

Assuming execution time distributions are available for tasks in a mixed-criticality setting, how do
we use this distributional information to schedule tasks? One approach, where tasks – depending
on their criticality levels – have an acceptable failure rate is to model the entire task system using
chance-constrained Markov decision processes. This model can then be used to derive a feasible
scheduling policy (when one exists). I will briefly describe some progress made and challenges that
remain.

6.3 Guaranteeing some service upon mode switch in mixed-criticality
systems

Zhishan Guo (University of Missouri - Rolla, US)

License Creative Commons BY 3.0 Unported license
© Zhishan Guo

6.3.1 Introduction
Epistemic uncertainty widely exists in real-time systems that the precise nature of the external
environment, as well as the run-time behavior of the implemented platform, cannot be predicted
with complete certainty prior to deployment. However, systems nevertheless must be designed and
analyzed prior to deployment in the presence such uncertainty – the widely-studied [3] Vestal model
[12] for mixed-criticality workloads addresses uncertainties in estimating the worst-case execution
time (WCET) of real-time code. Different estimations, at different levels of assurance, are made about
these WCET values; it is required that all functionalities execute correctly if the less conservative
assumptions hold, while only the more critical functionalities are required to execute correctly in
the (presumably less likely) event that the less conservative assumptions fail to hold but the more
conservative assumptions do.

Here we briefly introduce some generalizations of the Vestal model, where degraded (but non-zero)
level of services can be guaranteed for the less critical functionalities even in the event of only the
more conservative assumptions holding. If such service degradation is represented by a shorter
allowed execution for each job, or a longer period, recent work has suggested some MC scheduling
algorithms; while for other degradation definition, we seek for further discussions perhaps with the
industry.

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

92 17131 – Mixed Criticality on Multicore / Manycore Platforms

6.3.2 Low Critical 6= Non Critical
The original Vestal model was very successful in dealing with the resource inefficiency with the
verification of mixed-criticality systems. However, this model has met with some criticism from
systems engineers; e.g., in the event of some (Hi criticality) jobs executing beyond their less pessimistic
WCET estimates, LO-criticality jobs are treated same as non-critical jobs that no guarantees can be
made to their service.

This desideratum was addressed in [1] by introducing an additional less pessimistic WCET
parameter for LO-criticality jobs – a guaranteed service level regardless of the behaviors/executions
of HI-criticality jobs. Following the MC-Fluid framework [10] that was shown to have the best
possible speedup factor (4/3) [5] versus clairvoyant optimal scheduler, we have identified in [4] a
nice scheduler that handles such LO-criticality service separately. MC-Fluid framework assumes
fluid scheduling which may involve too many preemptions.

The authors in [10] have suggested to follow the DP-Fair framework [6], while we believe the
number of preemptions can be hugely reduced if we follow Boundary Fair [13] with well defined
per-mode boundary setting at task release – see our recent submission [7] for more details. EDF
based methods maybe another option – some recent work has studied the uniprocessor scheduling
case [11].

The aforementioned schedulers may deal with a degraded utilization requirement for LO-criticality
tasks upon a mode switch. However, a shorter execution or a longer period may not be enough
(or proper) to guarantee certain level of service – a piece of code may need the original estimated
execution length to finish any single execution, while the timeliness remains the same (i.e., the result
is useful only when a job is finished within the same deadline conditions). A degraded service may
be defined as the allowance of certain portion of jobs to be dropped, while others remain the same
execution time and deadline. This leads to the (m,k)-firm deadline scheduling problem, on which
there is no existing solution for mixed-criticality system schedulability analysis, and may worth
investigating – see our recent submission [8] for more details.

References
1 A. Burns and S. Baruah. Towards a more practical model for mixed criticality systems. In

WMC2014.

2 S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster,
and L. Stougie. The preemptive uniprocessor scheduling of MC implicit-deadline sporadic
task systems. ECRTS 2012.

3 A. Burns and R. Davis. Mixed-criticality systems: A review.
http://www-users.cs.york.ac.uk/burns/review.pdf.

4 S. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some
service under all non-erroneous behaviors. ECRTS 2016.

5 S. Baruah, A. Easwaran, and Z. Guo. MC-Fluid: simplified and optimally quantified. RTSS
2015.

6 S. Funk, G. Levin, C. Sadowski, I. Pye, and S. Brandt. DP-Fair: a unifying theory for
optimal hard real-time multiprocessor scheduling. Real-Time Systems, 2011.

7 Z. Guo, S. Sruti, and N. Guan. From fluid into non-fluid: multi-processor mixed-criticality
scheduling with limited preemption. In submission.

8 Z. Guo, K. Yang, S. Arefin, S. Vaidhun, and H. Xiong. Uniprocessor Mixed-Criticality
Scheduling with Graceful Degradation. In submission.

9 M. Hamdaoui and P. Ramanathan. A service policy for real-time customers with (m,k) firm
deadlines. FTCS 1994.

10 J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. MC-Fluid: Fluid
model-based mixed-criticality scheduling on multiprocessors.RTSS 2014.

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 93

11 D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. EDF-VD Scheduling
of Mixed-Criticality Systems with Degraded Quality Guarantees. RTSS 2016.

12 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-
tion time assurance. IEEE RTSS 2007.

13 D. Zhu, X. Qia, D. Mossél, and R. Melhem. An optimal boundary fair scheduling algorithm
for multiprocessor real-time systems. Journal of Parallel and Distributed Computing, vol.
71, no. 10, pp. 1411–1425, 2011.

6.4 Regarding the Optimality of Speedup Bounds of Mixed-Criticality
Schedulability Tests

Zhishan Guo (University of Missouri - Rolla, US)

License Creative Commons BY 3.0 Unported license
© Zhishan Guo

Much existing research on Mixed-Criticality (MC) scheduling (see [3] for a review) has focused on
dealing with the Vestal model [12], where different WCET estimations of a single piece of code are
provided. This is typically a consequence of different tools for determining worst-case execution
time (WCET) bounds being more or less conservative than each other. It is known [1] that mixed
criticality (MC) scheduling under such model is highly intractable, such that polynomial-time optimal
solution is impossible unless P = NP . As a result, speedup bound is widely used in MC scheduling
for measuring how close to optimal is a given schedulability analysis.

A schedulability test A has speedup factor of s(s ≥ 1), if any task set that is schedulable by any
algorithm on a given platform with processing speed of 1, it will be deemed schedulable by Test
A upon a platform that is s times as fast.

Of course, when deriving MC schedulers and associated schedulability tests, one of the goals is
to identify/prove a relative small speedup bound (that is closer to 1). A minimum possible speedup
is often presented as the “optimal speedup bound” of a given MC scheduling problem. However, we
would like to point out that:

Optimality of scheduler should not be derived against optimal speedup bounds.

6.4.1 Non-Optimal Schedulers with Optimal Speedup Bounds
For scheduling (dual-criticality) Vestal job set on a uniprocessor platform, it has been shown [2] that
OCBP algorithm (following the idea of Audsley’s priority assignment mechanism) has an optimal
speedup bound of (

√
5− 1)/2. However, several algorithms has been identified to strictly dominate

OCBP; e.g., Lazy Priority Adjustment [8], LE-EDF [10] [9] – with the same speedup bound and at
all time, better schedulability.

Similar results can be observed when we consider the scheduling of Vestal task set as well. It
has been shown that 4/3 is the best speedup that any non-clairvoyant scheduler can achieve. Upon
proposing a speedup-optimal uniprocessor scheduler named EDF-VD [2], improvements on the
schedulability can still be made, e.g., [7] [6]. As for the multiprocessor case, it is proved [3] that
both MC-Fluid [10] and MCF [3] achieve the optimal speedup of 4/3. However, MCF is a simplified
version of (and is dominated by) MC-Fluid. Moreover, improvements on schedulability can be
further made to MC-Fluid [11].

6.4.2 Speedup over Non-Clairvoyance?
When deriving speedup bounds, in most of the existing works of the community, the proposed
algorithm is compared with a clairvoyant optimal scheduler, and adapts the necessary conditions for
MC schedulability. This may not be a very fair way of comparison since the penalty for unawareness

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

94 17131 – Mixed Criticality on Multicore / Manycore Platforms

of the future is applied into the speedup bounds. Following the varying-speed MC model [5] [4], we
have identified an on-line optimal3 scheduler in [9] that has a speedup factor significantly greater
than 1 when comparing to an optimal clairvoyant algorithm. However, such a speedup factor only
reflects the price one must pay for not knowing the future (or the difficulty of the scheduling problem
itself) – it has nothing to do with the MC scheduler design anymore. In other words, most existing
speedup bounds may only be capturing the gap between clairvoyance and non-clairvoyance.

Since MC schedulability analysis is for off-line verification of correctness of real-time systems,
all possible scenarios should be taken into consideration (which is non-clairvoyance). We believe
speedup results comparing to optimal non-clairvoyance schedule may be worth investigating for MC
systems.

References
1 S. Baruah. Mixed criticality scheduling is highly intractable.

http://www.cs.unc.edu/b̃aruah/Submitted/02cxty.pdf.
2 S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable MC systems. IEEE

RTAS 2010.
3 S. Baruah, A. Easwaran, and Z. Guo. MC-Fluid: simplified and optimally quantified. RTSS

2015.
4 S. Baruah and Z. Guo. Scheduling mixed-criticality implicit-deadline sporadic task systems

upon a varying-speed processor. RTSS 2014. IEEE Computer Society Press.
5 S. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed processors. IEEE

RTSS 2013.
6 A. Easwaran. Demand-based MC scheduling of sporadic tasks on one processor. IEEE RTSS

2013.
7 P. Ekberg, W. Yi. Bounding and shaping the demand of generalized mixed-criticality

sporadic task systems. Real-Time Systems, 50(1): 48-86, 2014.
8 C. Gu, N. Guan, Q. Deng, and W. Yi. Improving OCBP-based scheduling for MC sporadic

task systems. RTCSA 2013.
9 Z. Guo and S. Baruah. The concurrent consideration of uncertainty in WCETs and pro-

cessor speeds in mixed criticality systems. IEEE RTNS 2015.
10 S. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed multiprocessors.

Leibniz Transactions on Embedded Systems, 1(2): 3:1–3:19, 2014.
11 S. Ramanathan and A. Easwaran. MC-fluid: rate assignment strategies. WMC 2015.

6.5 MC-ADAPT: Adaptive Mixed Criticality Scheduling through
Selective Task Dropping

Jaewoo Lee (University of Pennsylvania - Philadelphia, US)

License Creative Commons BY 3.0 Unported license
© Jaewoo Lee

Mixed-criticality real-time scheduling aims to ensure deadline satisfaction of higher-criticality tasks,
while achieving efficient resource utilization. To this end, many approaches have been proposed
to execute more lower-criticality tasks without affecting the timeliness of higher-criticality tasks.
Those previous approaches however have at least one of the two limitations; i) they penalize all

3 If an on-line optimal scheduling strategy fails to maintain correctness for a given MC instance I , no
non-clairvoyant algorithm can ensure correctness for I (without making lucky guesses to the future).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 95

lower-criticality tasks at once upon a certain situation, or ii) they make decision how to penalize
lower-criticality tasks at design time. As a consequence, they under-utilize resources by imposing an
excessive penalty on low-criticality tasks.

Unlike those existing studies, our approach aims to minimally penalize lower-criticality tasks
by fully reflecting the dynamically changing system behavior into adaptive decision making. We
propose a new scheduling algorithm which supports selective task dropping and develop its runtime
schedulability analysis capturing the dynamic system state. Our proposed algorithm adaptively
decides task dropping based on the runtime analysis.

To determine the quality of task dropping, we propose the speedup factor for task dropping.
While the conventional speedup factor for the MC scheduling problem only evaluates MC scheduling
algorithms in terms of the worst-case schedulability, we apply the speedup factor for the task
dropping problem, which is an extended version of the MC scheduling problem. The task dropping
problem is an optimization problem for task dropping under different MC scheduling scenarios.

6.6 Schedulability, Probabilities and Formal Methods
Luca Santinelli

License Creative Commons BY 3.0 Unported license
© Luca Santinelli

The abstract is about developing probabilistic schedulability analysis with formal methods, in
particular the Continuous Time Markov Chain models for jobs and tasks with continuous input
distribution as probabilistic Worst-Case Execution Time (pWCET).

The open problem presented composes of building jobs and tasks CTMC models which are able
to capture every [probabilistic] execution behavior; the models composed constitutes the real-time
system with its jobs/tasks ordering. Then, such models can be formally verified with properties like
deadline miss ration and systems schedulability. With the model proposed, alternative properties
for already existing scheduling algorithms of newly proposed probabilistic schedulability algorithms
would be verified.

6.7 Safety Calling
Zoë Stephenson (Rapita Systems Ltd. - York, GB)

License Creative Commons BY 3.0 Unported license
© Zoë Stephenson

There is a need for vocabulary and models to support discussion between researchers in the domain
of mixed-criticality scheduling and experts in the field of safety analysis. In this abstract, I explain
why this is important and what form this could take.

In a traditional scheduling regime such as a preemptive, fixed-priority scheduler, we present
an argument showing that the system is schedulable with respect to some assumptions. Those
assumptions relate to jitter, timing anomalies (particularly regarding the cache), task switch latency
and the validity of WCET figures. The scheduler typically provides overrun monitoring, and the
system design would typically also include a watchdog, to detect cases where the schedulability
prediction is incorrect. The safety engineer then designs responses to the detection of this condition
– for example, rebooting a partition, switching to a diverse implementation with fewer features,
switching to a reversionary schedule, or resetting the entire controller.

When we move to mixed-criticality scheduling, we get the following features:
Scheduling algorithms that aim to provide better overall utilisation of resources, particularly
multicore resources

17131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

96 17131 – Mixed Criticality on Multicore / Manycore Platforms

Flexibility in the predictions made at design time so that the system designer can bias confidence
in execution time bounds towards higher-criticality functionality and take advantage of this
biased confidence in the schedulability analysis
Flexibility in the behaviour of the scheduler in responding to violations of these execution-time
bounds

With this flexibility, there are new considerations in the system design and safety analysis, and
clear communication will make it easy to work with these considerations. The aim is to help the
safety engineer to devise appropriate mitigation strategies for overruns, dividing the work up between
system requirements and scheduler requirements within a process such as the following:

1. System design identifies functions allocated to software. Each has an associated assurance level
representing the severity of the consequence of a failure to provide the function.

2. Software design identifies components to implement functions; components also have assurance
levels.

3. Software design creates a schedule for the components, and presents this to the safety analysis
in the form of response time bounds, relative confidence (compared to the project’s traditional
approach) and possible responses for exceeding those time bounds. The aim is to describe the
capabilities of the scheduler and show how confidence and responses can match up with the
components’ assurance levels.

4. Safety analysis feed the scheduler behaviour, as well as other functional and non-functional
behaviours, into system safety assessment and determine whether additional measures are needed
for assuring adequate provision of system functions. These become derived requirements that call
for design changes such as resets, reversionary task-sets or watchdogs, and additional analyses.

5. Software design, system design and safety analysis iterate until appropriate assurance is reached.
6. Safety analysis completes the assurance argument that mitigation strategies for the software

components are appropriate for the criticality levels of the functions they provide.

From these steps a picture emerges of a scheduler response model, structured as:

Function and Component
WCRT
WCRT confidence
Overrun response
∗ Call an exception handler
∗ Cancel (this task / some other tasks)
∗ Reduce releases (this task / some other tasks)
∗ Increase clock frequency
∗ Reduce algorithm detail
∗ Switch schedule
∗ . . .

The range of WCRT confidence descriptions and possible responses will depend on the exact
mixed-criticality scheduler in use. By presenting the scheduling approach in terms of confidence and
overrun responses, the model provides useful detail for the safety analyst and improves the ability of
the system to take full advantage of the facilities provided by advanced scheduling algorithms.

Liliana Cucu-Grosjean, Robert Davis, Sanjoy K. Baruah, Zoë Stephenson 97

7 Outcomes of the seminar
On the Meaning of probabilistic Worst-Case Execution Time (pWCET) Distributions and their
use in Schedulability Analysis by Robert I. Davis, Alan Burns, David Griffin. Under submission.
Resilient Mixed-Criticality Systems by A. Burns, R.I. Davis, S. Baruah, I. Bate. Under submission.
On the Existence of a Cyclic Schedule for Non-Preemptive Periodic Tasks with Release Offset by
Mitra Nasri and Emmanuel Grolleau. Under submission.
Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Zhishan Guo, Kecheng
Yang, Samsil Arefin, Sudharsan Vaidhun, and Haoyi Xiong. Under submission.
Sustainability in Mixed-Criticality Scheduling by Zhishan Guo, Sai Sruti, Bryan Ward, and
Sanjoy Baruah. Under submission.
Sustainability in Mixed-Criticality Scheduling by Ying Zhang, Zhishan Guo, Lingxiang Wang,
Haoyi Xiong, and Zhenkai Zhang. Under submission.

17131

98 17131 – Mixed Criticality on Multicore / Manycore Platforms

Participants

Kunal Agrawal
Washington University –
St. Louis, US

Sebastian Altmeyer
University of Amsterdam, NL

James H. Anderson
University of North Carolina at
Chapel Hill, US

Sanjoy K. Baruah
University of North Carolina at
Chapel Hill, US

Iain Bate
University of York, GB

Enrico Bini
University of Turin, IT

Björn B. Brandenburg
MPI-SWS – Kaiserslautern, DE

Alan Burns
University of York, GB

Thidapat Chantem
Virginia Polytechnic Institute –
Arlington, US

Jian-Jia Chen
TU Dortmund, DE

Liliana Cucu-Grosjean
INRIA – Paris, FR

Robert Davis
University of York, GB

Arvind Easwaran
Nanyang TU – Singapore, SG

Pontus Ekberg
Uppsala University, SE

Sébastien Faucou
University of Nantes, FR

Madeleine Faugère
Thales Research and Technology –
Palaiseau, FR

Christian Ferdinand
AbsInt – Saarbrücken, DE

Laurent George
ESIEE – Champs sur Marne, FR

Adriana Gogonel
INRIA – Paris, FR

Sathish Gopalakrishnan
University of British Columbia –
Vancouver, CA

Emmanuel Grolleau
ENSMA – Chasseneuil, FR

Zhishan Guo
University of Missouri –
Rolla, US

Leandro Soares Indrusiak
University of York, GB

Jaewoo Lee
University of Pennsylvania –
Philadelphia, US

Jing Li
Washington University –
St. Louis, US

Martina Maggio
Lund University, SE

Alberto Marchetti-Spaccamela
Sapienza University of Rome, IT

Cristian Maxim
Airbus S.A.S. – Toulouse, FR

Dorin Maxim
LORIA & INRIA – Nancy, FR

Mitra Nasri
MPI-SWS – Kaiserslautern, DE

Claire Pagetti
ONERA – Toulouse, FR

Kirk Pruhs
University of Pittsburgh, US

Gurulingesh Raravi
ISEP Porto, PT

Jan Reineke
Universität des Saarlandes, DE

Stefan Resch
Thales – Wien, AT

Philippa Ryan
Adelard – London, GB

Luca Santinelli
ONERA – Toulouse, FR

Zoë Stephenson
Rapita Systems Ltd. – York, GB

Sascha Uhrig
Airbus – München, DE

Wang Yi
Uppsala University, SE

Dirk Ziegenbein
Robert Bosch GmbH –
Stuttgart, DE

	Executive Summary Liliana Cucu-Grosjean, Robert I. Davis, Sanjoy K. Baruah, Zoë Stephenson
	Table of Contents
	Overview of industrial talks
	Mixed Criticality Systems – view from the industry side Cristian Maxim
	Real-Time Systems in Railway Stefan Resch
	An independent assessors perspective Philippa Ryan
	Mixed Criticalities in Avionic Systems Sascha Uhrig
	Mixed Criticality and Real-Time in Automotive Dirk Ziegenbein

	Overview of academic talks
	Deriving precise execution-time distributions of tasks Sebastian Altmeyer
	Realistic task model for multicore processors Sebastian Altmeyer
	Towards a (more) realistic task model for multicore processors Sebastian Altmeyer
	The One-Out-of-m Multicore Problem James H. Anderson
	Schedulability Analysis as Evidence? Björn B. Brandenburg
	How to Gracefully Degrade Alan Burns
	Resilient Mixed-Criticality Systems Alan Burns
	Reliability Optimization in MC2 Systems Thidapat Chantem
	Worst Case Execution Time measurement-based approach Liliana Cucu-Grosjean, Adriana Gogonel, and Cristian Maxim
	Practical Mixed-Criticality Model: Challenges Arvind Easwaran
	Runtime Verification, Runtime Enforcement, and Mixed Criticality System Design Sébastien Faucou
	Energy efficiency in factories: Benefit of renewable energy, loT and Automatic Demand Response Laurent George
	Real-Time Mixed-Criticality Wormhole Networks Leandro Soares Indrusiak
	Fixed-Priority Scheduling without Any Adaptation in Mixed-Criticality Systems Jian-Jia Chen
	Improve the scalability of mixed-criticality parallel real-time systems Jing Li
	Resource management in DREAMS Claire Pagetti
	Probabilistic Analysis for Mixed Criticality Scheduling with SMC and AMC Dorin Maxim, Liliana Cucu-Grosjean, Robert Davis, and Arvind Easwaran
	Timing Compositionality – Challenges and Opportunities Jan Reineke

	Working Group Discussions
	The Meaning and Use of probabilistic Worst-Case Execution Time (pWCET) Distributions Robert I. Davis and Alan Burns

	Open problems
	Mixed criticality scheduling under resource uncertainty Kunal Agrawal
	Deriving Optimal Scheduling Policies for MC Task Systems Sathish Gopalakrishnan
	Guaranteeing some service upon mode switch in mixed-criticality systems Zhishan Guo
	Regarding the Optimality of Speedup Bounds of Mixed-Criticality Schedulability Tests Zhishan Guo
	MC-ADAPT: Adaptive Mixed Criticality Scheduling through Selective Task Dropping Jaewoo Lee
	Schedulability, Probabilities and Formal Methods Luca Santinelli
	Safety Calling Zoë Stephenson

	Outcomes of the seminar
	Participants

