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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17282 “From Ob-
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from these diverse fields. Presentations focused both on outstanding practical questions, as well
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Dagstuhl Seminar 17282 took place at Schloss Dagstuhl from 9 to 14 July 2017. We had 29
participants and nine invited talks. The main theme of this seminar was the analysis and
prediction of movement trajectories. In particular, we focused on the study of movement
patterns of individuals, and the interactions of moving agents with each other and with
the environment.

Themes

Movement analysis is key to understanding the underlying mechanisms of dynamic processes.
Movement occurs in space and time across multiple scales and through an embedding context
that influence how entities move. The importance of spatiotemporal aspect of movement
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Figure 1 Movement research continuum.

has attracted a wide range of studies. Analysis of movement trajectories is a core element
of Movement Ecology in Biology, as well as being important across disciplines as diverse
as Geographic Information Sciences (GIS), Transportation, Criminology, Epidemiology,
Computer Gaming, and Phylogenetics. Development of efficient algorithms for analyzing and
predicting will be vital to realizing the hopes for new generation smart transport systems
and smart cities. Furthermore, naturally generated trajectories provide a fascinating context
for mathematical and computational study of Geometry and Stochastic Processes.

A trajectory is a time-stamped sequence of locations, representing the movement of
entities in space and time. Trajectories are often created by sampling GPS locations, but
they can also originate from RFID tags, video, or radar analysis. Time-series of locations
can also be associated with other co-temporal data, such as pressure recordings for avian or
aquatic animals, activity sensors and accelerometers to measure energy expenditure, or the
myriad time-stamped data recorded by modern smartphones alongside GPS locations.

The study of movement involves development of concepts and methods to transform
movement observations (trajectory data) to knowledge of the behavior of moving phenomena
under known conditions. This knowledge is then used to calibrate simulation models to predict
movement and behavioral responses in varying environmental conditions. Figure 1 illustrates
a continuum encapsulating fundamental areas of movement research for (1) understanding
movement processes through trajectory representation and computational movement analysis
(the right side of Figure 1); and (2) modeling behavior of moving phenomena and prediction
of their responses to environmental changes though modeling and simulation approaches (the
left side of Figure 1). These two processes are tightly connected and feed into each other,
often through a validation procedure on the basis of real trajectory observations.

During recent years computational movement analysis tools for trajectory data have
been developed within the areas of GIScience and algorithms. Analysis objectives include
clustering, similarity analysis, trajectory segmentation into characteristic sub-trajectories,
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finding movement patterns like flocking, and relating patterns to context, and several others.
Since these computations are mostly spatial, algorithmic solutions have been developed in
the areas of computational geometry and GIScience. The basic analysis tasks for trajectory
data are by now comparatively well understood and efficient algorithms have been developed
to perform computational movement analysis. However, to be truly effective and to have
real-world impact, trajectory analysis has to move beyond ‘understanding movement’ and
tackle substantially more involved questions in ‘modeling, simulation, and prediction’ of
movement responses to a changing environment or as results of (social) interactions.

Simultaneously, in the area of ecology the study of motion of animals has also become a
topic of increasing interest. Many animal species move in groups, with or without a specific
leader. The motivation for motion can be foraging, escape from predators, changing climate,
or it can be unknown. The mode of movement can be determined by social interactions, energy
efficiency, possibility of discovery of resources, and of course the natural environment. The
more fascinating aspects of ecology include interaction between entities and collective motion.
These are harder to grasp in a formal manner, needed for modelling and automated analysis.
The basic analysis tasks for trajectory data are by now comparatively well understood and
efficient algorithms have been developed to perform them. However, to be truly effective
and have real-world impact, trajectory analysis has to move beyond these basic tasks and
tackle substantially more involved questions, prime examples being (social) interaction and
collective motion.

Research Approach and Questions Addressed

Trajectories are mathematical objects with geostatistical properties. Movement is a process
that occurs as a response to the state of a moving entity across multiple spatial and temporal
scales. The state and resulting behavior of moving entities determine the characteristics and
capacities of movement (e.g., speeds, directions, accelerations, path sinuosity), which are
highly influenced by interaction with environment, geographic context, and other moving
entities. Internal properties of the moving agent such as its propensity to explore, or its
power and size, typically distinguish the trajectory from that of other agents. As such no
element of a trajectory can truly be independent of its other parts. Therefore, we take a
view of trajectory analysis that emphasizes the treatment of the whole trajectory as a unit,
rather than a series of moment-by-moment steps.

Trajectories are generated by some underlying process, which is typically assumed to
integrate both stochastic elements (such as Brownian motion) and more deterministic
interactions between the moving agent and the external world. Many research questions can
be posed about such processes, but in this seminar we will focused primarily on identifying
the forms of interaction, both with other moving agents and with environmental stimuli, and
on predicting the characteristics of future trajectories.

In the seminar, we explored the following questions:
To what extent movement observations convey information on the underlying behavior of
moving phenomena?
How susceptible are behaviors of moving agents to environmental changes?
To what extent changes in the behavior of moving phenomena indicate changes in the
environment?
What does it mean to predict a trajectory? Should we focus on predicting the spatial
locations or the geometric properties?
How can we assess a predictive model?
How can computational geometry help movement prediction?
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What characteristics of motion are indicative of specific trajectory generating processes,
and how can we compute these efficiently?
What is the role of time in trajectory analysis? Where can we analyze the shapes of
paths independently of the time stamps and where are these vital to understanding the
underlying mechanisms?
Can we build a classification of trajectory generating mechanisms and associated trajectory
properties, such as navigation by waypoints, explorative foraging
What is the home range? Can we have a concrete definition for home range or activity
space?
What is a collective?
Can we make algorithms that work across scales?
To what extent goal oriented movement can be inferred from local movement patterns?
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3 Overview of Talks

3.1 Calibrating Agent Based Models as Multiple Scales
Sean Ahearn (City University of New York, US)

License Creative Commons BY 3.0 Unported license
© Sean Ahearn

The availability of GPS enabled devices has enhanced our ability to quantitatively analyze
the movement and interaction of animals and people. In this analysis, we show how these
data can be used to uncover behaviors at multiple spatial and temporal scales through
segmentation and through the analysis of spatial-temporal usage of a tiger’s home range. We
use a time-geography approach to quantifying interaction between female tigers and analyze
their boundary as a function of terrain characteristics (i.e. slope). It is suggested how these
data are input into an agent-based model for calibration.

3.2 Analysing and Predicting Movement – A Computational Geometry
Perspective

Maike Buchin (Ruhr-Universität Bochum, DE)

License Creative Commons BY 3.0 Unported license
© Maike Buchin

Analysing movement data leads to geometric problems and hence is interesting from a
computational geometry perspective. In the past 10 years much research has been done in
this direction. I discuss results on two topics related to prediction of movement: analysing
delays and segmenting and classifying trajectories. Segmentation and classification ask to
split respectively group trajectories by their movement behaviour. Two different approaches
have been followed for characterizing similar movement: by spatio-temporal criteria and by
the parameter of a random movement model. I give an overview of algorithms and their
application for these two settings.

3.3 Using Time Geography to Model Movement in Three Physical
Dimensions

Urska Demšar (University of St Andrews, GB)

License Creative Commons BY 3.0 Unported license
© Urska Demšar

Joint work of Demšar, Urska; Long, Jed
Main reference Demšar U, Long JA, “Time-Geography in Four Dimensions: Potential Path Volumes around 3D

Trajectories”, Short Paper Proceedings of GIScience 2016, Montreal, Canada, 27-30 Sept 2016.
URL https://doi.org/10.21433/B3117gc866qs

An increase in availability and accuracy of 3D positioning requires development of new
analytical approaches that will incorporate the third positional dimension, the elevation and
model space and time as a 4D concept. To address this we propose the extension of time
geography into four dimensions. We generalise the time geography concept of a Potential
Path Area into a Potential Path Volume around a 3D trajectory, present its mathematical
definition and an algorithm for calculating these volumes around a set of given 3D trajectories.
The algorithm was tested on simulated data and real 3D data from movement ecology.
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3.4 Using Prediction to Explore the Mechanisms and Consequences of
Social Life

Damien Farine (MPI für Ornithologie – Radolfzell, DE)

License Creative Commons BY 3.0 Unported license
© Damien Farine

Maintaining cohesion during movement is fundamental for animals to gain the benefits of
living in groups. Yet studying the mechanisms underlying collective movement is challenging
using traditional measurement frameworks. I demonstrate how movement prediction can
inform the mechanisms that underpin movement, using case studies from baboons and
predator-prey interactions.

3.5 From Fish to Worms: Spatial Cognition, Movement and Postures
in Three-Dimensions

Robert Holbrook (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Robert Holbrook

Joint work of Victoria Davis, Theresa Burt de Perera, Richard Mann, Mate Nagy, Dora Biro, Sarah Schumacher,
Thomas Ranner, Felix Schafer, David Pertab, Ian Hope, Netta Cohen

The real world is spatially three-dimensional. Animals, including humans, live in and move
through three-dimensions every day. However, the majority of the research on animal
movement has focused on only two-dimensions. For some animals with only two translational
degrees of freedom of movement, the complexity of the navigation task may not change
between two- and three-dimensions significantly, but for those animals with an extra degree
of freedom of movement such as those that fly or swim, accurate navigation becomes a
much more difficult task. Here I show examples of how a fish, Astyanax fasciatus, navigate
through three-dimensional mazes by separating out the vertical and horizontal components of
space and then integrating these when they need to navigate. The separation of the vertical
component is likely aided by the use of an additional cue – hydrostatic pressure. This cue can
be used alone for successful navigation in the vertical dimension, with the rate in change of
swim-bladder volume a likely candidate sensory system. Despite the importance of the vertical
component during navigation, it appears that it is not so important when deciding whom
to pay attention to while shoaling in three-dimensions, with at least one two-dimensional
implementation of a model accurately predicting the behaviour of 3D fish shoals.

The nematode worm, Caenorhabditis elegans, also moves through three-dimensional
environments, yet all the kinematic and biomechanical research to date has been done on
two-dimensional flat plates. We may therefore be missing some important behavioural
repertoire from the worm in its natural habitat. Here I attempt to rectify this by analysing
worm trajectories and postures while it moves though a three-dimensional gelatin cube.
The worm exhibits three-dimensional behaviour more often than planar behaviour, both in
trajectories and postures. Importantly, there appears to be a helical gait motion that seems
to be present for much of the time the worm is moving through higher viscosities of gelatin,
a behaviour which has not yet been documented.
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3.6 Scalable Methods for Modelling Movement Patterns: from Areal
to Road Segment Levels

Robin Lovelace (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Robin Lovelace

Joint work of Alan Wilson
Main reference Robin Lovelace, Anna Goodman, Rachel Aldred, Nikolai Berkoff, Ali Abbas, James Woodcock,

“The Propensity to Cycle Tool: An open source online system for sustainable transport planning”,
Journal of Transport and Land Use, 10(1), 2017.

URL http://dx.doi.org/10.5198/jtlu.2016.862

From: http://rpubs.com/RobinLovelace/290584
It is important to know where people travel for a number of reasons. Most important

among these is the urgent need to transition away from fossil fuels: models of travel patterns
can help identify the most effective interventions to make this happen.

This paper explores globally scalable methods for generating estimates of travel patterns
that build on areal and point-based data to estimate movements down to the road network
level currently, and under scenarios of the change. The presentation is based on my experience
developing the Propensity to Cycle Tool (PCT) and scaling it across all areas and major
cyclable roads in England (see pct.bike) and recent experiments extending it internationally
with a case study in Seville, Spain.

Methodologically I will explore the possibility of extending the methods to be dynamic
and multi-modal, themes that will be prominent during the summer school.

3.7 The Moving Across Places Study (MAPS): Public Transit, Physical
Activity and Walking Route Choice

Harvey J. Miller (Ohio State University, US)

License Creative Commons BY 3.0 Unported license
© Harvey J. Miller

The Moving Across Places Study (MAPS) is a quasi-experimental study of the impacts
of light rail transit and street rehabilitation on physical activity and walking route choice.
Participants (n=536) wore GPS recorders and accelerometers for one week before and
after the construction of a light rail transit (LRT) line and walkability enhancements in a
neighborhood of Salt Lake City, Utah, USA. We are able to demonstrate that these design
interventions resulted in more physical activity and new physical activity time that did not
draw from recreational physical activity time or cannibalize existing us ridership. We compare
theory-driven and data-driven approaches to understanding walking route choice through
this built environment. The theory-driven approach is easier to explain, but the data-driven
approach fits the data better and also points more directly to actionable knowledge.
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3.8 Random Trajectories in Movement Ecology: A Path to Crossing
Scales in Movement Ecology?

Kamran Safi (MPI für Ornithologie – Radolfzell, DE)

License Creative Commons BY 3.0 Unported license
© Kamran Safi

With the advances of technological developments the granularity and volume of movement
data is ever increasing raising the need for new analytic tools. Partially the problem
lies buried in the way movement data is collected by discretising a continuous process,
where with increasing resolution in time and space the discretisation suffers from increasing
autocorrelation. The discretisation affects, in interaction with the underlying continuous
movement process, almost all quantities usually derived from trajectories, such as speed or
turning angle and the amount of autocorrelation detectable. The definition of Null models in
movement ecology being inherently difficult task has become more challenging mainly as the
assumption of independence in the data becomes more evidently violated. Different methods
have been suggested to incorporate some formal continuous time movement model to integrate
the autocorrelation structure. With the increasing volume and accessibility of movement
data, however, another alternate path might open: the use of empirical distributions to
create conditional random trajectories. In this talk I present the eRTG, the empirical random
trajectory generator, which is based on using empirical joint distributions of speed and turning
angle derived from discretised movement data to create random trajectories connecting a
given start and end point maintaining the original geometry of the template. Finally, I use
two case examples to highlight the potential of the eRTG to explore hypothesis and formulate
hypothesis. First, the eRTG is used to show the difference in orientation task in the white
stork when migrating along the Western or Easter migratory flyways based on the fusion
of movement data with banding recoveries. Based on the eRTG, the Eastern migratory
flyway should pose higher orientation demands on the white storks than the western route
population. I conclude with a study using eRTG to investigate the potential of wild waterfowl
tranporting avian influenza.

3.9 On Language for Observation & Prediction
Jack Snoeyink (University of North Carolina at Chapel Hill, US)

License Creative Commons BY 3.0 Unported license
© Jack Snoeyink

“Language shapes the way we think, and determines what we can think about.” I present
four vignettes on how to think about the languages used in collaboration between movement
science(s) and computational geometry:
1. Computer Scientists create languages – e.g., object programming creates nouns and

attaches their verbs.
2. Languages that can aid ones thinking can still hinder communication if not shared.
3. Boundary objects, which can be described by each collaborator in their own way, facilitate

collaboration.
4. When creating computational models, create scientific “unit tests” that use a language of

features and their distributions to circumscribe desired behavior.
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3.10 Collective Motion: More than the Sum of its Parts
Zena Wood (University of Greenwich, GB)

License Creative Commons BY 3.0 Unported license
© Zena Wood

To sufficiently analyse collective motion, and predict or simulate future motion, we need to
look at more than just the level of the individual members. The level of the collective, and the
environment where the motion takes place, must also be considered. This talk will illustrate
how concepts from formal ontology and other disciplines, such as group organisation theory,
can influence the analytical methods that we develop to analyse collective motion. The
challenges and opportunities relating to the analysis of collective motion will also be discussed.

References
1 Wood, Zena, and Antony Galton. (2009) “A taxonomy of collective phenomena.” Applied

Ontology 4.3-4: 267–292.
2 Wood, Zena. (2013). Profiling Spatial Collectives. In Max Bramer and Miltos Petridis,

editors, Incorporating Applications and Innovations in Intelligent Systems XXI Proceedings
of AI-2013, The Thirty-third SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence: 95–108. Springer.

3 Wood, Zena., (2014). What can Spatial Collectives tell use about their environment? IEEE
Symposium Series on Computational Intelligence (IEEE SSCI 2014), 329–336.

4 Galton, Antony, and Zena Wood. (2016) “Extensional and intensional collectives and the
de re/de dicto distinction.” Applied Ontology 11.3: 205–226.

4 Working groups

4.1 Computational Topology and Movement Data
Kevin Buchin (TU Eindhoven, NL), Maike Buchin (Ruhr-Universität Bochum, DE), Brittany
Terese Fasy (Montana State University – Bozeman, US), Kristine Pelatt (St. Catherine
University – St. Paul, US), and Carola Wenk (Tulane University, US)

License Creative Commons BY 3.0 Unported license
© Kevin Buchin, Maike Buchin, Brittany Terese Fasy, Kristine Pelatt, and Carola Wenk

Main reference Gurjeet Singh, Facundo Mémoli, Gunnar E. Carlsson: “Topological Methods for the Analysis of
High Dimensional Data Sets and 3D Object Recognition”, in Proc. of the Symposium on Point
Based Graphics, Prague, Czech Republic, 2007. Proceedings, pp. 91–100, Eurographics Association,
2007.

URL http://dx.doi.org/10.2312/SPBG/SPBG07/091-100

Computational Topology has proved effective in a wide range of applications, but has so far
only found few applications in movement analysis. The aim of this working group was to
explore how existing software for topological data analysis can be used to analyze movement.

The working group focused on TDAmapper, an R package for using discrete Morse theory
to analyze a data set using the Mapper algorithm (Singh et al., 2007), and demonstrated it
on Galapagos Albatross tracks; see Figure 2.
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Figure 2 Output of the mapper algorithm (left) for Albatross trajectory data (right).

4.2 Defining Axes and Metrics to Characterise Collective Motion
Somayeh Dodge (University of Minnesota – Minneapolis, US), Urska Demšar (University
of St Andrews, GB), Jed Long (University of St Andrews, GB), Andrea Perna (University
of Roehampton – London, GB), Alexander Szorkovszky (Uppsala University, SE), Johan
van de Koppel (Royal Netherlands Inst. for Sea Research – Yerseke, NL), and Zena Wood
(University of Greenwich, GB)

License Creative Commons BY 3.0 Unported license
© Somayeh Dodge, Urska Demšar, Jed Long, Andrea Perna, Alexander Szorkovszky, Johan van de
Koppel, and Zena Wood

In this working group we worked towards the identification of relevant axes along which to
characterise, and ideally to quantify, collective motion phenomena.

We started from considering properties that define a group, such as the spatial proximity
(or proximity in non-spatial dimensions), the differentiation of roles across group members,
the coherence of mutual positions and of collective motion. From this, we moved to analysing
the drives that determine group formation in terms of costs and benefits for the individuals
that compose the group, and benefits for the entire group. At one extreme, animals can
exhibit collective motion, in the form of an aggregation in a single place, without any form
of interaction: this is the case of animals that aggregate for instance around a resource such
as a source of food or water. In many exampls of naturally occurring animal groups, the
individuals form a group because they experience a direct benefit from being with other
members of the group in terms of avoiding predation or gaining protection from natural
phenomena (waves, low temperature etc.) We proposed that the costs and benefits of group
formation could be characterised by using a classification similar to the one traditionally
used to characterise ecological interactions such as predation and parasitism (whereby some
members of the group benefit from the association, to the detriment of other members of the
group), mutualism and symbiosis (in which both units participating in the association gain a
benefit) and commensalism (whereby some individuals benefit from the association, with no
detriment or benefit for the other individuals).

The natural next step would be defining axes that are more specific to the collective motion
of animal groups, and not simply to the aggregation behaviour or to the characterisation
of static groups. Both computer scientists working on ontologies and ecologists have been
independently working on definition of the properties of (animal) groups and the possibility to
exchange ideas between these two disciplines in this working group was particularly insightful.
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4.3 Multi-scale Movement Modeling
Somayeh Dodge (University of Minnesota – Minneapolis, US), Kevin Buchin (TU Eindhoven,
NL), Urska Demšar (University of St Andrews, GB), Harvey J. Miller (Ohio State University,
US), Kristine Pelatt (St. Catherine University – St. Paul, US), Alexander Szorkovszky
(Uppsala University, SE), and Johan van de Koppel (Royal Netherlands Inst. for Sea
Research – Yerseke, NL)
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Movement occurs at multiple spatial and temporal scales, which can result in a range
of embedded local to global movement patterns. The way in which context influences
patterns of movement differs across scales. Movement ecology models have mainly involved
random searches and step selection strategies at local scales. These models incorporate
the environmental factors and social interactions that influence local movement choices
of individuals. On the other hand, human mobility studies have traditionally focused
on modeling macro-level patterns such as origin-destination flows. These models mainly
consider global behavioral patterns and goal-oriented movement of humans. While both
approaches are essential in the study of moving phenomena, there is a gap in methodology for
tackling multiple scales of movement and their associations to the individual’s behavior and
environment. In a multi-scale movement modeling approach, global models should describe
the process and local models should describe the local variabilities of movement. Our group
discussed the differences between data-driven and theory-driven modeling approaches and
ways in which they could potentially be used to integrate multiple scales of movement. As a
data-driven approach, the group discussed the potential usage of topological modeling to
filter data to the big trend and then extracting the details of local movement patterns. The
theory-driven approach could potentially benefit from applying both local rules and global
rules to model movement across multiple scales. The group also came up with the following
relevant research questions/challenges:

how can we generate algorithms that work properly across scales?
how can we connect different scales of movement, in terms of both geographic scale and
time scale?
to what extends can we infer a goal-oriented movement from local movement patterns?
do global objectives of movement emerge from local rules or does the global objective of
movement influence local movement rules?

The group concluded that ‘multi-scale modeling of movement’ is a challenging research gap
in the field and deserves more attention from the scientific community.
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4.4 Using and Explaining Non-Traditional Metrics in Biology
Publications

Damien Farine (MPI für Ornithologie – Radolfzell, DE), Robert Holbrook (University of
Leeds, GB), Richard Philip Mann (University of Leeds, GB), Andrea Perna (University of
Roehampton – London, GB), and Kamran Safi (MPI für Ornithologie – Radolfzell, DE)
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We were concerned with the issue of how to present metrics from movement studies in biology
journals. These metrics do not typically come in the form of significance tests and p-values,
but might for instance be the likelihood ratio between two models, comparisons of analyses
between real and permuted data sets, or effect-sizes (with uncertainties)

Overall we agreed that a crucial aspect was the ability to communicate clearly the value
and rigour of the alternative metric. This might be aided by having a shared resource that
explains these metrics clearly, perhaps by analogy with more well-known measures. This
could be in the form of a paper or web page. However, to create this would require referencing
established literature where these metrics are used, and ideally also justified. To this end we
should also seek to explain clearly why we use the metrics that we do, and why we do not
follow established significance test methods, in our own papers. By doing this we can create
cultural change that will make the use of new methods easier in future.

4.5 Learning Connections Between Landscape and Trajectories from
Recorded Data

Richard Philip Mann (University of Leeds, GB), Maike Buchin (Ruhr-Universität Bochum,
DE), Robert Holbrook (University of Leeds, GB), and Nicholas Ouellette (Stanford Univer-
sity, US)
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We discussed how data from navigating pigeons, combined with landscape images, could
be used to understand how the landscape drives movement. This followed on from related
discussions at the previous Dagstuhl seminar nr. 16022. We assumed that pigeons’ trajectories
should result from some sort of optimisation process, involving landscape characteristics under
the path. We have data from early, learning flights to later consistent flights, which offers
the possibility of understanding the dynamics of this optimisation. We initially considered
constructing a ‘energy’-potential that would define the ‘energy’ of any route, and combining
this with localised improvements to the route to lower potentials, in a framework similar
to step-selection. However, it became clear based on earlier trials of this idea and further
discussion that this would not work – changes in routes do not appear to be local, but
global. We therefore wondered how we could understand the process of exploring different
trajectories and settled on ideas similar to markov-chain monte carlo or simulated annealing.
However, we concluded that the data we had would probably be insufficient to infer the
potential landscape within this regime. As such we determined that a fruitful next step would
be to create simulated data from a known ground truth and assess how much/what type
of trajectory data we would need to accurately infer the learning process and the potential
landscape used.
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4.6 Potential Applications of Ecology on Transport and the
Implications on Policy

Samuel A. Micka (Montana State University – Bozeman, US), Mark Birkin (University
of Leeds, GB), Maarten Löffler (Utrecht University, NL), Robin Lovelace (University of
Leeds, GB), Richard Philip Mann (University of Leeds, GB), Kathleen Stewart (University
of Maryland – College Park, US), and Carola Wenk (Tulane University, US)
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The activity spaces of people provide important information about where they travel on a
day-to-day basis. The aim of this working group was to identify similarities between the
ecological term “home range”, which defines a similar concept for animals, and activity spaces.
Drawing similarities between these ideas could help identify more information about the
motivations behind human actions within their activity spaces. Ultimately, this information
could determine where people are throughout the day, and why they are there. This sort
of predictive model could provide input for route planning algorithms and city planners.
However, the definitions of activity spaces and home ranges vary drastically in different
contexts, making a relationship difficult to define. Despite these difficulties, we explored
different types of data sets and how they may fit into a predictive model. These data sets
included origin-destination pairings, trajectory data, survey data (where do you work, where
do you live, etc.), and census data. We considered different models that would accept the
different data types as input, such as dynamic graphs that could store the intent of trips.

4.7 Formalizing the Notions of “Activity Spaces” and “Homeranges”:
Mathematical Definitions, Similarities, and Differences

Jack Snoeyink (University of North Carolina at Chapel Hill, US), Sean Ahearn (City Uni-
versity of New York, US), Samuel A. Micka (Montana State University – Bozeman, US),
Harvey J. Miller (Ohio State University, US), David Millman (Montana State University –
Bozeman, US), and Frank Staals (Aarhus University, DK)
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Activity spaces and home ranges both generalize the trajectories representative of where
humans and animals travel for their daily tasks and activities. These spaces, on the
surface, appear as geometric summaries of these trajectories. However, cross-disciplinary
understandings of home ranges and activity spaces differ, creating ambiguity in the definitions
leading to inconsistent mathematical representations. To create cohesion between these
fields we propose a space partitioning data structure which provides tunable rules to create
home ranges/activity spaces from trajectory data. By offering a general data structure
to geometrically represent these spaces, the definitions and respective representations will
become more consistent and easily communicated in cross-disciplinary research.
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4.8 Going Beyond the Level of the Individuals
Zena Wood (University of Greenwich, GB), Maike Buchin (Ruhr-Universität Bochum, DE),
Brittany Terese Fasy (Montana State University – Bozeman, US), Jed Long (University of St
Andrews, GB), Jennifer Miller (University of Texas – Austin, US), and Nicholas Ouellette
(Stanford University, US)
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The group discussed the relationship between the individual members and the collective
itself. Key questions/topics included whether a hierarchical structure exists; the relationship
between roles and members; how roles are defined and identified within a spatiotemporal
dataset; how a true collective can be identified; and, the metrics that can be applied to a
collective but not the individual members.

To address how a true collective could be identified, and whether it be done independent
to an application, the properties of collectives were discussed. Individual members know
that they are part of a collective with each collective having an identity. Identifying changes
in behaviour of an individual could be used to identify membership. Both collective and
individual goals can be considered. Distinct roles can lead to individuals participating in a
collective goal in different ways. Properties can be ascribed to the collective that cannot be
ascribed to the individuals. It is not clear which properties would be considered meaningful
given a dataset. We discussed methods that might prove useful in identifying collectives (e.g.,
connected components looking for persistent features). Instead of identifying true collectives,
you could try to determine if something is not a collective using adversary detection.

Going forward there are lots of questions with no apparent answers. It is clear that we
need to develop metrics and identify some examples of collective motion (e.g., examples
where the individual goal is fundamentally different to the collective goal).

5 Fishbowl discussion

Over the course of an afternoon, a fishbowl conversation was used to encourage discussion. In
this session, three attendees discussed a topic in front of the rest of the seminar. The positions
in the center were vacated and refilled by others as people wanted to make contributions
to the conversation. One moderator was responsible for asking questions and providing
talking points. Here, we outline some of the major contributions and conclusions drawn from
this session.

The first part of the session was centered around defining the characteristics of prediction
of movement. Differences were highlighted between local and global behaviors, human
and animal trajectories, and the purposes of predictions. Many speakers had different
interpretations of prediction and what it could be used for. The conversation moved on the
role of geometry in prediction of trajectories. Specifically, can deterministic methods be used
to help predict real world movement? Despite predictive models being available for cell life
and animal populations, the speakers decided that it would not be realistic to predict animal
behavior deterministically. This topic led to the discussion of fundamental laws, such as the
ones found in physics. The general consensus was that animals have goals, and use movement
to achieve these goals. Some goals are predictable, but a universal predictive model is not
feasible. Later, the idea of naïve movement was introduced. Naïve movement encapsulates
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the idea of natural, predictable movement, like water flow in physics. Since each animal has
a different interpretation of its surroundings, defining a universal a set of senses is difficult.

For many animals, home ranges encompass a large number of simple, and predictable,
behaviors. This led to the discussion of how animals interpret their own homeranges, which
again, was decided to be subjective. However, some animals possess a cognitive map of their
surroundings, which could help in predictive models for certain behaviors and species. In
particular, pigeons have an uncanny ability to navigate.

The role of mathematicians and computer scientists in this field of research also emerged
as a topic. The desire for a common language to communicate animal behavior rose. The
idea being that, if we can communicate these movements across disciplinaries in a way that
everyone understands, we will be able to more easily develop models. One of the major
problems with communicating these biological results with mathematicians and computer
scientists is that, without a set of fundamental rules, how are methods verified? The speakers
agreed that verification should be achieved through observation and professional opinions.
However, with a lack of a deterministic model for animal movement, prediction is still a very
animal-specific and difficult problem to approach.
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