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Computational Geometry
Computational geometry is concerned with the design, analysis, and implementation of
algorithms for geometric and topological problems, which arise naturally in a wide range of
areas, including computer graphics, CAD, robotics, computer vision, image processing, spatial
databases, GIS, molecular biology, sensor networks, machine learning, data mining, scientific
computing, theoretical computer science, and pure mathematics. Computational geometry
is a vibrant and mature field of research, with several dedicated international conferences
and journals and strong intellectual connections with other computing and mathematics
disciplines.

Seminar Topics
The emphasis of the seminar was on presenting recent developments in computational
geometry, as well as identifying new challenges, opportunities, and connections to other
fields of computing. In addition to the usual broad coverage of new results in the field, the
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seminar included broad survey talks on monitoring and shape data and on high-dimensional
geometric computing, two focus areas that have seen exciting recent progress and that present
numerous opportunities for further cross-disciplinary impact.

Computational geometry for monitoring and shape data

The combination of movement and geometry has always been an important topic in com-
putational geometry, initially motivated by robotics and resulting in the study of kinetic
data structures. With the advent of widely available location tracking technologies such
as GPS sensors, trajectory analysis has become a topic in itself, which has connections
to other classical topics in computational geometry such as shape analysis. Still, efficient
technologies to perform the most basic operations are lacking. We need data structures
supporting similarity queries on trajectory data and geometric clustering algorithms that
can handle the infinite-dimensional geometry inherent in the data. A related type of data,
namely time series data, has not received much attention in the computational geometry
community, despite its universality and its close relation to trajectory data. Shedding light
on the interconnections of these topics will promote new results in the field which will address
these timely questions.

Computing in high-dimensional and infinite-dimensional spaces

The famous “curse of dimensionality” prevents exact geometric computations in high-
dimensional spaces. Most of the data in science and engineering is high-dimensional, rendering
classical geometric techniques, such as the sweepline approach, insufficient. One way to
address this issue is to use sparsity, but it is not always easy to find a sparse representation
of the data. The search of the most efficient representation and how to exploit this repres-
entation leads to dimension-reduction techniques, metric embeddings, and approximation
algorithms. This line of research has strong ties to machine learning and discrete mathematics
as well as computational geometry.

Participants

Dagstuhl seminars on computational geometry have been organized in a two year rhythm since
a start in 1990. They have been extremely successful both in disseminating the knowledge and
identifying new research thrusts. Many major results in computational geometry were first
presented in Dagstuhl seminars, and interactions among the participants at these seminars
have led to numerous new results in the field. These seminars have also played an important
role in bringing researchers together, fostering collaboration, and exposing young talent to
the seniors of the field. They have arguably been the most influential meetings in the field
of computational geometry. The organizers held a lottery for the third time this year; the
lottery allows to create space to invite younger researchers, rejuvenating the seminar, while
keeping a large group of senior and well-known scholars involved. The seminar has now a
more balanced attendance in terms of seniority and gender than in the past. This year, 47
researchers from various countries and continents attended the seminar, showing the strong
interest of the community for this event. The feedback from participants was very positive.
No other meeting in our field allows young researchers to meet with, get to know, and work
with well-known and senior scholars to the extent possible at the Dagstuhl Seminar. We
warmly thank the scientific, administrative and technical staff at Schloss Dagstuhl! Dagstuhl
allows people to really meet and socialize, providing them with a wonderful atmosphere of a
unique closed and pleasant environment, which is highly beneficial to interactions. Therefore,
Schloss Dagstuhl itself is a great strength of the seminar.
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3 Overview of Talks

3.1 Graph Embedding While Preserving Pairwise Distances
Tetsuo Asano (JAIST – Ishikawa, JP)

License Creative Commons BY 3.0 Unported license
© Tetsuo Asano

Main reference T. Cox, M. Cox, “Multidimensional Scaling Second Edition”, Chapman & Hall CRC, 2001.

In this talk we consider a distance preserving graph embedding problem: Given a weighted
graph, embed vertices into points in d-space so that for each edge the distance between their
corresponding endpoints is as close as possible to the weight of the edge. If it is known that
there is an exact embedding (without any error) for a full matrix for all pairs of vertices,
then the existing algorithm known as Principal Coordinate Analysis (PCO) can find such
an exact embedding in polynomial time. Although it is believed that PCO almost always
gives a good solution, it is not true. We show a worst example for PCO and compare it with
a heuristic algorithm. We also consider a special case where every pair of points has the
same distance. We show the problem can be solved in one dimension. We also show some
experimental results in two dimensions which reflect the results in one dimension.

3.2 Improved Time-Space Trade-offs for Computing Voronoi Diagrams
Bahareh Banyassady (FU Berlin, DE), Matias Korman (Tohoku University – Sendai, JP),
Wolfgang Mulzer (FU Berlin, DE), Marcel Roeloffzen, Paul Seiferth, Yannik Stein, and André
van Renssen (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
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Joint work of Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen,
Paul Seiferth, Yannik Stein

Main reference B. Banyassady, M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth, Y. Stein,
“Improved Time-Space Trade-offs for Computing Voronoi Diagrams”, in Proc. of the 34th
Symposium on Theoretical Aspects of Computer Science (STACS 2017), LIPIcs, Vol. 66,
pp. 9:1–9:14, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2017.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2017.9

In this talk, we are interested in computing various Voronoi diagrams for a given set of
sites P in the memory-constrained model. In this model, we assume that the input is in a
read-only array and the algorithm may use an additional workspace memory of size O(s)
words, s ∈ {1, . . . , n}, for reading and writing intermediate data, and the output is write-only.
Clearly, when s increases, the running time of the algorithm decreases. In this model, we
provide a time-space trade-off for computing the nearest site Voronoi diagram and the
farthest site Voronoi digram with running time O(n2/s log s) using O(s) words of workspace.
Furthermore, we extend this result to compute the family of all higher-order Voronoi diagrams,
up to a given order K ∈ {1, . . . , O(

√
s)}, in a pipelined fashion in O

(
n2K5

s (log s+K logK)
)

time using O(s) words of workspace. The main idea is to use edges of each diagram to
compute the edges of the next diagram. However, this needs to be coordinated carefully,
in order to keep the bound on the used memory and to prevent edges from being reported
multiple times.
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3.3 The Morse theory of Cech and Delaunay Complexes
Ulrich Bauer (TU München, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Herbert Edelsbrunner, Ulrich Bauer
Main reference U. Bauer, H. Edelsbrunner, “The Morse theory of Čech and Delaunay complexes”, Trans. Amer.

Math. Soc. 369(2017), pp. 3741–3762, 2016.
URL http://dx.doi.org/10.1090/tran/6991

Given a finite set of points in Rn and a radius parameter, we study the C̆ech, Delaunay-C̆ech,
Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory.
Establishing the C̆ech and Delaunay complexes as sublevel sets of generalized discrete Morse
functions, we prove that the four complexes are simple-homotopy equivalent by a sequence
of simplicial collapses, which are explicitly described by a single discrete gradient field.

3.4 Conditional Lower Bounds for Similarity Measures on Curves and
Strings

Karl Bringmann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Marvin Künnemann, Wolfgang Mulzer, Amir Abboud, Karl Bringmann
Main reference K. Bringmann, “Why Walking the Dog Takes Time: Frechet Distance Has No Strongly

Subquadratic Algorithms Unless SETH Fails”, in Proc. of the 55th Annual Symp. on Foundations
of Computer Science (FOCS 2014), pp. 661–670, IEEE, 2014.

URL https://doi.org/10.1109/FOCS.2014.76

This talk is an introduction to the area of Fine-grained Complexity, where we show running
time lower bounds conditional on certain conjectures on classic problems, such as the Strong
Exponential Time Hypothesis for the Satisfiability problem. Specifically, we survey lower
bounds known for similarity measures on curves (e.g. Frechet distance) and strings (e.g.
longest common subsequence and edit distance), and we discuss many recent extensions.

3.5 Untangling and Unwinding Curves
Jeff Erickson (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
© Jeff Erickson

Joint work of Hsien-Chih Chang, Jeff Erickson
Main reference H.-C. Chang, J. Erickson, “Untangling Planar Curves”, in Proc. of the 32nd Int’l Symp. on

Computational Geometry (SoCG 2016), LIPIcs, Vol. 51, pp. 29:1–29:16, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

URL https://doi.org/10.4230/LIPIcs.SoCG.2016.29

Any closed curve in the plane can be transformed into a simple closed curve using a finite
sequence of local transformations called homotopy moves. We prove that Θ(n3/2) homotopy
moves are necessary and sufficient in the worst case, improving the previous best O(n2)
upper bound due to Steinitz in 1916 and the previous best Ω(n) lower bound, which is trivial.
We also prove that Ω(n2) moves are necessary in the worst case to simplify a contractible
curve in the annulus, and therefore in any surface with non-positive Euler characteristic; a
matching O(n2) upper bound follows from Steinitz’s planar results and more recent work by
Hass and Scott.
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3.6 A Nearly Quadratic Bound for the Decision Tree Complexity of
k-SUM

Esther Ezra (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Esther Ezra, Micha Sharir

We show that the k-SUM problem can be solved by a linear decision tree of depth O(n2 log2 n),
improving the recent bound O(n3 log3 n) of Cardinal etal. Our bound depends linearly on
k, and allows us to conclude that the number of linear queries required to decide the n-
dimensional Knapsack or SubsetSum problems is only O(n3 logn), improving the currently
best known bounds by a factor of n. Our algorithm extends to the RAM model, showing
that the k-SUM problem can be solved in expected polynomial time, for any fixed k, with
the above bound on the number of linear queries. Our approach relies on a new point-
location mechanism, exploiting “Epsilon-cuttings” that are based on vertical decompositions
in hyperplane arrangements in high dimensions. A major side result of our analysis is a
sharper bound on the complexity of the vertical decomposition of such an arrangement (in
terms of its dependence on the dimension).

3.7 Computing Optimal Flight Patterns with Minimum Turn Cost
Sándor Fekete (TU Braunschweig, DE)

License Creative Commons BY 3.0 Unported license
© Sándor Fekete

Joint work of Aaron Becker, Mustapha Debboun, Dominik Krupke, An Nguyen, Sándor Fekete
URL https://youtu.be/SFyOMDgdNao

We present results arising from the problem of sweeping a mosquito-infested area with an
Unmanned Aerial Vehicle (UAV) equipped with an electrified metal grid. Planning good
trajectories is related to a number of classic problems of geometric optimization, in particular
the Traveling Salesman Problem, the Lawn Mower Problem and, most closely, Milling with
Turn Cost. We describe how planning a good trajectory can be reduced to considering
penalty and budget variants of covering a grid graph with minimum turn cost. On the
theoretical side, we show the solution of a problem from The Open Problems Project that
had been open for more than 15 years, and hint at approximation algorithms. On the
practical side, we describe an exact method based on Integer Programming that is able to
compute provably optimal instances with over 500 pixels. These solutions are actually used
for practical trajectories, as demonstrated in a video.
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3.8 Faster Algorithms for the Geometric Transportation Problem
Kyle Jordan Fox (Duke University – Durham, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, Allen Xiao
Main reference P.K. Agarwal, K. Fox, D. Panigrahi, K.R. Varadarajan, A. Xiao, “Faster algorithms for the

geometric transportation problem”, in Proc. of the 33rd International Symposium on
Computational Geometry (SoCG 2017), LIPIcs, Vol. 77, pp. 7:1–7:15, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

URL https://doi.org/10.4230/LIPIcs.SoCG.2017.7

Let R,B ⊂ Rd, for constant d, be two point sets with |R|+ |B| = n, and let λ : R ∪B → N

such that
∑
r∈R λ(r) =

∑
b∈B λ(b) be demand functions over R and B. Let d(·, ·) be

a suitable distance function such as the Lp distance. The transportation problem asks
to find a map τ : R × B → N such that

∑
b∈B τ(r, b) = λ(r),

∑
r∈R τ(r, b) = λ(b), and∑

r∈R,b∈B τ(r, b)d(r, b) is minimized. We present three new results for the transportation
problem when d(·, ·) is any Lp metric:

For any constant ε > 0, an O(n1+ε) expected time randomized algorithm that returns a
transportation map with expected cost O(log2(1/ε)) times the optimal cost.
For any ε > 0, a (1 + ε)-approximation in O(n3/2εdpolylog(U)polylog(n)) time, where
U = maxp∈R∪B λ(p).
An exact strongly polynomial O(n2polylog(n)) time algorithm, for d = 2.

3.9 Don’t Collect too Much: Geometric Approaches for Protecting
Location and Trajectory Privacy

Jie Gao (Stony Brook University, US)

License Creative Commons BY 3.0 Unported license
© Jie Gao

Joint work of Jiaxin Ding, Chien Chun Ni, Mengyu Zhou, Xiaotian Yin, Wei Han, Dengpan Zhou, David Gu,
Jie Gao

Main reference J. Ding, C.-C. Ni, M. Zhou, J. Gao, “MinHash hierarchy for privacy preserving trajectory sensing
and query”, in Proc. of the 16th ACM/IEEE Int’l Conf. on Information Processing in Sensor
Networks, pp. 17–28, ACM, 2017.

URL http://doi.acm.org/10.1145/3055031.3055076
Main reference X. Yin, C.-C. Ni, J. Ding, W. Han, D. Zhou, J. Gao, X.D. Gu, “Decentralized human trajectories

tracking using hodge decomposition in sensor networks”, in Proc. of the 23rd SIGSPATIAL Int’l
Conf. on Advances in Geographic Information Systems (SIGSPATIAL ’15), pp. 54:1–54:4, ACM,
2015.

URL http://doi.acm.org/10.1145/2820783.2820844

Large amounts of geometric data are becoming available due to recent technology advances
in sensing, communication and computation. GPS traces, location registrations, sensor
data in smart environments can be used to infer human behaviors and patterns. While we
celebrate the enormous learning opportunities these have enabled, the learned patterns may
reveal sensitive or personal identifying information. In this talk I will describe geometric
methods to protect location and trajectory information. Our methods focus on reducing
location/trajectory data collected by sensors to meet the target privacy requirements using
differential forms, Hodge decomposition and MinHash schemes.
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3.10 Spatio-Temporal Analysis of Team Sports and Computational
Geometry

Joachim Gudmundsson (The University of Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Joachim Gudmundsson

Joint work of Michael Horton, Joachim Gudmundsson
Main reference J. Gudmundsson, M. Horton, “Spatio-Temporal Analysis of Team Sports”, ACM Computing

Surveys, Vol. 50(2): 22:1-22:34, ACM, 2017.
URL http://doi.acm.org/10.1145/3054132

Team-based invasion sports such as football, basketball and hockey are similar in the sense
that the players are able to move freely around the playing area; and that player and team
performance cannot be fully analysed without considering the movements and interactions of
all players as a group. State of the art object tracking systems now produce spatio-temporal
traces of player trajectories with high definition and high frequency, and this, in turn, has
facilitated a variety of research efforts, across many disciplines, to extract insight from the
trajectories. In this talk we focus on some of the geometric problems that arise in the area.

3.11 High-dimensional Theta Numbers
Anna Gundert (Universität Köln, DE)

License Creative Commons BY 3.0 Unported license
© Anna Gundert

Joint work of Christine Bachoc, Anna Gundert, Alberto Passuello
Main reference C. Bachoc, A. Gundert, A. Passuello, “The Theta Number of Simplicial Complexes”,

arXiv:1704.01836 [math.CO], 2017.
URL https://arxiv.org/abs/1704.01836

We introduce a generalization of the celebrated Lovász theta number of a graph to simplicial
complexes of arbitrary dimension. Our generalization takes advantage of real simplicial
cohomology theory, in particular combinatorial Laplacians, and provides a semidefinite
programming upper bound of the independence number of a simplicial complex. We consider
properties of the graph theta number such as the relationship to Hoffman’s ratio bound and
to the chromatic number and study how they extend to higher dimensions. Furthermore, we
analyze the value of the theta number for dense random simplicial complexes.

3.12 Minkowski Sums of Polyhedra with Holes
Dan Halperin (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Dan Halperin

Joint work of Alon Baram, Efi Fogel, Dan Halperin, Michael Hemmer, Sebastian Morr

The Minkowski sum of two sets P and Q in Euclidean space is the result of adding every
point (position vector) in P to every point in Q. Considering the Minkowski sum of two
polyhedra with holes, we show that one can always fill up the holes in one of the summand
polyhedra and still get the same Minkowski sum as of the original summands. We present a
simple proof of this observation, improving on (our) earlier rather involved proof of a more
restricted claim. As we explain, this observation helps in speeding up the computation of
Minkwoski sums in practice. We also review additional recent results in computing and using
Minkowksi sums.
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3.13 Self-Aligning Shapes
David G. Kirkpatrick (University of British Columbia – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© David G. Kirkpatrick

Joint work of Ashwin Gopinath, David G. Kirkpatrick, Paul W.K. Rothemund and Chris Thachuk
Main reference A. Gopinath, D.G. Kirkpatrick, P.W.K. Rothemund, Chris Thachuk, “Progressive Alignment of

Shapes”, in Proc. of the 28th Canadian Conference on Computational Geometry (CCCG 2016),
pp. 230–236, Simon Fraser University, 2016.

URL http://www.cccg.ca/proceedings/2016/proceedings2016.pdf

A planar shape S is said to be self-aligning if any two overlapping, but otherwise arbitrarily
placed, copies of S, can be brought into a unique configuration of maximum overlap by a
continuous motion that monotonically increases their overlap. The identification of self-
aligning shapes is motivated by applications of self-assembly, driven by molecular forces, in
nano-fabrication processes. We are interested in the design and certification of shapes that
are self-aligning, but also satisfy certain other constraints that arise due to fabrication issues.

3.14 On the Computational Bottleneck in Sampling-Based Robot
Motion Planning

Michal Kleinbort (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Michal Kleinbort

Joint work of Michal Kleinbort, Oren Salzman, Dan Halperin
Main reference M. Kleinbort, O. Salzman, D. Halperin, “Collision detection or nearest-neighbor search? On the

computational bottleneck in sampling-based motion planning”, arXiv:1607.04800v3 [cs.RO], 2016.
URL https://arxiv.org/abs/1607.04800v3

Many sampling-based motion planning algorithms rely heavily on two main components: (i)
collision detection and (ii) nearest-neighbor search. The complexity of the latter dominates
the asymptotic running time of such algorithms. However, collision detection is often
considered to be the computational bottleneck in practice. We describe settings in which the
practical computational role of nearest-neighbor search is far from being negligible, i.e., the
portion of running time taken up by nearest-neighbor search is comparable to, or sometimes
even greater than the portion of time taken up by collision detection. We show that by
using efficient, specially-tailored nearest-neighbor data structures, the overall running time
of certain motion-planning algorithms in such settings can be significantly reduced.

3.15 Computing Wave Impact in Self-Organised Mussel Beds
Maarten Löffler (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Maarten Löffler

We model the effects of byssal connections made by mussels within patterned mussel beds
on bed stability as a disk graph, and propose a formula for assessing which mussels, if any,
would get dislodged from the bed under the impact of a wave. We formulate the computation
as a flow problem, giving access to efficient algorithms to evaluate the formula. We then
analyse the geometry of the graph, and show that we only need to compute a maximum flow
in a restricted part of the graph, giving rise to a near-linear solution in practice.
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3.16 The Art Gallery Problem is ETR-complete
Tillmann Miltzow (Free University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Tillmann Miltzow

Joint work of Mikkel Abrahamsen, Anna Adamaszek, Tillmann Mitlzow
Main reference M. Abrahamsen, A. Adamaszek, T. Miltzow, “The Art Gallery Problem is ∃R-complete”,

arXiv:1704.06969 [cs.CG], 2017.
URL https://arxiv.org/abs/1704.06969

We prove that the art gallery problem is equivalent under polynomial time reductions to
deciding whether a system of polynomial equations over the real numbers has a solution.
The art gallery problem is a classical problem in computational geometry, introduced in 1973
by Viktor Klee. Given a simple polygon P and an integer k, the goal is to decide if there
exists a set G of k guards within P such that every point p ∈ P is seen by at least one guard
g ∈ G. Each guard corresponds to a point in the polygon P , and we say that a guard g sees
a point p if the line segment pg is contained in P .

The art gallery problem has stimulated a myriad of research in geometry and in algorithms.
However, despite extensive research, the complexity status of the art gallery problem has not
been resolved. It has long been known that the problem is NP-hard, but no one has been able
to show that it lies in NP. Recently, the computational geometry community became more
aware of the complexity class ∃R. The class ∃R consists of problems that can be reduced
in polynomial time to the problem of deciding whether a system of polynomial equations
with integer coefficients and any number of real variables has a solution. It can be easily
seen that NP ⊆ ∃R. We prove that the art gallery problem is ∃R-complete, implying that
(1) any system of polynomial equations over the real numbers can be encoded as an instance
of the art gallery problem, and (2) the art gallery problem is not in the complexity class NP
unless NP = ∃R. As a corollary of our construction, we prove that for any real algebraic
number α there is an instance of the art gallery problem where one of the coordinates of the
guards equals α in any guard set of minimum cardinality. That rules out many geometric
approaches to the problem.

3.17 TSP With Locational Uncertainty: The Adversarial Model
Joseph S. B. Mitchell (Stony Brook University, US)

License Creative Commons BY 3.0 Unported license
© Joseph S. B. Mitchell

Joint work of Gui Citovsky, Tyler Mayer, Joseph S.B. Mitchell

In this paper we study a natural special case of the Traveling Salesman Problem (TSP) with
point-locational-uncertainty which we will call the adversarial TSP problem (ATSP). Given
a metric space (X, d) and a set of subsets R = {R1, R2, ..., Rn} : Ri ⊆ X, the goal is to
devise an ordering of the regions, σR, that the tour will visit such that when a single point is
chosen from each region, the induced tour over those points in the ordering prescribed by
σR is as short as possible. Unlike the classical locational-uncertainty-TSP problem, which
focuses on minimizing the expected length of such a tour when the point within each region
is chosen according to some probability distribution, here, we focus on the adversarial model
in which once the choice of σR is announced, an adversary selects a point from each region
in order to make the resulting tour as long as possible. In other words, we consider an
offline problem in which the goal is to determine an ordering of the regions R that is optimal
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with respect to the “worst” point possible within each region being chosen by an adversary,
who knows the chosen ordering. We give a 3-approximation when R is a set of arbitrary
regions/sets of points in a metric space. We show how geometry leads to improved constant
factor approximations when regions are parallel line segments of the same lengths, and a
polynomial-time approximation scheme (PTAS) for the important special case in which R is
a set of disjoint unit disks in the plane.

3.18 Dynamic Planar Voronoi Diagrams for General Distance Functions
Wolfgang Mulzer (FU Berlin, DE), Haim Kaplan, Liam Roditty, Paul Seiferth, and Micha
Sharir

License Creative Commons BY 3.0 Unported license
© Wolfgang Mulzer, Haim Kaplan, Liam Roditty, Paul Seiferth, and Micha Sharir

Main reference H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir, “Dynamic Planar Voronoi Diagrams for
General Distance Functions and their Algorithmic Applications”, in Proc. of the 28th ACM-SIAM
Symp. on Discrete Algorithms (SODA 2017), pp. 2495–2504, ACM, 2017.

URL http://dx.doi.org/10.1137/1.9781611974782.165

We describe a new data structure for dynamic nearest neighbor queries in the plane with
respect to a general family of distance functions that includes Lp-norms and additively
weighted Euclidean distances, and for general (convex, pairwise disjoint) sites that have
constant description complexity (line segments, disks, etc.). Our data structure has a
polylogarithmic update and query time, improving an earlier data structure of Agarwal,
Efrat and Sharir that required O(nε) time for an update and O(logn) time for a query.

3.19 Maximizing Volume Subject to Combinatorial Constraints
Aleksandar Nikolov (University of Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Aleksandar Nikolov

The maximum volume j-simplex problem asks to compute the j-dimensional simplex of
maximum volume inside the convex hull of a given set of n points in d-dimensional space.
We discuss a deterministic approximation algorithm for this problem which achieves an
approximation ratio of ej/2+o(j) in time polynomial in n and d. The problem is known to be
NP-hard to approximate within a factor of cj for some constant c > 1. Our algorithm also
gives a factor ej+o(j) approximation for the problem of finding the principal j × j submatrix
of a rank d positive semidefinite matrix with the largest determinant. In the final part of the
talk we sketch how these results have been generalized to maximizing volume or determinants
subject to more complicated combinatorial constraints. Such problems appear naturally in
machine learning and experimental design when dealing with models of diversity.
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3.20 Colorful simplicial depth, Minkowski sums, and generalized Gale
transforms

Zuzana Patáková (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 3.0 Unported license
© Zuzana Patáková

Joint work of Karim Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Paták, Zuzana Patáková, Raman Sanyal
Main reference K. Adiprasito, P. Brinkmann, A. Padrol, P. Paták, Z. Patáková, R. Sanyal, “Colorful simplicial

depth, Minkowski sums, and generalized Gale transforms”, arXiv:1607.00347 [math.CO], 2016.
URL https://arxiv.org/abs/1607.00347

Given d+ 1 sets S1, S2, . . . , Sd+1 (called color classes) in Rd, a simplex is called colorful, if
all its vertices are in different color classes. The number of colorful simplices containing
a point p ∈ Rd is known as the colorful simplicial depth of p. The first result concerning
colorful simplicial depth in discrete geometry was the colorful Carathéodory’s theorem by
Imre Bárány in 1982: “Any point p ∈ Rd contained in the convex hull of all color classes has
a non-zero simplicial depth provided that each color class has at least d+ 1 points.”

In 2006 Deza, Huang, Stephen, and Terlaky asked for the minimal and maximal values
of the colorful simplicial depth of the point p in colorful Carathéodory’s theorem. We
use methods from combinatorial topology to prove a tight upper bound of the form 1 +∏d+1
i=1
(
|Si| − 1

)
.

The second goal of this talk is to highlight a connection between colorful configurations and
faces of Minkowski sums. Considering the Gale transform of the Cayley embedding, we define
colorful Gale transforms associated to a collection of convex polytopes that capture the facial
structure of Minkowski sums in the combinatorics of colorful configurations. This dictionary
between Minkowski sums and colorful configurations allows us to resolve a conjecture of Ben
Burton from the normal surface theory.

3.21 Approximate Range Maximization
Jeff M. Phillips (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Jeff M. Phillips

Joint work of Michael Matheny, Raghvendra Singh, Kaiqiang Wang, Liang Zhang, Jeff M. Phillips
Main reference M. Matheny, R. Singh, K. Wang, L. Zhang, J.M. Phillips, “Scalable Spatial Scan Statistics through

Sampling”, in Proc. of the 24th ACM SIGSPATIAL Int’l Conf. on Advances in Geographic
Information Systems, (GIS 2016), pp. 20:1–20:10, ACM, 2016.

URL http://doi.acm.org/10.1145/2996913.2996939

Consider a geometric range space (X,A) where each data point x ∈ X has two or more
values (say r and b). Also consider a function φ(A) defined on any subset C in (X,A) on the
sum of values in that range e.g., rC =

∑
x∈C r(x) and bC =

∑
x∈C b(x). The maximum range

is A∗ = argmaxXin(X,A) φ(A). Our goal is to find some Â such that |φ(Â) − φ(A∗)| ≤ ε.
We develop algorithms for this problem for range spaces defined by balls, halfspaces, and
axis-aligned rectangles; it has applications in many areas including discrepancy evaluation
and spatial scan statistics.
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3.22 A Treehouse with Custom Windows: Minimum Distortion
Embeddings into Bounded Treewidth Graphs

Benjamin Raichel (University of Texas – Dallas, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Amir Nayyeri, Benjamin Raichel
Main reference A. Nayyeri, B. Raichel, “A treehouse with custom windows: Minimum distortion embeddings into

bounded treewidth graphs”, in Proc. of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017), pp. 724–736, ACM, 2017.

URL https://doi.org/10.1137/1.9781611974782.46

We describe a (1+ε)-approximation algorithm for finding the minimum distortion embedding
of an n-point metric space X into the shortest path metric space of a weighted graph G with
m vertices. The running time of our algorithm is

mO(1) · nO(λ) · (δopt∆)λ·(1/ε)λ+2·λ·(O(δopt))2λ

parametrized by the values of the minimum distortion, δopt, the spread, ∆, of the points of
X, the treewidth, λ, of G, and the doubling dimension, λ, of G.

In particular, our result implies a PTAS provided an X with polynomial spread, and the
doubling dimension of G, the treewidth of G, and δopt, are all constant. For example, if X
has a polynomial spread and δopt is a constant, we obtain PTAS’s for embedding X into
the following spaces: the line, a cycle, a tree of bounded doubling dimension, and a k-outer
planar graph of bounded doubling dimension (for a constant k).

3.23 Spatial data processing with SAP HANA
Alejandro Salinger (SAP SE – Walldorf, DE)

License Creative Commons BY 3.0 Unported license
© Alejandro Salinger

URL http://help.sap.com/hana/SAP_HANA_Spatial_Reference_en.pdf

The rapid development of geospatial technologies in recent years has led to an increase in
the types and amount of enterprise data containing geospatial information. The ability to
store and process spatial data can add a valuable dimension to business analytics.

In this talk we give an overview of the spatial data processing capabilities of SAP HANA,
SAP’s in-memory data platform. We describe the spatial data types and operations supported
and give examples of SQL queries using spatial data. These include using simple predicates
such as determining if a point is within a given geometry as well as more complex queries
that use clustering methods.

We then give some insights about the optimizations used to reduce computational time
in window queries, including the use of parallelism, space-filling curves, dictionaries, and
indices.

Finally, we show a live demo based on an application for proactive pipeline maintenance
used by a major natural gas provider. The application allows visualizing pipelines in a map
and finding those that are within a given distance to buildings. We briefly describe the
underlying algorithms and data structures used to compute spatial joins that can process
millions of geometries in a just a few seconds.
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3.24 A Framework for Algorithm Stability
Kevin Verbeek (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
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We say that an algorithm is stable if small changes in the input result in small changes in
the output. Algorithm stability plays an important role when analyzing and visualizing
time-varying data. However, so far, there are only few theoretical results on the stability
of algorithms, possibly due to a lack of theoretical analysis tools. In this talk we present a
framework for analyzing the stability of algorithms. We focus in particular on the tradeoff
between the stability of an algorithm and the quality of the solution it computes. Our
framework allows for three types of stability analysis with increasing degrees of complexity:
event stability, topological stability, and Lipschitz stability. We demonstrate the use of our
stability framework by applying it to kinetic Euclidean minimum spanning trees.

3.25 Towards Spectral Sparsification of Simplicial Complexes based on
Generalized Effective Resistance

Bei Wang (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Bei Wang

Joint work of Braxton Osting, Sourabh Palande, Bei Wang

As a generalization of the use of graphs to describe pairwise interactions, simplicial complexes
can be used to model higher-order interactions between three or more objects in complex
systems. There has been a recent surge in activity for the development of data analysis
methods applicable to simplicial complexes, including techniques based on computational
topology, higher-order random processes, generalized Cheeger inequalities, isoperimetric
inequalities, and spectral methods. In particular, spectral learning methods (e.g. label
propagation and clustering) that directly operate on simplicial complexes represent a new
direction emerging from the confluence of computational topology and machine learning.
Similar to the challenges faced by massive graphs, computational methods that operate on
simplicial complexes are severely limited by computational costs associated with massive
datasets.

To apply spectral methods in learning to massive datasets modeled as simplicial complexes,
we work towards the sparsification of simplicial complexes based on preserving the spectrum
of the associated Laplacian operators. We show that the theory of Spielman and Srivastava
for the sparsification of graphs extends to the generality of simplicial complexes via the
up Laplacian. In particular, we introduce a generalized effective resistance for simplexes;
provide an algorithm for sparsifying simplicial complexes at a fixed dimension; and gives
a specific version of the generalized Cheeger inequalities for weighted simplicial complexes
under the sparsified setting. In addition, we demonstrate via experiments the preservation
of up Laplacian during sparsification, as well as the utility of sparsification with respect to
spectral clustering.
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4 Open problems

4.1 Nash equilibria of spanner games
Mohammad Ali Abam (Sharif University of Technology – Tehran, IR)

License Creative Commons BY 3.0 Unported license
© Mohammad Ali Abam

Starting from a t-sink spanner, that is a directed graph, where from every vertex there is
a path to a sink where the length of the path is at most a factor t more than the cost of
a direct edge. The vertices (players) take turns and in each turn a player can replace its
outgoing edge by a different edge, but it needs to maintain the t-sink spanner property of
the graph. Each player pays for its outgoing edge. Does this game have a nash-equilibrium?

A similar problem can be posed for a general t-spanner, where there should be spanning
paths between any pair of vertices. In this case during each turn, a vertex can change its set
of outgoing edges under the restriction that the graph must remain a spanner. The question
is then if this is a process that terminates and if so, with how many edges?

4.2 Negative cycles on surface embedded graphs
Jeff Erickson (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
© Jeff Erickson

Given a directed graph on a (possibly non-compatible) surface, where edges have weights
that may be negative. The problem is to determine if there is a negative contractible cycle,
that is, a closed walk which may reuse edges and vertices. What is the complexity of this
decision problem? Is this problem in P or even in NP (the cycle might have exponential
length), is it NP-hard?

1

−ε

−ε

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Otfried Cheong, Anne Driemel, and Jeff Erickson 123

4.3 Maximum-Area Triangle in a Convex Polygon
Maarten Löffler (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Maarten Löffler

Main reference D.P. Dobkin, L. Snyder, “On a general method for maximizing and minimizing among certain
geometric problems”, in 20th Annual Symposium on Foundations of Computer Science (FOCS
1979), pp. 9–17, IEEE, 1979.

URL https://doi.org/10.1109/SFCS.1979.28

Given a convex polygon P, find the largest-area inscribed triangle. We revisit the linear-time
algorithm proposed by Dobkin and Snyder and ask if there is a counter-example to their
claimed proof.

Update: There has been progress on this problem since the problem was posed: Vahideh
Keikha, Maarten Löffler, Jérôme Urhausen, Ivor van der Hoog: “Maximum-Area Triangle in
a Convex Polygon, Revisited.” CoRR abs/1705.11035, 2017.

4.4 Is G area-universal?
Tillmann Miltzow (Free University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Tillmann Miltzow

Joint work of Linda Kleist, Pawel Rzazewski, Michael Gene Dobbins, Tillmann Miltzow
Main reference L. Kleist, P. Rzazewski, T. Miltzow, “Is Area Universality ∀∃R-complete?”, in Proc. of the 33rd

European Workshop on Computational Geometry (EuroCG 2017), Malmö University, 2017.
URL http://csconferences.mah.se/eurocg2017/proceedings.pdf

During the Dagstuhl Seminar, I asked whether the graph G (drawn on the blackboard) is
area universal. See the EuroCG abstract for details (page 181).

4.5 Finding small polygons with a fixed number of triangulations;
simple polygons with a unique triangulation

Joseph S. B. Mitchell (Stony Brook University, US)

License Creative Commons BY 3.0 Unported license
© Joseph S. B. Mitchell

Given an integer k, let N(k) denote the minimum number n, so that there is a polygon of n
vertices that has exactly k triangulations. This number always exists for any k. The first
problem is to find N(k).

A second problem is to detect if a given polygon P has a unique triangulation. This can
be done in O(n) time from a starting triangulation. Using Chazelle’s linear triangulation
algorithm this yields linear time in total; however, since no implementation for linear-time
triangulation exists, an interesting question is if there is a different, simple linear-time
algorithm.
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4.6 Minimum k dimensional cut of an n dimensional polytope
Aleksandar Nikolov (University of Toronto, CA)
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Main reference A. Pajor, N. Tomczak-Jaegermann, “Volume ratio and other s-numbers of operators related to
local properties of Banach spaces”, J. Funct. Anal., 87(2): 273–293, Elsevier, 1989.
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Given a convex polytope P in Rn that is symmetric around the origin (i.e. P = −P ),
specified in H-representation as P = {x : b ≤ Ax ≤ b} for a matrix A and a vector b with
non-negative entries. Note that P can have exponentially many vertices in the size of its
representation. More generally, we are given a convex body K symmetric around the origin,
specified via a membership or a separation oracle. Can we efficiently find a k-dimensional
subspace through the origin that minimizes its cut-volume with P? That is, can we find or
approximate min{vol(W e P )1/k : W is a subspace of dimension k}?

The problem is easy for centrally symmetric ellipsoids E, specified by E = {x : xᵀBx ≤ 1},
for a positive semidefinite matrix B. Then the minimizing subspace is spanned by eigenvectors
associated with the largest k eigenvalues of M . Using this fact, and Milman’s M-ellipsoid
theorem, we can get a factor Cn/k-approximation for an arbitrary symmetric convex body
K, specified by a membership oracle, and an absolute constant C, independent of n, k, and
K. However, this is unsatisfying when k is sublinear in n. On the other hand, for a polytope
P in H-representation and k = 1, the problem just reduces to computing the closest (in
Euclidean distance) facet to the origin. Intermediate values of k seem challenging.

This problem is related to computing volume ratio numbers, which can be used to compute
estimates on the Gaussian mean width of a convex body (see Pajor and Tomczak-Jaegermann,
JFA 1989).

4.7 VC-dimension of inflated polynomials
Jeff M. Phillips (University of Utah – Salt Lake City, US)
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Main reference J.M. Phillips, Y. Zheng, “Subsampling in Smoothed Range Spaces”, in Proc. of the 26th
International Conference on Algorithmic Learning Theory (ALT 2015), LNCS, Vol. 9355,
pp. 224–238, Springer, 2015.
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Is there a bound on the VC-dimension of the range space defined by shapes formed by the
Minkowski sum of a ball and a polynomial curve? In more detail, let Sp be any family of
subsets of Rd which are defined by a shape whose boundary is a polynomially curve of degree
p. Simple examples are when H ∈ S1 is a halfspace, or when D ∈ S2 is a disk; but the
problem seems more challenging when we only restrict the degree of the polynomial. Then
define the set of subsetsMp = {S⊕B | S ∈ Sp} where B is any ball and ⊕ is the Minkowski
sum. What is the VC-dimension of (Rd,Mp)?
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4.8 Stability of Topological Signatures of Graphs
Bei Wang (University of Utah – Salt Lake City, US)
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This open problem arises from a joint work with Mustafa Hajij, Carlos Scheidegger and Paul
Rosen [4], where we are interested in quantifying and visualizing structural changes of a
time-varying graph using persistent homology. However for simplification purposes here, we
describe the open problem by focusing on a single snapshot G of a time-varying graph.

Let G = (V,E,w) be a weighted, undirected graph. To study the topological signatures
of G, we first embed G into a metric space (M,d), using the shortest-path distance or
other distance metrics based on the graph Laplacian [3] (such as commute-time distance,
discrete biharmonic distance [5] and diffusion distance [2]). The topological signatures of
such a (metric-space-embedded) graph is then extracted, by computing persistent homology
of its corresponding Vietoris-Rips filtration; the topological features of the Vietoris-Rips
filtration are captured by its persistence diagrams PD. Such persistence diagrams encoding
the topological signatures of G can be compared and structural changes among time-varying
snapshots may be detected and visualized.

The question is: given the above analysis pipeline, can we quantify the stability of
topological signatures of graphs? In other words, if we add random perturbation to a graph,
how stable (and therefore potentially trustworthy) are its topological signatures?

The stability of topological signatures of a given graph G can be influenced by at least three
factors: the perturbation model, the stability of its metric structure embedding (M,d), and
the stability of its corresponding persistence diagram PD. In terms of random perturbation
models, we can consider deletion-only and insertion-only perturbation, as well as rewiring
(while maintaining degree or joint degree distributions). We would like to know, under
a particular perturbation model, and for a certain metric space embedding, whether we
can obtain stable topological signatures. As topological methods can be coordinate and
deformation invariant, under certain restrictive settings, can we hope for stable topological
signatures even if the metric structures are not stable?

The metric structure behind perturbed graphs in the setting of shortest path metric and
Erdös-Rényi type perturbation has been studied recently [6]. Given a “noisy” observation
G of a true graph G∗, Parthasarathy et al. [6] propose a de-noising procedure to recover
(approximately) the “true” shortest path metric of G∗ from G. Since the shortest path metric
is known to be sensitive to random perturbations, such a de-noising procedure can be used
as a way to recover the stable metric structure of a graph. On the other hand, persistent
homology stability result [1] implies that if M and N are two finite metric space, then the
distance between persistence diagrams constructed by Vietoris-Rips filtration is bounded
by twice of their Gromov-Hausdorff distance [7]. Therefore, the shortest-path de-noising
procedure of [6] can be combined with persistent homology stability result (e.g. [1, 7]) to
potentially address an instance of this open problem.
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