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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17192 “Human-Like
Neural-Symbolic Computing”, held from May 7th to 12th, 2017. The underlying idea of Human-
Like Computing is to incorporate into Computer Science aspects of how humans learn, reason
and compute. Whilst recognising the relevant scientific trends in big data and deep learning,
capable of achieving state-of-the-art performance in speech recognition and computer vision tasks,
limited progress has been made towards understanding the principles underlying language and
vision understanding. Under the assumption that neural-symbolic computing – the study of
logic and connectionism as well statistical approaches – can offer new insight into this problem,
the seminar brought together computer scientists, but also specialists on artificial intelligence,
cognitive science, machine learning, knowledge representation and reasoning, computer vision,
neural computation, and natural language processing. The seminar consisted of contributed and
invited talks, breakout and joint group discussion sessions, and a hackathon. It was built upon
previous seminars and workshops on the integration of computational learning and symbolic
reasoning, such as the Neural-Symbolic Learning and Reasoning (NeSy) workshop series, and the
previous Dagstuhl Seminar 14381: Neural-Symbolic Learning and Reasoning.
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1 Executive Summary
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The underlying idea of Human-Like Computing is to incorporate into Computer Science
aspects of how humans learn, reason and compute. Recognising the relevance of the scientific
trends in big data, data science methods and techniques have achieved industrial relevance
in a number of areas, from retail to health, by obtaining insight from large data collections.
Notably, neural networks have been successful and efficient at large-scale language modelling,
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speech recognition, image, video and sensor data analysis [3, 12, 15]. Human beings, on the
other hand, are excellent at learning from very few data examples, capable of articulating
explanations and resolving inconsistencies through reasoning and communication [7, 9, 16, 17].

Despite the recent impact of deep learning, limited progress has been made towards
understanding the principles and mechanisms underlying language and vision understanding.
Under this motivation, the seminar brought together not only computer scientists, but
also specialists in artificial intelligence (AI), cognitive science, machine learning, knowledge
representation and reasoning, computer vision, neural computation and natural language
processing. In particular, the methodology of neural-symbolic computation [4, 7, 12], which
can offer a principled interface between the relevant fields, especially symbolic AI and neural
computation, was adopted in an attempt to offer a new perspective of reconciling large-scale
modelling with human-level understanding, thus building a roadmap for principles and
applications of Human-Like Neural-Symbolic Computing.

The techniques and methods of neural-symbolic computation have already been applied
effectively to a number of areas, leading to developments in deep learning, data science and
human-like computing [3]. For instance, neural-symbolic integration methods have been
applied to temporal knowledge evolution in dynamic scenarios [6, 10, 14], action learning
in video understanding [10], uncertainty learning and reasoning [1], argument learning in
multiagent scenarios [7, 8], hardware and software verification and learning [2], ontology
learning [13] and distributed temporal deep learning in general, with several applications in
computer science [2, 10, 14].

Specifically, in this Dagstuhl Seminar we aimed at: (i) building better bridges between
symbolic and sub-symbolic reasoning and learning, and between big data and human-like
learning; (ii) comparative analyses and evaluations of the explanatory capacity of language
modelling tools and techniques; (iii) design and applications of knowledge extraction methods
and techniques towards life-long learning and transfer learning.

The seminar consisted of contributed and invited talks, breakout and joint group discussion
sessions, and scientific hackathons. After each presentation or discussion session, open
problems were identified and questions were raised. The area is clearly growing in importance,
given recent advances in Artificial Intelligence and Machine Learning. In particular, the need
for explainability in AI clearly poses relevant questions to learning methodologies, including
deep learning. In summary, the main research directions identified by participants are:

Explainable AI: The recent success of deep learning in vision and language processing,
associated with the growing complexity of big data applications has led to the need for
explainable AI models. In neural-symbolic computing, rule extraction, interpretability,
comprehensibility leading to the development of integrated systems, are one of the
principled alternatives to lead these efforts [5, 7], as discussed in the Explainability
hackathon. Furthermore, the concept of modularity in multimodal learning in deep
networks is crucial to the development of the field and can help achieve knowledge
extraction (as identified in [5, 6]) which can result in the development of effective
knowledge extraction methods towards explainable AI, as discussed in the deep learning
with symbols hackathon.
Hybrid Cognitive Architectures: The development of Cognitive Architectures capable of
simulating and explaining aspects of human cognition also remains an important research
endeavour. Some cognitive architectures typically consider symbolic representations,
whereas others employ neural simulations. The integration of these models remains a
challenge and there are benefits on integrating the accomplishments of both paradigms,
as identified in the cognitive architectures hackathon.
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Statistical Relational Learning: Logic Tensor Networks (LTNs) [11] provides a model that
integrates symbolic knowledge (encoded as first-order logic relations) and subsymbolic
knowledge (represented as feature vectors). The LTNs enable the representation of
relational knowledge infusion into deep networks, and knowledge completion and distilling
through querying the networks. There remains a number of challenges in integrating,
explaining and computing symbolic knowledge in deep networks. Both LTNs [11] and
Connectionist Modal and Temporal Logics [6, 7, 14] offer effective alternatives towards
these research challenges, as explored in the LTN hackathon.

The seminar builds upon previous seminars and workshops on the integration of computa-
tional learning and symbolic reasoning, such as the Neural-Symbolic Learning and Reasoning
(NeSy) workshop series, and the previous Dagstuhl Seminar 14381: Neural-Symbolic Learning
and Reasoning [5].
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3 Overview of Talks

3.1 Conceptual Spaces: A Bridge Between Neural and Symbolic
Representations?

Lucas Bechberger (Universität Osnabrück, DE)

License Creative Commons BY 3.0 Unported license
© Lucas Bechberger

The cognitive framework of conceptual spaces [1] attempts to bridge the gap between
symbolic and subsymbolic AI by proposing an intermediate conceptual layer based on
geometric representations. A conceptual space is a high-dimensional space spanned by a
number of quality dimensions representing interpretable features. Convex regions in this
space correspond to concepts. Abstract symbols can be grounded by linking them to concepts
in a conceptual space whose dimensions are based on subsymbolic representations.

The framework of conceptual spaces has been highly influential in the last 15 years
within cognitive science and cognitive linguistics. It has also sparked considerable research
in various subfields of artificial intelligence, ranging from robotics and computer vision over
the semantic web and ontology integration to plausible reasoning.

Although this framework provides means for connecting concepts from the symbolic layer
to numeric information from the subsymbolic layer, it does not yet provide an automated way
to do so: In practical applications, both the mapping from the subsymbolic to the conceptual
layer (i.e., how to map observations to points) and the mapping from the conceptual layer to
the symbolic layer (i.e., how to map regions to symbols) need to be handcrafted by a human
expert.

After introducing the conceptual spaces framework in more detail, I argue that we can use
machine learning in order to learn these mappings: I propose to use representation learning
(namely the InfoGAN framework [2]) for learning the dimensions of a conceptual space from
unlabeled data. Moreover, I suggest to use an incremental clustering algorithm to discover
meaningful regions in a conceptual space that can then give rise to abstract symbols.
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During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of
performance: predictive accuracy and comprehensibility of generated hypotheses. Since
predictive accuracy was readily measurable and comprehensibility not so, later definitions in
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the 1990s, such as that of Mitchell, tended to use a one-dimensional approach to Machine
Learning based solely on predictive accuracy, ultimately favoring statistical over symbolic
Machine Learning approaches. In this talk I want to discuss a definition of comprehensibility
of hypotheses which can be estimated using human participant trials.

To illustrate the proposed approach, we will have a look at two recent experiments
testing human comprehensibility of ILP-learned logic programs. The first experiment tested
human comprehensibility with and without predicate invention, with results indicating that
comprehensibility is affected not only by the complexity of the presented program but also
by the existence of anonymous predicate symbols. The second experiment showed that a
state-of-the-art ILP system can support humans effectively beyond their own capabilities in
a relational concept learning task.

3.3 Using evidence accumulation to bridge the gap between neural
networks and symbolic cognitive control

Jelmer Borst (University of Groningen, NL) and Terrence Stewart
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I will discuss how we used large-scale spiking neural networks to simulate associative recog-
nition. Associative recognition is the important ability to learn that two items co-occur.
Although detailed symbolic models exist that account for behavior, fMRI, and EEG data, it
remains unclear how associative recognition is performed at the neural level. To investigate
this, we used the Neural Engineering Framework to simulate associative recognition with
spiking neural networks that can process symbols and coordinate cognition through the basal
ganglia [2]. Because the resulting neural network model is very complex (> 500,000 neurons)
we use magnetoencephalographic (MEG) data to constrain the model [1]. The model matches
data in occipital, temporal, prefrontal, and motor cortices, and shows how the associative
recognition process could be implemented in the human brain.
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3.4 Neural-Symbolic Systems for Human-Like Computing
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An increasing number of researchers now accept that the recent success of deep learning needs
to be combined with an understanding of its reach, scope and limitations so that the area
can continue to move forward towards Artificial General Intelligence (AGI). Neural-symbolic

17192

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


64 17192 – Human-Like Neural-Symbolic Computing

computing has been making foundational contributions in this direction for a long time
now [1, 3], as it is concerned with the interplay between learning and reasoning, and the
combination of rich symbolic AI formalisms with efficient neural computation frameworks.
The applications of AGI are vast as it permits humans to improve their own performance at
various tasks from interacting with (explainable) learning systems. AGI also permits systems
to learn from other systems as part of what became known as transfer learning. Finally, such
general learning systems will need to become verifiable against certain properties such as
safety and trust as they become commonplace in our daily lives [2].

In “Neural-Symbolic Systems for Human-Like Computing”, I presented an overview of
the neural-symbolic methodology, including knowledge insertion (aka infusion), learning,
reasoning and knowledge extraction (aka distilling) from neural networks. This methodology
enables the integration of symbolic and sub-symbolic AI in a principled way. I then exemplified
the neural-symbolic cycle by applying it to software model verification and adaptation [5],
and to the use of neural networks for the run-time monitoring of software system properties
specified in linear temporal logic [4]. I concluded by discussing ways in which neural-symbolic
systems may contribute to the research on human-like computing, notably in the areas of
representation change, bridging the gap between high and low-level learning and reasoning,
memory and forgetting, comprehensibility and explanation, and learning from only a few
examples.
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3.5 Dynamics for the Neural Blackboard Architecture
Marc de Kamps (University of Leeds, GB)
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Humans surpass computers when it comes to understanding. Computers excel in object
recognition or sentence parsing, but when it comes to extracting meaning, humans do a lot
better. We partly understand why this is so: neural representations are grounded [4]: neural
activity derives meaning from where it occurs relative to the sensory pathways or other
brain areas. This is a major advantage of computer representations consisting of strings of
binary numbers, which have no intrinsic meaning. The network knowledge representation
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of the brain makes it relatively straightforward to understand how associations occur and
how attractor networks can implement memory. This implementation raises fundamental
questions about how compositional representations are represented, however. It is not easy
to understand how the same concept can occur twice in a different context within the same
scene or sentence [6]. It is not easy to understand how abstract relationships are realized by
the brain and how they can be applied to concrete instances, when an agent must resolve its
constituents in order to extract meaning To address this problem, we proposed the Neural
Blackboard Architecture (NBA), a biologically plausible cognitive architecture that aims
to explain these capabilities in terms of neural dynamics [5]. We have reached the point
where we can make predictions about sequences of neural activity in language processing,
and validate them against experimental results. Preliminary results of this work have been
reported in abstract form [2].

For such a program, realistic models of neural dynamics at the population level are essential.
I will report recent progress in population density techniques (e.g. [1, 3]), developed as part
of the Human Brain Project, to show how large groups of spiking neurons can be modeled
efficiently at the population level, without using thousands of model neuron instances. I
will also show preliminary modeling results of this technique applied to the NBA. When
four word sentences are compared with a baseline consisting of four words not constituting
a sentence, there is a marked difference in the neural signal. Future work will make the
comparison to experimental results. A big advantage of the technique presented here is
that neural models can be exchanged easily without affecting the structure of the network,
which makes it possible to vary biological assumptions in the model (e.g. the presence of
adaptation). The population density technique implementation is available as Open Source
software on http://miind.sf.net

Acknowledgment: The population modeling work received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 720270
(Human Brain Project).
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3.6 On Explainability in Machine Learning
Derek Doran (Wright State University – Dayton, US)
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Enabling explainability in statistical machine learning is a fast emerging topic. The develop-
ment is rooted in the idea that statistical ML models are widely perceived (perhaps unfairly)
as “black box”, where input/output mappings are performed by mathematical operations
that are not easily interpretable or explainable. But (many) statisticians and ML researchers
disagree: one can argue that regression models are interpretable, and any model with linear
decision boundaries for classification imply a set of decision making “rules”. This presentation
introduces a hierarchy of explainability that statistical ML algorithms may be classified into:
interpretable, explainable, and reasonable, and includes recent examples of each. It then
introduces a new approach for enabling explanations, and potentially higher level reasoning,
for neural networks. The approach involves: 1) localized representations of concepts through
regularization; 2) applying an inference engine that explains these localized activations by
discriminating between inputs activating the localization and those that don’t.
Acknowledgements: This work is supported by the Ohio Federal Research Network.

3.7 Tackling Commonsense Reasoning Benchmarks
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License Creative Commons BY 3.0 Unported license
© Ulrich Furbach

Joint work of Ulrich Furbach, Claudia Schon
Main reference U. Furbach, C. Schon, “Commonsense Reasoning Meets Theorem Proving”, in Proc. of the 14th

German Conference on Multiagent System Technologies (MATES 2016), LNCS, Vol. 9872,
pp. 3–17, Springer, 2016.

URL https://doi.org/10.1007/978-3-319-45889-2_1

The area of commonsense reasoning aims at the creation of systems able to simulate the human
way of rational thinking. This talk describes the use of automated reasoning methods for
tackling commonsense reasoning benchmarks. For this we use a benchmark suite introduced
in literature. Our goal is to use general purpose background knowledge without domain
specific hand coding of axioms, such that the approach and the result can be used as well
for other domains in mathematics and science. Furthermore, we discuss the modeling of
normative statements in commonsense reasoning and in robot ethics.

3.8 What do Neural Networks need in order to generalize?
Raquel Garrido Alhama (University of Amsterdam, NL) and Willem Zuidema
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In an influential paper, reporting on a combination of artificial language learning exper-
iments with babies, computational simulations and philosophical arguments, [1] claimed
that connectionist models cannot account for human success at learning tasks that involved
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generalization of abstract knowledge such as grammatical rules. This claim triggered a
heated debate, centered mostly around variants of the Simple Recurrent Network model [2].
In this paper, we revisit this unresolved debate and analyze the underlying issues from a
different perspective. We argue that, in order to simulate human-like learning of grammatical
rules, a neural network model should not be used as a tabula rasa, but rather, the initial
wiring of the neural connections and the experience acquired prior to the actual task should
be incorporated into the model. We present two methods that aim to provide such initial
state: a manipulation of the initial connections of the network in a cognitively plausible
manner (concretely, by implementing a “delay-line” memory), and a pre-training algorithm
that incrementally challenges the network with novel stimuli. We implement such techniques
in an Echo State Network [3], and we show that only when combining both techniques the
ESN is able to succeed at the grammar discrimination task suggested by Marcus et al.
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3.9 Understanding Neural Networks through Background Knowledge
Pascal Hitzler (Wright State University – Dayton, US), Derek Doran (Wright State University
– Dayton, US), Maryam Labaf, Md Kamruzzaman Sarker, Michael Raymer, and Ning Xie
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The ever increasing prevalence of publicly available structured data on the World Wide
Web enables new applications in a variety of domains. In this presentation, we provide a
conceptual approach that leverages such data in order to explain the input-output behavior
of trained artificial neural networks. We apply existing Semantic Web technologies in order
to provide an experimental proof of concept. The presentation starts by investigating the
case of propositional rule extraction as a base case, carrying past results over to incorporate
background knowledge. In the second part, we incorporate knowledge graphs and ontologies
and show how the DL-Learner symbolic machine learning system can be used to generate
explanations which take such background knowledge into account.

Acknowledgements. This work was supported by the Ohio Federal Research Network
project Human-Centered Big Data.
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3.10 Processing Hierarchical Structure with RNNs
Dieuwke Hupkes (University of Amsterdam, NL)
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We investigate how recurrent neural networks can learn and process languages h hierarchical,
compositional semantics. To this end, we define the simple but nontrivial artificial task
of processing nested arithmetic expressions and study whether recurrent neural networks,
which process these expressions incrementally, can learn to compute their meaning. We show
that a neural network architecture with gating (the Gaed Recurrent Unit) performs well
on this task: the network learns to predict the outcome of the arithmetic expressions with
high accuracy, although performance deteriorates with increasing length. To analyse what
strategy the recurrent network applies, visualisation techniques are not sufficient. Therefore,
we develop an approach where we formulate and test hypothess on what strategies such
networks might be following. For each hypothesis, we derive predictions about featurs of
the hidden state representations at each time step, and train ’diagnostic’ classifiers to test
those predictions. Our results indicate that the networks follow a strategy similar to our
hypothesised ’cumultative strategy’.

3.11 How do people build and comprehend ontologies?
Caroline Jay (University of Manchester, GB)
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pp. 432–446, Springer, 2016.
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Ontologies have become an important feature of many fields, including science, commerce
and medicine. They support the representation of a domain’s knowledge for use in a range
of applications. Ontologies describe classes of objects, and the relationships between them.
When in logical form, these descriptions can be used to draw conclusions about the knowledge
represented; this information can be used both for developing the ontology itself, and in an
application. An ontology can become very large and highly complex, however, and a single
change can have many unanticipated effects (both desirable and undesirable) that are difficult
for a human engineer to comprehend [2]. Accuracy is important: if the representation is
incorrect, the value of any knowledge resulting from reasoning over it is undermined.

At the University of Manchester, via the EPSRC-funded project ‘WhatIf: Answering
“What if. . . ” questions for Ontology Authoring’ (EP/J014176/1), we have been exploring
how people build ontologies, and comprehend the information within them. This work shows
that people use the class hierarchy (within the Protege tool) as an external memory, spending
almost half their time looking or interacting with it when working on an ontology. They also
use the reasoner and the inferred class hierarchy to check the consequences of their modelling
actions [3].
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Understanding how a particular action has affected an ontology is extremely difficult, as
there may be multiple, unanticipated changes that have implications for a complex series of
axioms. To ameliorate the situation, we designed and tested the Inference Inspector, a tool
that shows the most relevant consequences of modelling actions to the ontology developer.
Making entailment set changes explicit significantly improves the speed and accuracy of
ontology development, as well as improving author comprehension of the effects of his or her
changes [1].
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3.12 Human-like software engineering: bridging the human-machine
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Engineering software is a challenging endeavour. Development processes are incrementally
improving, allowing us to construct increasingly complex artefacts, yet software continues
to contain errors, or behave in unforeseen ways. This is partly to due to the ‘unknown
unknowns’ introduced by a changing external environment, but it is also because algorithms
often fail to work as expected: the formal representations underlying machine computation
are frequently at odds with the heuristics used by the human brain. Whilst this is an issue
across software development, it is particularly apparent in scientific software engineering,
where the purpose of the code implementation is to represent, precisely, a scientific entity,
process or system, and a given programming language is often an inadequate means of doing
this [1]. The result is a human-machine translation gap.

Whilst empirical software engineering is a thriving field, using a theory of human cognition
based on empirical observation to drive system development is not a standard approach;
progress has occurred primarily through craft-based iteration, rather than rigorous empirical
study. Nevertheless, observation of the programming process has demonstrated its potential
to result in huge technological advances. A notable example of this is locality of reference,
a principle uncovered when trying to ascertain how to page data in and out of memory,
which has gone on to touch virtually every aspect of modern systems. The theory of locality
describes how data relevant to the current context of a running program is grouped together
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locally in space and time. Using this model to page data in and out of memory dramatically
improved system performance, and laid the foundations for a multitude of other optimisations,
including efficient caching, network configuration and search engine ranking. There are two
key aspects of this early work that demonstrate the value of a ‘human-like’ approach to
software engineering: the first is that locality is a product of the way people write programs,
rather than being due to any underlying constraints of the computing system; the second is
that it was discovered empirically – paging algorithms were ineffective for many years before
the principle of locality was discovered through systematic observation of the programming
process [2].

Advances in hardware, such as parallel processing, have yet to achieve their full potential,
as we struggle to translate serial human-written programs onto distributed architectures.
Automated programming offer a means to reduce and repair errors, but even with machine-
written programs, human input to a system means a bottleneck will always remain. As we
move into the era of quantum computing and beyond, a true understanding of how our minds
map themselves onto the machines we create is a vital component of achieving a step change
in the creation and performance of software.
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3.13 (Human-Like) Anecdotes with IBM’s Watson/Bluemix Services
Kai-Uwe Kühnberger (Universität Osnabrück, DE)

License Creative Commons BY 3.0 Unported license
© Kai-Uwe Kühnberger

Joint work of Kai-Uwe Kühnberger, Gordon Pipa, Students

I will give an overview of some activities in our institute in order to exemplify the idea of
cognitively inspired AI. In particular, I will focus on cooperation projects with IBM, the
company that coined the term “cognitive computing”. Several terms are currently used for
this or similar research endeavors, e.g. human-like AI, human-level AI, AI on a human scale,
Artificial General Intelligence, Cognitive Computing, or Cognitive Services. They do not
mean the same, but they are somehow related to each other. In my talk, I will briefly sketch
applications like a smart city guide, smart farming, and flue prediction that were partially
built on IBM’s Bluemix services. Additionally I will sketch the idea to build an embodied
e-tutor, a project that is currently ongoing. A focus will be to stress aspects that are easy
(or straightforward) to implement and aspects that are rather difficult to realize.
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3.14 From Turing to Deep Learning: Explaining AI through neurons
and symbols

Luis C. Lamb (Federal University of Rio Grande do Sul, BR)

License Creative Commons BY 3.0 Unported license
© Luis C. Lamb

Learning and reasoning have been the subject of great research interest since the dawn
of Artificial Intelligence [8]. In the 1950s, Turing already described principles for neural
computation, machine learning and formal computational reasoning. Over the last decades, AI
research has been questioned and praised on several occasions. However, recent developments
in neural learning, in particular deep neural networks, have greatly impacted not only the
academic research community, but also have been recognized as a key technology by both
the computing industry and popular media channels [7]. In this talk, I presented an overview
of the evolution of machine learning in AI, with particular attention to developments and
efforts towards integrating (deep) learning and reasoning methods into an unified explainable
foundation [2, 5]. I concluded showing that advances in AI, in particular neural-symbolic
computation lead to the construction of rich computing systems that integrate neural learning,
temporal and cognitive reasoning with applications in several areas [1, 3, 4, 5, 6].
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3.15 Interacting Conceptual Spaces
Martha Lewis (University of Oxford, GB)
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How should we represent concepts and how can they be composed to form new concepts,
phrases and sentences? The categorical compositional distributional programme of [2]
successfully integrates two fundamental aspects of language meaning: firstly, the symbolic
approach in which meanings of words compose to form larger units; and secondly, the
distributional approach where word meanings are derived automatically from text corpora.
These two approaches are unified by the key insight that each approach carries the same
abstract structure, formalized using category theory.

The abstract framework of the categorical compositional scheme is actually broader in
scope than natural language applications. It can be applied in other settings in which we
wish to compose meanings in a principled manner, guided by structure. The outline of the
general programme is as follows [1]:

1. a. Choose a compositional structure, such as a pregroup or combinatory categorial
grammar.

b. Interpret this structure as a category, the grammar category.
2. a. Choose or craft appropriate meaning or concept spaces, such as vector spaces, density

matrices, or conceptual spaces.
b. Organize these spaces into a category, the semantics category, with the same abstract

structure as the grammar category.
3. Interpret the compositional structure of the grammar category in the semantics category

via a functor preserving the necessary structure.
4. This functor then maps type reductions in the grammar category onto algorithms for

composing meanings in the semantics category.

In this talk I describe how this programme can be applied to a number of different
meaning spaces, including vector spaces, density matrices, conceptual spaces [3], and neural
meaning spaces [4] and describe how these fit into the general programme described above.
There are also choices for the syntactic side. I give examples of different grammars that can
be used, and discuss how grammars might be built based on the semantic category chosen.

Acknowledgements: This work was partially funded by AFSOR grant “Algorithmic and
Logical Aspects when Composing Meanings”, the FQXi grant “Categorical Compositional
Physics”, and EPSRC.
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3.16 Deep Learning with Symbols
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We present work on the development of (1) a multimodal learning system that uses three
sensor/motor channels and a symbolic channel to learn handwritten digits and (2) a system
that learns to add handwritten digits aided by symbols of those digits. The conjecture is
that symbols are predominately external communication tools that allow agents to share
complex noisy concepts that help avoid local minimum in model development. They do so
by providing secondary modeling tasks that provide beneficial inductive bias during learning,
therefore reducing the number of examples required to accurate learn a new concept. The
multimodal learning system uses a visual, auditory and motor channel constructed from
stacks of RBMs. These stacks are brought together and connected to one large (2000 neurons)
top level RBM and trained using contrastive divergence and a novel back-fitting algorithm. A
symbolic channel was also added to display the concept that the activations in the top layer
is representing. This addition was found to significantly improve the models performance on
all channels. This supports the idea that classification of sensory input as a secondary task
provides beneficial inductive bias. In the second network we test this idea by learning to add
noisy MNIST digits with and without binary symbolic values at the input and output of a
deep BP network. We propose that the models that are augmented with symbols, particularly
at the output develop better models. Early experiments support this proposal.

3.17 Grounded Language Processing and Learning
Michael Spranger (Sony CSL – Tokyo, JP)
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The talk discusses language learning from the viewpoint developmental robotics. We are
interested in investigating how robots can learn to communicate starting from basic sensor-
imotor capacities through various stages of communicative proficiency: gesture [1], lexicon
[3, 4] and grammar [2]. The focus of these experiments is to build grounded models of lan-
guage processing but also how communication systems can be acquired. We discuss various
algorithmic approaches from symbolic to probablistic to neural networks and highlight their
current performance and research issues.
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3.18 Are ‘logically naive’ people logically naive?
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The categorial syllogism is the oldest topic of the psychology of reasoning with the first paper
by Störring [2]. Experimenters have agreed that their subjects are trying to do classical logical
reasoning, and that they are, on the whole, doing it very badly. Recently, many have rejected
the interest of the syllogism task and argued for probability as the appropriate normative
framework for human reasoning. Stenning and Yule [1] showed that it is in fact hard to tell
the difference in this task’s data between a subject reasoning perfectly by classical logic, and
one reasoning with tactically refined nonmonotonic methods; and produced evidence that
most subjects can be construed as doing ‘preferred model’ reasoning in Logic Programming
i.e. cooperative nonmonotonic discourse processing.

The multiple logics framework of Stenning & van Lambalgen shows that cooperative
expository discourse is well modelled in logic programming, and has been construed as
proposing that human reasoning is conducted in LP. Here I will present evidence that
‘logically naive’ subjects are perfectly capable of trying to reason classically if they are given
a task that is clearly intended as the conduct of an adversarial dispute: namely providing
counterexamples against invalid inferences proposed by an untrustworthy competitive agent.
In short, their counterexamples establish that their understanding of classical conditionals
in this situations is material implication, because their understanding of validity in this
situation is of the absence of counterexamples. They are by no means tactically adept, but
counter modelling in these conditions is a hard task, and induces a completely different
attitude than the standard ‘draw-a-conclusion’ task.

So, at least two logics are needed to model naive human reasoning. This raises crucial
questions for the relation between symbolic and sub-symbolic computation. Propositional
LP is neurally implementable and highly tractable for searching large knowledgebases: an
ideal logic for modelling implicit reasoning (System 1) because its search does not require
supervision. Classical logic provided many of the insights into intractable computation,
though the tiny syllogistic fragment is tractable. The real questions about the psychological
implementation of classical logic are perhaps about the ‘theorem prover’ that has to guide
reasoning, and its implementation.
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So, at least two logics are needed to modelling naive human reasoning. This raises crucial
questions for the relation between symbolic and sub-symbolic computation.
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3.19 Logic Programming as a framework for understanding human
computation

Keith Stenning (University of Edinburgh, GB)
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Logic Programming (LP) has been used for analysing discourse and human reasoning with
some success. The propositional form of LP is neurally implementable [1, 2]. This talk will
explore the intersection this overlap between AI, Computer and Cognitive Science offers,
raising some issues, from the cognitive side of the fence.

I will introduce four of the many issues that arise, chosen for possible relevance to
neural-symbolic computation: 1) Computational tractability and questions of scaling-up; 2)
Distinguishing reasoning and learning in psychology and computer science; 3) The relation
of extensional to intensional reasoning; and 4) Qualitatively distinct kinds of uncertainty
(especially relations between analyses in LP and probability). If discussion does not detain
us, the talk will finish with an example of a current project at the nitty-gritty level: an
analysis of human semantic memory in the service of nonmonotonic reasoning.
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3.20 Structured Computer Organization of the Human Mind
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Cognitive architectures aim to bridge the gap between the brain and behavior, providing a
formal level of description that provides a basis for rigorous theories of behavior. Architectures
typically operate on a single level of abstraction. In my talk I argued that we need multiple
levels of abstraction, each with their own formalisms and learning mechanisms. Each of these
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levels should be to explain the abstraction level above, creating a reductionist hierarchy of
theories that can bridge the gap, not with a single formalism, but with several.

3.21 Embodied neuro-symbolic computation
Serge Thill (University of Skövde, SE)

License Creative Commons BY 3.0 Unported license
© Serge Thill

This talk covers two distinct reasons I am interested in neuro-symbolic integration. The
first is because one is creating a cognitive system acting in the real world and carrying
out some non-trivial task. In such systems, one often encounters problems that are better
addressed with subsymbolic solutions such as neural networks and others for which symbolic
approaches are more amenable. Here, I present the new European project Dreams4Cars
(Grant agreement nr 731593) as one example of such a case.

The second reason is because it is a way to test representationalist embodied models of
cognition: if embodied theories are right, then the sensorimotor experience underlying the
formation of human concepts is critical for those concepts, and fundamentally shapes the
computations that use them. An example effect one might expect in such a case is that the
differences in sensorimotor experience between two agents might affect the degree to which
they can communicate about concepts, or operations possible on concepts. It is therefore
interesting to build a model of symbol grounding in a “rich” sensorimotor experience, and this
cannot ignore the subsymbolic neural levels (since neural computations are fundamentally
shaped by the constraints of biology, and possibly the specific needs of the organism) nor the
details of the human sensorimotor experience (which, for example, includes interoceptive
features).

The present talk attempts an overview of interesting issues in both directions.

3.22 Overview of neuro-symbolic processing in Neural Blackboard
Architectures

Frank Van der Velde (University of Twente)
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Neural Blackboard Architectures (NBAs) aim to account for and simulate combinatorial
structures and processing in a neuronal manner. Examples of these include sentential
structures and reasoning with relations, but NBAs also include perceptual processing (vision).
The focus in this presentation will be on sentential structures, both in relation to human
processing and as a computational architecture for parallel processing. NBAs satisfy a
number of constraints we assume to exist in neural and (human) cognitive processing.
These include the assumption that representations (e.g. of “words”) are grounded ‘in
situ’ representations, also in combinatorial structures. NBAs provide “connection paths”
between such representations, as a basis for generating behavior. Representations are always
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content-addressable in the underlying connection structures, also when they are a part
of combinatorial structures such as sentences. Simulations with NBAs will be illustrated
with incremental sentence processing and dynamical competitions, which can account for
ambiguity resolution and garden path effects as found in human behavior.
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3.23 Neural Computing with Signals and Symbols for Music Analysis
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Understanding music with computational methods is a challenging but rewarding task, as
music is an essential and universal feature of humanity. Music information retrieval research
develops methods that extract information from music data at different levels, increasingly
using neural networks. The different representation levels of music as audio signal, notes,
harmony, form etc, as well as emotional and cultural aspects, naturally create a need to
connect unstructured and symbolic representations. In this talk, examples are discussed to
demonstrate trends, achievements, and challenges in the development of human-like music
computation.
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4 Working groups

4.1 Logic Tensor Networks Hackathon
Lucas Bechberger (Universität Osnabrück, DE), Artur d’Avila Garcez (City, University
of London, GB), Raquel Garrido Alhama (University of Amsterdam, NL), Marco Gori
(University of Siena, IT), Luciano Serafini (Bruno Kessler Foundation – Trento, IT),
Michael Spranger (Sony CSL – Tokyo, JP), and Tillman Weyde (City, University of London,
GB)
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Logic Tensor Networks (LTNs) [1] provide a neural network based solution for combining
symbolic knowledge (encoded as first-order logic relations) and subsymbolic knowledge
(represented as feature vectors). Each object is described as a vector of real numbers which
together with relational symbolic knowledge get translated into soft and hard constraints
on the subsymbolic level (implemented as a tensor network). The network then learns to
approximate a solution to the constraint-optimization problem called best satisfiability when
faced with new data. LTNs enable therefore relational knowledge infusion into deep networks,
and knowledge completion and distilling through querying the networks.

In this hackathon, we investigated the application of the LTN framework to the domain of
word embeddings. A word embedding such as word2vec [2] supplies for each word in language
a so called “embedding”, i.e. a vector in a high-dimensional space. These vectors are usually
learned based on co-occurence patterns in a large text corpus. Somewhat surprisingly, the
vectors of semantically related words tend to have a relatively low cosine distance. One can
even go further and perform some arithmetic on the vectors (the vector resulting from “king
– man + woman” is quite similar to the vector for “queen”).

In our application scenario, we tried to generate new word vectors for previously unknown
words based on some logical constraints that could for instance come from a dictionary entry
or from an ontology. Our showcase looked as follows: we assumed that there is no vector
embedding for the word “zebra”, but there are embeddings for “horse” and for “black and
white stripes”. By defining an object as a zebra if and only if it is a horse and has black and
white stripes, we wanted to derive a word embedding for “zebra”. For a first proof-of-concept
implementation, we used only a two-dimensional space with the following vectors for “horse”
and “black and white”: horse = (1.0, 0.0), black and white = (0.0, 1.0). We also added
vectors for some additional unrelated words (e.g. cow). When running the LTN framework
multiple times, we typically obtained vectors in the first quadrant, i.e. vectors for which
both coordinate entires were greater than zero, as should be expected.

This was found to serve as a good example for introducing LTNs to academics with
distinct backgrounds (e.g. symbolic logic/AI and statistical Machine Learning) and to help
them get familiarized with the Tensorflow implementation of LTN, which is available at
https://github.com/LucianoSerafini/dagstuhl_hackaton_LTN.
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Following results reported in [1] of the application of LTNs to semantic image interpretation
(c.f. https://uk.arxiv.org/abs/1705.08968) which can improve the performance of state-of-
the-art image detection with convolutional networks, we are optimistic that LTNs can also
help improve results in the natural language processing area by connecting word embeddings
to symbolic knowledge from ontologies.
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4.2 Explainability Hackathon
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Quite frequently demands for better comprehensible and explainable Artificial Intelligence
(AI) and Machine Learning (ML) systems are being put forward. The explainability hackathon
was intended to shed light on notions such as “comprehensibility” and “explanation” in the
context of AI and ML, working towards a better understanding of what an explanation
is when talking about intelligent systems, what it means to comprehend a system and its
behavior, and how human-machine interaction can take these dimensions into account.

The hackathon compared notions of comprehension and explanation as used in different
fields, ranging from philosophy to cognitive science, and mapped the findings back into AI
and ML, aiming to establish generic types of systems. Three conceptual categories emerged,
namely systems offering no insight into their input/output mechanisms; systems where users
can mathematically analyze these mechanisms; and systems emitting symbols that allow a
user to draw an intuitive explanation of how a conclusion is reached.

Following the Dagstuhl seminar, this initial line of work has been further expanded into a
position paper titled “What Does Explainable AI Really Mean? A New Conceptualization of
Perspectives” which has been submitted to the AI*IA 2017 workshop on Comprehensibility
and Explanation in AI and ML (CEx). In that paper, additionally efforts towards systems of
a fourth type are encouraged: explainable systems, where automated reasoning is central,
yet missing from much of the current work.
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4.3 Deep Learning with Symbols Hackathon
Daniel L. Silver (Acadia University – Wolfville, CA), James Christopher Davidson (Google
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Background: Recent work by Igbal and Silver (FLAIRS-2016 Best Paper Award) [1]
inspired by work by Hinton et al. [2] and Srivastava et al. [3] has shown that it is possible to
develop a multimodal deep learning system for learning a noisy handwritten digits using four
sensor/motor channels (visual, audio, robotic, and symbolic) and an associative layer that
ties all channels together. After training, the presentation of a digit (sound, image, drawing)
at the visible nodes of the model activates all other channels to create their associated
reconstruction at their respective visible nodes. Each channel provides additional information
that helps the other channels more accurately reconstruct the output at their visible nodes.
The symbolic channel outputs the cleanest and clearest signal as to what digit the multimodal
deep learning system is “thinking” of given input on another channel. The symbolic channel
also provides the cleanest and clearest input to assist other channels to generate the correct
reconstructions at their visible nodes. This led us to a paper by Yoshua Bengio [4] that
discusses the value of symbols (ie. language) in helping individuals to learn concepts (like
“cat”) better without having to see all possible examples of that concept. This has a profound
impact upon the development of our culture and the human species.

Purpose: To create a deep recurrent neural network architecture that can add two or more
noise MNIST digits in a row and produce the correct symbolic response at the output. The
background provided above inspired us to consider a learning agent that learns to perform
a mathematic operation using two noising channels but which can (at times) also receive
concise information on a symbolic channel about the data on the noisy channels. We chose
to investigate a system that could learn to add a sequence of handwritten digits aided (on
occasion) by symbols of those digits at additional inputs to the same network. The conjecture
is that symbols are predominately external communication tools that allow agents to share
complex noisy concepts that help avoid local minimum in model development. They do so
by providing secondary tasks that provide beneficial inductive bias during learning, therefore
reducing the number of examples required to accurate learn a new concept. Our intention
was to test this idea by developing a deep recurrent neural network using Keras/Tensorflow
to add a sequence of noisy MNIST digits with and without binary symbolic values at the
inputs and outputs of the network.

Progress: With much coding work by Dieuwke and Katja and support from Danny, James,
and Isaac we were able to develop a Keras/Tensorflow-based LSTM recurrent network that
could accept two sequential MNIST digits and output a symbolic value (two sets of 10 binary
nodes) indicating the estimated result of the addition. Some of us intend to pursue this
direction further using similar methods.
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4.4 Nengo/ACT-R/PRIMs/Cognitive Architectures Hackathon
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Cognitive architectures aim to explain and simulate various or all aspects of human cognition
and intelligence. Some of these architectures model cognition using symbolic representations,
or representations close to symbolic, whereas others focus on neural simulations. A challenge
for future progress is to integrate both approaches in order to benefit from accomplishments
of both. In this Hackathon we discussed this integration between ACT-R and PRIMs
(symbolic) on the one hand, and Nengo and the Neural Blackboard architecture on the
other hand. In particular, we discussed how the smallest elements of skill proposed by the
PRIMs architecture (primitive operations) can be implemented in a Basal Ganglia model in
either Nengo or the Neural Blackboard architecture. As benchmark to test such models, we
selected a set of monkey studies in which the monkey had to make controlled eye-movements.
In addition, we talked about how conceptual spaces models can be viewed in the light of
cognitive/neural architectures. To further develop this research, we agreed to organize a
future workshop in Amsterdam in December 2017.

5 Open problems

5.1 Research Challenges
Luis C. Lamb (Federal University of Rio Grande do Sul, BR), Tarek R. Besold (Universität
Bremen, DE), and Artur d’Avila Garcez (City, University of London, GB)
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Recent developments in AI, in particular machine learning and deep networks demands
explainability. In particular, humans need to trust AI systems and applications. Novel,
state-of-the-art AI systems will have to provide explanations for their actions, behaviours and
their impact on humanity. As mentioned above, this seminar consisted of both invited and
contributed talks, joint group discussion sessions, and scientific hackathons. Several questions
and research challenges were identified. One clear point made by the participants is that
Human-Like Neural-Symbolic Computing is an effective methodology towards explainable AI
[2]. As a result, Neural-Symbolic Computing clearly contributes towards answering questions
that are both scientifically, ethically and methodologically relevant in the context of current
Artificial Intelligence research.
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In summary, the main research directions identified in the seminar are:
The recent success of deep learning in computer vision and language processing [10],
associated with the growing complexity of big data applications demands the development
of explainable AI models. Neural-symbolic computation offers several methods and
principles that contribute towards this aim. For instance, rule extraction mechanisms
[3] and the integrated methodology for the development of neural-symbolic cognitive
systems offers principled alternatives [1, 5, 6, 8, 9]. The concept of modularity in deep
networks can be explained by using neural-symbolic methods. Modularity is suitable
to knowledge extraction (as identified in [4, 5]) which can result in the development of
effective knowledge extraction methods towards explainable AI.
The development of Cognitive Architectures capable of simulating and explaining aspects
of human cognition also remains an important research endeavour [11]. Some cognitive
architectures typically consider symbolic representations, whereas others employ neural
simulations. The integration of these models remains a challenge and there are benefits
on integrating the accomplishments of both paradigms, as identified in the cognitive
architectures Hackathon.
Logic Tensor Networks (LTNs) [7] provide a model that integrates symbolic knowledge
(encoded as first-order logic relations) and subsymbolic knowledge (represented as feature
vectors). LTNs enable the representation of relational knowledge infusion into deep
networks, and knowledge completion and distilling through querying the networks. There
remains a number of challenges in integrating, explaining and computing symbolic
knowledge in deep networks. Both LTNs [7] and Connectionist Modal and Temporal
Logics [5, 6, 9] offer effective alternatives towards these research challenges.
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