
Report from Dagstuhl Seminar 17351

Machine Learning and Formal Methods
Edited by
Sanjit A. Seshia1, Xiaojin (Jerry) Zhu2, Andreas Krause3, and
Susmit Jha4

1 University of California, Berkeley sseshia@eecs.berkeley.edu
2 University of Wisconsin, Madison jerryzhu@wisc.edu
3 ETH Zürich krausea@ethz.ch
3 SRI International susmit.jha@sri.com

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17351 “Machine
Learning and Formal Methods”. The seminar brought together practitioners and reseachers in
machine learning and related areas (such as robotics) with those working in formal methods and
related areas (such as programming languages and control theory). The meeting highlighted
the connections between the two disciplines, and created new links between the two research
communities.

Seminar August 28–September 01, 2017 – http://www.dagstuhl.de/17351
1998 ACM Subject Classification B.3.3 TBD Performance Analysis and Design Aids, B.5.1

TBD Design, C.1.2 TBD Multiple Data Stream Architectures (Multiprocessors), D.1.3 TBD
Concurrent Programming

Keywords and phrases Formal Methods, Machine Learning
Digital Object Identifier 10.4230/DagRep.7.8.55

1 Executive Summary

Sanjit A. Seshia (University of California, Berkeley,
Xiaojin (Jerry) Zhu (University of Wisconsin, Madison)
Andreas Krause (ETH Zürich)
Susmit Jha (SRI International)

License Creative Commons BY 3.0 Unported license
© Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha

The seminar was successful in bringing the following two communities together:
The community that works on machine learning (ML), both on theoretical topics and on
applications to areas such as robotics and cyber-physical systems, and
The community that works on formal methods (FM), both on computational proof
techniques and on applications to formal verification and program/controller synthesis.

Both communities have long and vibrant histories, with associated conferences and journals.
However, they have rarely intersected. The machine learning community has traditionally
focused on inductive learning from data, with the data set considered as partial (potentially
noisy) observations of some phenomenon. The formal methods community has traditionally
emphasized automated deduction, e.g., using theorem proving or model checking, as a core
reasoning method, with a heavy emphasis placed on formal models and proofs of correctness
using those models. However, recent ideas and methods have appeared that demonstrate new
connections between the two disciplines, which suggested that the time is ripe for a meeting

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Machine Learning and Formal Methods, Dagstuhl Reports, Vol. 7, Issue 8, pp. 55–73
Editors: Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17351
http://dx.doi.org/10.4230/DagRep.7.8.55
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

56 17351 – Machine Learning and Formal Methods

to promote cross-fertilization between the areas at a deep technical level. This seminar has
been a significant step forward to bring the two communities together.

More concretely, the Seminar and the interaction it facilitated has brought three kinds of
benefits. First, formal methods can benefit from a more effective use of machine learning
techniques particularly in the context of automated synthesis. Similarly, the increasing use
of machine learning in applications that require a high level of assurance points to the need
for integration with formal methods. However, the potential synergies between the two areas
go beyond a simple application of the techniques in one area to the other area. Importantly,
there is new fundamental science to be explored in the intersection of machine learning and
formal methods, related to the the confluence of inductive and deductive reasoning, and
which can inform a range of new industrially-relevant applications as well.

The seminar had about 40 participants from both the FM and ML communities. The
organizers took several steps to foster discussion and cross-pollination of ideas between the
two communities, including the following:

The seminar began with a day of tutorials: a half-day tutorial on Machine Learning for
Formal Methods participants, and a half-day tutorial on Formal Methods for a Machine
Learning audience. These tutorials helped to establish a common vocabulary to discuss
ideas, problems and solutions.
Sessions were organized based on themes that emerged in discussions before the seminar
and during the first day. The list of session topics is as follows:
1. Probabilistic Programming
2. Teaching and Oracle-Guided Synthesis
3. Safe Learning-Based Control
4. Probabilistic Program Analysis
5. Adversarial Analysis and Repair for Machine Learning
6. Inductive Synthesis and Learning
7. Machine Learning for Theorem Proving and Optimization
8. Explainable and Interpretable Machine Learning
9. Deep Learning and Verification/Synthesis
In organizing these sessions, the organizers tried to combine speakers from both ML and
FM areas to foster discussion and comparison of approaches.
Seating arrangements at meals were organized so that (a) each table had an approximately
equal number of participants from both communities, and (b) the seating was randomly
changed from meal to meal.
A joint session was organized with the concurrent seminar on analysis and synthesis of
floating-point programs. This session had a panel discussion on floating-point issues in
machine learning programs.

After the seminar, we have heard positive feedback from multiple participants. One
told us that he started a new research project as a direct result of the seminar. A group of
participants are planning to continue the interaction via joint workshops at major venues of
both communities such as CAV, PLDI, ICML, NIPS, etc.

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 57

2 Table of Contents

Executive Summary
Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 55

Overview of Talks
Reachability and regularity for Markov chains
S Akshay . 59

A Non-monotonic Theory of Oracle-guided Inductive Synthesis
Dalal Alrajeh . 59

Semantic Mapping and Mission Planning in Robotics
Nikolay A. Atanasov . 61

Safe learning of regions of attractions
Felix Berkenkamp . 61

Polynomial Inference of Equational Theories
Ben Caulfield . 61

Constraint Learning and Dynamic Probabilistic Programming
Luc De Raedt . 62

Logical Clustering for Time-Series Data
Jyotirmoy Deshmukh . 62

Query Learning of Regular Languages and Richer Formalisms
Dana Fisman . 63

Learning Invariants using Decision Trees and Implication Counterexamples
Pranav Garg . 63

Explaining AI Decisions Using Sparse Boolean Formula
Susmit Jha . 63

Formal Guarantees on the Robustness of a Classifier against Adversarial Manipula-
tion
Matthias Hein . 64

Syntax-Guided Synthesis
Rajeev Alur . 64

Formal Inductive Synthesis/Oracle-Guided Inductive Synthesis
Sanjit A. Seshia . 65

Combining Logical and Probabilistic Reasoning in Program Analysis
Mayur Naik . 65

Data-driven Program Synthesis From Examples
Nagarajan Natarajan . 66

Leveraging computational models of human cognition for educational interventions
Anna Rafferty . 66

Planning for Cars that Coordinate with People
Dorsa Sadigh . 67

Deduction and Induction – A Match Made in Heaven
Stephan Schulz . 67

17351

58 17351 – Machine Learning and Formal Methods

Neural Program Synthesis
Rishabh Singh . 68

Learning Continuous Semantic Representations of Symbolic Expressions
Charles Sutton . 68

Some ML Tasks in Theorem Proving
Josef Urban . 68

PSI: Exact Inference for Probabilistic Programs
Martin Vechev . 69

Learning from RNNs
Eran Yahav . 69

Synthesis with Abstract Examples
Eran Yahav . 69

Smooth Imitation Learning
Yisong Yue . 70

Preference-Based Teaching
Sandra Zilles . 70

Falsification of Cyber-Physical Systems with Machine Learning Components
Sanjit A. Seshia . 70

Breakout Groups . 71

Participants . 73

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 59

3 Overview of Talks

3.1 Reachability and regularity for Markov chains
S Akshay (IIT, Bombay – Mumbai, India)

License Creative Commons BY 3.0 Unported license
© S Akshay

The dynamic behavior of a Markov chain – a basic model for probabilistic systems – can
be described using sequences of probability distributions starting from an initial set of
distributions. Our goal is to study the patterns and trajectories formed by such sequences
during the evolution of a Markov chain over time.

A basic reachability problem which lies at the heart of this question is: does there exist
an integer n such that the probability to reach in n steps from a given state to another in
a Markov chain is exactly some pre-specified value r. Surprisingly, it turns out that this
problem is already as hard as the Skolem Problem: a number-theoretic decision problem
whose decidability has been open for decades. We look at some approximate variants as
well as restrictions which allow us to reason about the trajectories in an automata-theoretic
framework. If time permits, we will also draw links between these problems and classical
problems such as program termination, as well as explore links to POMDP setting.

3.2 A Non-monotonic Theory of Oracle-guided Inductive Synthesis
Dalal Alrajeh (Imperial College London, UK, dalal.alrajeh@ic.ac.uk)

License Creative Commons BY 3.0 Unported license
© Dalal Alrajeh

Specifications provide significant aid in the formal analysis of software supporting tasks such
as consistency management, system verification, program synthesis, program repair and
software maintenance. However writing such specifications is difficult and time-consuming.
Several approaches have been proposed for automatically generating complete specifications
from abstract descriptions (such as UML diagrams and user requirements) which mainly differ
in their method of computation, e.g., refinement operators [7], patterns library [6]. Recent
years have seen the emergence of techniques based on inductive learning, for instance [4]. The
input to these techniques are samples classified as either positive or negative examples. The
aim is to learn a specification that is consistent with all positive examples and inconsistent
with all the negative ones. However, the quality of a learnt specification (and its proximity
to the target specification) heavily depends on the quality of the samples provided to the
learner. Oracle-guided inductive synthesis (OGIS) is a class of approaches that restrict the
set of samples for learning to those directly relevant to some target specification [5]. The
learner can query an oracle (e.g., a user or verifier) for examples. The oracle in return
responds with positive or negative example that is intended to guide the learner’s search
for candidate specifications. The oracle is also tasked with determining whether the learner
has found the correct specification. Each time a negative (resp. positive) example that is
consistent (resp. inconsistent) with the current candidate specification is given, the learner
proceeds in one of the following directions: (1) the candidate specification is discarded and a
new one is synthesized from the set of examples accumulated thus far; or (2) an additional
specification is synthesized from the new example and added to the previous ones; we say in

17351

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

60 17351 – Machine Learning and Formal Methods

the second case a specification has been refined. Both directions may lead to learning a correct
specification (consistent with all positive examples but none of the negatives). We argue
that the former, from a practical perspective, requires users to abandon any development
activities they may have started based on the earlier specification. From a conceptual view, it
violates the principle of elaboration tolerance [2, 8]. The applicability of the latter, however,
depends on the kind of inference allowed by the learner. Typical OGIS instances that follow
this direction assume monotonicity of the synthesis procedure. By this, it is guaranteed that
candidate specifications generated from new examples are consistent with those of previous
iterations. However, this guarantee does not hold in the case of non-monotonic learners.
In this work, we conduct a formal investigation into properties of oracleguided inductive
synthesis for specification refinement by examining the impact of using two types of learners:
monotonic and non-monotonic [3]. In monotonic learning, inferences cannot be invalidated
simply by adding new expressions to a specification. Non-monotonic learning, on the other
hand, allows inferences to be made provisionally which can be retracted as new information
becomes available and thus specifications are extended. Our investigation seeks to answer
the following questions: Does the quality of a specification improve with a non-monotonic
learner? What are the termination guarantees with nonmonotonic learner? In cases where
termination is guaranteed, does the use of a non-monotonic learner improve the speed of
termination? In answering these, we assume an oracle that defines a fixed ordering over the
examples generated and seek to understand the influence of the following factors: (i) the
types of queries submitted to an oracle (e.g., correctness and whether they provide both
positive and negative examples or positive witness only); and (ii) the resources available to
the learner: finite versus infinite memory. We direct our analysis to a particular instance
of OGIS for synthesizing target specifications in Linear Temporal Logic (LTL) [9]. The
quality of a specification is measured in terms of: the size of the formulas, and the size of the
language defined by the formulas. For monotonic learning, we have developed a monotonic
learner that can compute properties in tight Signal Temporal Logic (a flavor of LTL over
continuous signals) from positive examples only. As for non-monotonic learning, we consider
the approach described in [1] which provides a transformation function from a subclass of
LTL to a non-monotonic logic and vice-versa.

References
1 Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Using abduction and induction for operational

requirements elaboration. J. Applied Logic 7(3), 275–288 (2009)
2 Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In: Proceedings

of IJCAI07,. pp. 236–242 (2007)
3 Frankish, K.: Non-monotonic inference. In: Barber, A. (ed.) Encyclopedia of Language

and Linguistics. Elsevier (2005)
4 Gehr, T., Dimitrov, D., Vechev, M.: Learning commutativity specifications. In: Proceed-

ings of CAV15. pp. 307–323 (2015)
5 Jha, S., Seshia, S.: A theory of formal synthesis via inductive learning. Acta Informatica

(2017)
6 van Lamsweerde, A.: Requirements Engineering – From System Goals to UML Models to

Software Specifications. Wiley (2009)
7 Li, F.L., Horkoff, J., Borgida, A., Guizzardi, G., Liu, L., Mylopoulos, J.: From stakeholder

requirements to formal specifications through refinement. In: Proceedings of REFSQ15
(2015)

8 McCarthy, J.: The artificial intelligence debate: False starts, real foundations. chap. Math-
ematical Logic in Artificial Intelligence, pp. 297–311. MIT Press (1988)

9 Pnueli, A.: The temporal logic of programs. In: Proceedings of SFCS77. pp. 46–57 (1977)

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 61

3.3 Semantic Mapping and Mission Planning in Robotics
Nikolay A. Atanasov (University of California at San Diego, US)

License Creative Commons BY 3.0 Unported license
© Nikolay A. Atanasov

Recent years have seen impressive progress in robot perception leading to real-time super-
human object recognition. Surprisingly, however, most existing approaches to simultaneous
localization and mapping (SLAM) in robotics rely on low-level geometric features and do
not take advantage of semantic information provided by object recognition methods. In this
talk, I will address the semantic SLAM problem which utilizes object identity information
for loop closure and construction of meaningful maps. A major contribution of our approach
is in proving that the complexity of incorporating probabilistic data association is equivalent
to computing the permanent of a suitable matrix. The resulting probabilistic semantic maps
allow us to specify complex robot missions as temporal logic constraints over objects in the
environment.

3.4 Safe learning of regions of attractions
Felix Berkenkamp (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Felix Berkenkamp

Reinforcement learning is a powerful paradigm for learning optimal policies from experimental
data. However, to find optimal policies, most reinforcement learning algorithms explore all
possible actions, which may be harmful for real-world systems. As a consequence, learning
algorithms are rarely applied on safety-critical systems in the real world. In this paper, we
present a learning algorithm that explicitly considers safety in terms of stability guarantees.
Specifically, we extend control theoretic results on Lyapunov stability verification and show
how to use statistical models of the dynamics to obtain high-performance control policies
with provable stability certificates. Moreover, under additional regularity assumptions in
terms of a Gaussian process prior, we prove that one can effectively and safely collect data in
order to learn about the dynamics and thus both improve control performance and expand
the safe region of the state space. In our experiments, we show how the resulting algorithm
can safely optimize a neural network policy on a simulated inverted pendulum, without the
pendulum ever falling down.

3.5 Polynomial Inference of Equational Theories
Ben Caulfield (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© Ben Caulfield

Equational logic is a formalism used to describe infinite sets of equations between terms
(theories) using finite sets of equations (presentations). Both functional programs and logic
programs can be naturally represented as equational logic presentations. Therefore, learning
presentations in equational logic can be seen as a form of program synthesis. In general, it is

17351

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

62 17351 – Machine Learning and Formal Methods

undecidable whether terms are equivalent via a finite presentation. So learning equational
presentations is generally intractable.

We investigate the exact learning of a restricted class of theories known as non-collapsing
shallow theories, which can be presented by equations where variables only appear at depth
one. The learning algorithms use examples and queries of equations between ground terms,
meaning there are no variables in the equations. It is shown that these theories cannot be
learned in the limit from only positive examples. A polynomial time algorithm is given which
creates a hypothesis presentation consistent with positive and negative examples which will
learn in the limit a presentation for the target theory. Finally, an algorithm is given which
learns a presentation in polynomial time from a minimally adequate teacher. It is shown
that the learned presentations are canonical with respect to an ordering on terms and the
presentation is at most polynomially larger than the minimal presentation of the same theory.

3.6 Constraint Learning and Dynamic Probabilistic Programming
Luc De Raedt (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Luc De Raedt

The talk focussed on two issues. The first was the synthesis of a set of constraints that
hold in tabular data (say a set of excel tables). The second was concerned with the use of
hybrid probabilistic programs in dynamic domains and its applications in simple robotics
and planning settings.

More details on our probabilistic programming language Problog can be found at https:
//dtai.cs.kuleuven.be/problog/.

3.7 Logical Clustering for Time-Series Data
Jyotirmoy Deshmukh (USC – Los Angeles, US)

License Creative Commons BY 3.0 Unported license
© Jyotirmoy Deshmukh

Techniques for unsupervised learning for signals (time-series data) typically use distance
metrics on the signal space to perform clustering. Clusters obtained in this fashion group
qualitatively similar signal shapes, but may not respect logical properties of signals and may
not be easy to interpret and explain. We propose a new paradigm of logical clustering, where
we use parametric temporal logic formulas as a feature extraction mechanism, and then use
off-the-shelf machine learning tools to automatically cluster similar traces with respect to
the “projection” of the traces in the parameter-space. We demonstrate how this technique
produces interpretable formulas that are amenable to analysis and understanding using a
few representative examples.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://dtai.cs.kuleuven.be/problog/
https://dtai.cs.kuleuven.be/problog/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 63

3.8 Query Learning of Regular Languages and Richer Formalisms
Dana Fisman (Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 3.0 Unported license
© Dana Fisman

We review results on Angluin style query learning of automata. In particular for the concept
classes of regular languages (via succinct representations such as alternating finite automata),
regular omega-languages, regular omega-tree-languages, weighted languages, I/O languages,
and languages over infinite alphabets.

3.9 Learning Invariants using Decision Trees and Implication
Counterexamples

Pranav Garg (Amazon – Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Pranav Garg

We introduce ICE, a robust learning paradigm for synthesizing invariants, that learns using
positive, negative and implication counter-examples, and show that it admits honest teachers
and strongly convergent mechanisms for invariant synthesis. We propose the first learning
algorithms in this model with implication counter-examples that are based on machine
learning techniques. In particular, we extend classical decision-tree learning algorithms in
machine learning to handle implication samples, building new scalable ways to construct
small decision trees using statistical measures. We also develop a decision-tree learning
algorithm in this model that is guaranteed to converge to the right concept (invariant) if one
exists. We implement the learners and an appropriate teacher, and show that the resulting
invariant synthesis is efficient and convergent for a large suite of programs.

3.10 Explaining AI Decisions Using Sparse Boolean Formula
Susmit Jha (SRI International – Menlo Park, CA, susmit.jha@sri.com)

License Creative Commons BY 3.0 Unported license
© Susmit Jha

This talk describes the problem of learning Boolean formulae from examples obtained by
actively querying an oracle that can label examples as positive or negative. This problem
has received attention in machine learning as well as formal methods, and it has been shown
to have exponential worst-case complexity in the general case as well as for many restrictions.
In this talk, we focus on learning sparse Boolean formulae which depend on only a small
(but unknown) subset of the overall vocabulary of atomic propositions. We propose an
efficient algorithm to learn these sparse Boolean formulae with a given confidence. This
assumption of sparsity is motivated by the problem of mining explanations for decisions
made by artificially intelligent algorithms, where the explanation of individual decisions may
depend on a small but unknown subset of all the inputs to the algorithm. We demonstrate the
use of proposed learning algorithm to automatically generate explanations of these decisions.
These explanations will make intelligent systems more understandable and accountable to

17351

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

64 17351 – Machine Learning and Formal Methods

human users, facilitate easier audits and provide diagnostic information in the case of failure.
The proposed approach treats the AI algorithm as a black-box oracle, and is therefore,
broadly applicable and agnostic to the specific AI algorithm. We illustrate the practical
effectiveness of our approach on a set of diverse case-studies.

3.11 Formal Guarantees on the Robustness of a Classifier against
Adversarial Manipulation

Matthias Hein (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Matthias Hein

Recent work has shown that state-of-the-art classifiers are quite brittle, in the sense that a
small adversarial change of an originally with high confidence correctly classified input leads
to a wrong classification again with high confidence. This raises concerns that such classifiers
are vulnerable to attacks and calls into question their usage in safety-critical systems. We
show in this talk formal guarantees on the robustness of a classifier by giving instance-specific
lower bounds on the norm of the input manipulation required to change the classifier decision.
Based on this analysis we propose the Cross-Lipschitz regularization functional. We show
that using this form of regularization in kernel methods resp. neural networks improves the
robustness of the classifier without any loss in prediction performance.

3.12 Syntax-Guided Synthesis
Rajeev Alur (University of Pennsylvania – Philadelphia, US)

License Creative Commons BY 3.0 Unported license
© Rajeev Alur

The classical synthesis problem is to find a program or a system that meets a correctness
specification given as a logical formula. Recent work on synthesis and optimization illustrates
many potential benefits of allowing the user to supplement the logical specification with a
syntactic template that constrains the space of allowed implementations. The formulation of
the syntax-guided synthesis problem (SyGuS) is aimed at standardizing the core computa-
tional problem common to these proposals in a logical framework. The input to the SyGuS
problem consists of a background theory, a semantic correctness specification for the desired
program given by a logical formula, and a syntactic set of candidate implementations given
by a grammar. The computational problem then is to find an implementation from the set
of candidate expressions so that it satisfies the specification in the given theory.

In this tutorial we first describe how a wide range of problems such as automatic synthesis
of loop invariants, program optimization, program repair to defend against timing-based
attacks, and learning programs from examples can be formalized as SyGuS instances. We
then describe the counterexample-guided-inductive-synthesis (CEGIS) strategy for solving
the SyGuS problem. Finally we discuss our efforts over the past three years on defining the
standardized interchange format built on top of SMT-LIB, repository of benchmarks from
diverse applications, organization of the annual competition, SyGuS-COMP, of solvers, and
experimental evaluation of solution strategies.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 65

3.13 Formal Inductive Synthesis/Oracle-Guided Inductive Synthesis
Sanjit A. Seshia (UC Berkeley – Berkeley, CA, sseshia@berkeley.edu)

License Creative Commons BY 3.0 Unported license
© Sanjit A. Seshia

Joint work of Susmit Jha, Sanjit A. Seshia
Main reference Susmit Jha, Sanjit A. Seshia: “A theory of formal synthesis via inductive learning”, Acta Inf.,

Vol. 54(7), pp. 693–726, 2017.
URL http://dx.doi.org/10.1007/s00236-017-0294-5

This talk presents a theoretical framework for synthesis from examples so as to satisfy a formal
specification, termed as formal inductive synthesis. We discuss how formal inductive synthesis
differs from traditional machine learning. We then describe oracle-guided inductive synthesis
(OGIS), a framework that captures a family of synthesizers that operate by iteratively querying
an oracle. An instance of OGIS that has had much practical impact is counterexample-guided
inductive synthesis (CEGIS). We present a theoretical characterization of CEGIS for both
finite and infinite program classes.

Details are given in [1, 2].

References
1 Susmit Jha, Sanjit A. Seshia. A Theory of Formal Synthesis via Inductive Learning. CoRR

abs/1505.03953 (2015)
2 Susmit Jha, Sanjit A. Seshia. A theory of formal synthesis via inductive learning. Acta Inf.

54(7): 693-726 (2017)

3.14 Combining Logical and Probabilistic Reasoning in Program
Analysis

Mayur Naik (University of Pennsylvania – Philadelphia, US)

License Creative Commons BY 3.0 Unported license
© Mayur Naik

Existing program analyses are expressed in the form of logical rules that are handcrafted
by experts. While this logic-based approach has many benefits, however, it cannot handle
uncertainty and lacks the ability to learn and adapt. This in turn hinders the accuracy,
scalability, and usability of program analysis tools in practice.

We present a methodology and framework to incorporate probabilistic reasoning into
existing program analyses that are based on logical reasoning. The framework comprises a
front-end, which automatically integrates probabilities into a logical analysis by synthesizing
a system of weighted constraints, and a back-end, which is a learning and inference engine for
such constraints. We demonstrate how this approach advances three important applications
of program analysis: automated verification, interactive verification, and bug detection. We
will describe new algorithmic techniques to solve very large instances of weighted constraints
that arise not only in our domain but also in other domains such as Big Data analytics and
statistical AI.

17351

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s00236-017-0294-5
http://dx.doi.org/10.1007/s00236-017-0294-5
http://dx.doi.org/10.1007/s00236-017-0294-5
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

66 17351 – Machine Learning and Formal Methods

3.15 Data-driven Program Synthesis From Examples
Nagarajan Natarajan (Microsoft Research India – Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Nagarajan Natarajan

A typical data analyst is often faced with tasks involving data formatting, and in fact studies
say that more than 80% of the time is spent wrangling the data, before performing scientific
analysis. Automatically synthesizing code pieces that can perform such tasks is a boon. There
is a long line of work in the Programming Languages community on program synthesis from
examples, and more recently, Machine Learning community has gained interest in the problem
space. In this talk, I will outline some of the challenges faced when formulating a machine
learning problem in this setting, and present our data-driven solution for program synthesis
that builds on the successful PROSE framework. Results on benchmark datasets involving
a fairly sophisticated text grammar show that, in most cases, with just one input-output
example, the system can surface the “right” program at the top. I will also give a short demo
of the deployed solution.

3.16 Leveraging computational models of human cognition for
educational interventions

Anna Rafferty (Carleton College – Northfield, US)

License Creative Commons BY 3.0 Unported license
© Anna Rafferty

Educational technologies offer the opportunity to provide personalized guidance or instruction
to individual learners. Often, this is achieved by tracking what a learner knows based on
her behavior in the system. This tracking can be challenging, however, especially in cases
where learners’ behaviors cannot easily be evaluated. For example, learners make a large
number of choices in games or interactive simulations that should provide information about
understanding, but it may not be possible to automatically mark each choice as correct or
incorrect or easily relate the choices to knowledge in a domain. My approach is to leverage
computational modeling and machine learning tools to develop general frameworks that can
be applied to individual educational technologies. We have developed a Bayesian inverse
planning framework to make fine-grained inferences about understanding based on learners’
sequences of actions, demonstrating how a formal model of human behavior can lead to
methods that are applicable across different educational domains. We have applied this
framework to assess learners’ understanding based on actions in game-based experiments
in the lab, choices in a microbiology game played by middle schoolers, and step-by-step
solutions to algebraic equations. Because the framework includes a generative model of
human behavior, we have applied a variation of it to design more diagnostic assessments,
both for algebra and for game-based experiments.

References
1 Rafferty, A. N., LaMar, M. M. and Griffiths, T. L. (2015), Inferring Learners’ Knowledge

From Their Actions. Cogn Sci, 39: 584–618. doi:10.1111/cogs.12157

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 67

3.17 Planning for Cars that Coordinate with People
Dorsa Sadigh (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Dorsa Sadigh

As human-robot systems make their ways into our every day life, safety has become a core
concern of the learning algorithms used by such systems. Examples include semi-autonomous
vehicles such as automobiles and aircraft. The robustness of controllers in such systems
relies on the accuracy of models of human behavior. In this talk, we propose a systematic
methodology for analyzing the robustness of learning-based control of human-robot systems.
We focus on the setting where human models are learned from data, with humans modeled as
approximately rational agents optimizing their reward functions. In this setting, we provide
a novel optimization-driven approach to find small deviations in learned human behavior
that lead to violation of desired (safety) objectives.

3.18 Deduction and Induction – A Match Made in Heaven
Stephan Schulz (Duale Hochschule Baden-Württemberg – Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Stephan Schulz

First-order theorem provers search for proofs of a conjecture in an infinite and highly
branching search space. This search critically depends on good heuristics. Unfortunately,
designing good heuristics for the different choice points and classes of problems has proved
to be very hard. Indeed, even classification of proof problems into classes with similar search
behaviour is a largely open research question.

One way to address the difficulty of controlling search is to use inductive approaches,
i.e. to try to find good heuristics by observing and generalizing examples of successful and
failing proof searches. Here we discuss the three major choice points for superposition-based
provers, and how good heuristics can be found via inductive processes.

We distinguish two different learning paradigms. In the first case, only the performance
of different heuristics on a test set is used as input for the inductive process. Two examples
for this are the automatic generation of automatic modes for theorem provers, and the
improvement of clause evaluation heuristics via parameter optimization or genetic algorithms.
The second paradigm not only considers the performance of a heuristic, but tries to find new
heuristics by analyzing proofs, or, more generally, a graph of the proof search.

We give some results on established work, and discuss some preliminary progress and
open questions from ongoing work.

17351

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

68 17351 – Machine Learning and Formal Methods

3.19 Neural Program Synthesis
Rishabh Singh (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Rishabh Singh

The key to attaining general artificial intelligence is to develop architectures that are capable
of learning complex algorithmic behaviors modeled as programs. The ability to learn programs
allows these architectures to learn to compose high-level abstractions with complex control-
flow, which can lead to many potential benefits: i) enable neural architectures to perform
more complex tasks, ii) learn interpretable representations (programs which can be analyzed,
debugged, or modified), and iii) better generalization to new inputs (like algorithms). In this
talk, I will present some of our recent work in developing neural architectures for learning
complex regular-expression based data transformation programs from input-output examples,
and will also briefly discuss some other applications such as program repair and optimization
that can benefit from learning neural program representations.

3.20 Learning Continuous Semantic Representations of Symbolic
Expressions

Charles Sutton (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Charles Sutton

Combining abstract, symbolic reasoning with continuous neural reasoning is a grand challenge
of representation learning. As a step in this direction, we propose a new architecture, called
neural equivalence networks, for the problem of learning continuous semantic representations
of algebraic and logical expressions. These networks are trained to represent semantic
equivalence, even of expressions that are syntactically very different. The challenge is that
semantic representations must be computed in a syntax-directed manner, because semantics
is compositional, but at the same time, small changes in syntax can lead to very large changes
in semantics, which can be difficult for continuous neural architectures. We perform an
exhaustive evaluation on the task of checking equivalence on a highly diverse class of symbolic
algebraic and boolean expression types, showing that our model significantly outperforms
existing architectures.

3.21 Some ML Tasks in Theorem Proving
Josef Urban(Czech Technical University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Josef Urban

The talk will show several examples of how machine learning is today used in automated and
interactive theorem proving tasks. I will also briefly mention the various theorem proving
fields, recent developments in them, and the collaboration between interactive and automated
provers.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 69

3.22 PSI: Exact Inference for Probabilistic Programs
Martin Vechev (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Martin Vechev

This talk introduces probabilistic programming and discusses exact inference with the PSI
solver (psisolver.org) based on symbolic reasoning. PSI supports higher order functions,
nested inference, discrete, continuous and mixed distributions and comes with its own
symbolic integration engine. The talk also discusses various open problems in the area.

3.23 Learning from RNNs
Eran Yahav (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Eran Yahav

We address the problem of extracting an automaton from a given recurrent neural network
(RNN). We present a novel algorithm that uses exact learning and abstract interpretation to
perform efficient extraction of a minimal automaton describing the internal states of the given
RNN. We use Angluin’s L* algorithm as a learner and the given RNN as an oracle, employing
abstract interpretation of the RNN for answering equivalence queries. Our technique allows
automaton-extraction from the RNN while avoiding state explosion, even when very fine
differentiation is required between RNN states.

3.24 Synthesis with Abstract Examples
Eran Yahav (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Eran Yahav

Interactive program synthesizers enable a user to communicate his/her intent via input-output
examples. Unfortunately, such synthesizers only guarantee that the synthesized program is
correct on the provided examples. A user that wishes to guarantee correctness for all possible
inputs has to manually inspect the synthesized program, an error-prone and challenging task.
We present a novel synthesis framework that communicates only through (abstract) examples
and guarantees that the synthesized program is correct on all inputs. The main idea is to
use abstract examples—a new form of examples that represent a potentially unbounded set
of concrete examples. An abstract example captures how part of the input space is mapped
to corresponding outputs by the synthesized program. Our framework uses a generalization
algorithm to compute abstract examples which are then presented to the user. The user can
accept an abstract example, or provide a counterexample in which case the synthesizer will
explore a different program. When the user accepts a set of abstract examples that covers the
entire input space, the synthesis process is completed. We have implemented our approach
and we experimentally show that our synthesizer communicates with the user effectively by
presenting on average 3 abstract examples until the user rejects false candidate programs.
Further, we show that a synthesizer that prunes the program space based on the abstract
examples reduces the overall number of required concrete examples in up to 96% of the cases.

17351

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

70 17351 – Machine Learning and Formal Methods

3.25 Smooth Imitation Learning
Yisong Yue (California Institute of Technology – Pasadena, US)

License Creative Commons BY 3.0 Unported license
© Yisong Yue

We study the problem of smooth imitation learning for online sequence prediction, where
the goal is to train a policy that can smoothly imitate demonstrated behavior in a dynamic
and continuous environment in response to online, sequential context input. We present an
approach that combines smooth model-based controllers with black-box machine learning
approaches in order to obtain flexible function classes that are regularized to ensure smooth
dynamics.

References
1 Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent De-

cision Trees. Jianhui Chen, Hoang M. Le, Peter Carr, Yisong Yue, James J. Little. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016

3.26 Preference-Based Teaching
Sandra Zilles (University of Regina, CA)

License Creative Commons BY 3.0 Unported license
© Sandra Zilles

The classical teaching dimension model, used to describe the sample complexity of learning
from helpful teachers, assumes that the learner simply produces any hypothesis consistent
with the data provided by the teacher. Assuming instead that the learner expects data to
be chosen in a helpful way improves the sample complexity. One model in this context is
Preference-Based Teaching, in which the learner uses a preference relation over concepts
and always hypothesizes a most preferred concept consistent with the data. In the case
of finite concept classes, the corresponding sample complexity appears to be related to
the VC-dimension. Some open problems and potential connections to Formal Methods are
discussed.

3.27 Falsification of Cyber-Physical Systems with Machine Learning
Components

Sanjit A. Seshia (UC Berkeley – Berkeley, CA, sseshia@berkeley.edu)

License Creative Commons BY 3.0 Unported license
© Sanjit A. Seshia

Joint work of Tommaso Dreossi, Alexandre Donze, Sanjit A. Seshia
Main reference Tommaso Dreossi, Alexandre Donzé, Sanjit A. Seshia: “Compositional Falsification of

Cyber-Physical Systems with Machine Learning Components”, in Proc. of the NASA Formal
Methods - 9th International Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017,
Proceedings, Lecture Notes in Computer Science, Vol. 10227, pp. 357–372, 2017.

URL http://dx.doi.org/10.1007/978-3-319-57288-8_26

Cyber-physical systems (CPS), such as automotive systems, are starting to include sophistic-
ated machine learning (ML) components. Their correctness, therefore, depends on properties
of the inner ML modules. While learning algorithms aim to generalize from examples, they

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-57288-8_26
http://dx.doi.org/10.1007/978-3-319-57288-8_26
http://dx.doi.org/10.1007/978-3-319-57288-8_26
http://dx.doi.org/10.1007/978-3-319-57288-8_26
http://dx.doi.org/10.1007/978-3-319-57288-8_26

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 71

are only as good as the examples provided, and recent efforts have shown that they can
produce inconsistent output under small adversarial perturbations. This raises the question:
can the output from learning components can lead to a failure of the entire CPS? In this work,
we address this question by formulating it as a problem of falsifying signal temporal logic
(STL) specifications for CPS with ML components. We propose a compositional falsification
framework where a temporal logic falsifier and a machine learning analyzer cooperate with
the aim of finding falsifying executions of the considered model. The efficacy of the proposed
technique is shown on an automatic emergency braking system model with a perception
component based on deep neural networks.

Details of this contribution are given in [2], and a broader perspective of applying formal
methods to the goal of verified artificial intelligence is discussed in [1].

References
1 Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry: Towards Verified Artificial Intelli-

gence. CoRR abs/1606.08514 (2016)
2 Tommaso Dreossi, Alexandre Donze, and Sanjit A. Seshia: Compositional Falsification of

Cyber-Physical Systems with Machine Learning Components. NFM 2017, pages 357-372.

4 Breakout Groups

On the final two days of the seminar, multiple breakout sessions were organized on the
following topics:
1. Machine Teaching and Oracle-Guided Synthesis
2. Solvers in Formal Methods and Machine Learning
3. Formal Guarantees for Machine Learning Systems
We present here a very brief summary of each of the breakout topics.

Machine Teaching and Oracle-Guided Synthesis

In principle, all of the work in machine learning and inductive synthesis (synthesis from
examples) can be explained using an oracle-guided framework. In particular, there is a broad
spectrum varying from passive learning on the one side to machine teaching on the other,
with active learning, query-based learning, and counterexample-guided inductive synthesis in
between. The breakout sessions on this topic discussed a common terminology to connect
the formal methods and machine learning communities, and the role the framework of oracle-
guided inductive synthesis can play in connecting the ideas in the two communities. The
formal methods community can provide interesting sources of problems for theoretical work
on machine teaching and query-based learning. Likewise, the machine learning community
can provide theory and techniques to prove results about the power of oracle-guided synthesis.

Solvers in Formal Methods and Machine Learning

In Formal Methods, solvers based on SAT, SMT, BDDs, etc. play an important role. The
discussions in these breakout sessions discussed how machine learning is already playing an
important role in the development of these solvers as well as interactive theorem provers, such
as, e.g., in portfolio SAT solving techniques. Further, the role of solvers to improve machine
learning was also discussed. For example, verification tools could be used to generate more
training data, such as the work on falsification of CPS with machine learning components

17351

72 17351 – Machine Learning and Formal Methods

discussed earlier in the seminar. The importance of choosing good representations shows
up in the work of both communities. On the frontier of solver research, the topic of model
counting and volume estimation is of high relevance to both communities.

Formal Guarantees for Machine Learning

The different forms of guarantees for machine learning systems were discussed, as well as the
role of formal specifications. Topics ranging from Boolean versus quantitative specifications,
worst-case versus asymptotic versus probabilistic guarantees, and which guarantees permit
compositional reasoning. Formal reasoning can be applied to learning algorithms, learned
models, and training data. Interpretability is an important objective. The issue of specifying
objectives using logical formulas or cost functions was also discussed.

Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha 73

Participants

S. Akshay
Indian Institute of Technology –
Mumbai, IN

Dalal Alrajeh
Imperial College London, GB

Rajeev Alur
University of Pennsylvania –
Philadelphia, US

Nikolay A. Atanasov
University of California at
San Diego, US

Ammar Ben Khadra
TU Kaiserslautern, DE

Felix Berkenkamp
ETH Zürich, CH

Ben Caulfield
University of California –
Berkeley, US

Swarat Chaudhuri
Rice University – Houston, US

Luc De Raedt
KU Leuven, BE

Jyotirmoy Deshmukh
USC – Los Angeles, US

Dana Fisman
Ben Gurion University –
Beer Sheva, IL

Pranav Garg
Amazon – Bangalore, IN

Matthias Hein
Universität des Saarlandes, DE

Holger Hermanns
Universität des Saarlandes, DE

Susmit Jha
SRI – Menlo Park, US

Kristian Kersting
TU Darmstadt, DE

Andreas Krause
ETH Zürich, CH

Sasa Misailovic
University of Illinois –
Urbana-Champaign, US

Mayur Naik
University of Pennsylvania –
Philadelphia, US

Nagarajan Natarajan
Microsoft Research India –
Bangalore, IN

Anna Rafferty
Carleton College – Northfield, US

Dorsa Sadigh
Stanford University, US

Stephan Schulz
Duale Hochschule
Baden-Württemberg –
Stuttgart, DE

Sanjit A. Seshia
University of California –
Berkeley, US

Rishabh Singh
Microsoft Research –
Redmond, US

Armando Solar-Lezama
MIT – Cambridge, US

Charles Sutton
University of Edinburgh, GB

Josef Urban
Czech Technical University –
Prague, CZ

Martin Vechev
ETH Zürich, CH

Eran Yahav
Technion – Haifa, IL

Yisong Yue
California Institute of Technology
– Pasadena, US

Xiaojin Zhu
University of Wisconsin –
Madison, US

Sandra Zilles
University of Regina, CA

17351

	Executive Summary Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause and Susmit Jha
	Table of Contents
	Overview of Talks
	Reachability and regularity for Markov chains S Akshay
	A Non-monotonic Theory of Oracle-guided Inductive Synthesis Dalal Alrajeh
	Semantic Mapping and Mission Planning in Robotics Nikolay A. Atanasov
	Safe learning of regions of attractions Felix Berkenkamp
	Polynomial Inference of Equational Theories Ben Caulfield
	Constraint Learning and Dynamic Probabilistic Programming Luc De Raedt
	Logical Clustering for Time-Series Data Jyotirmoy Deshmukh
	Query Learning of Regular Languages and Richer Formalisms Dana Fisman
	Learning Invariants using Decision Trees and Implication Counterexamples Pranav Garg
	Explaining AI Decisions Using Sparse Boolean Formula Susmit Jha
	Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation Matthias Hein
	Syntax-Guided Synthesis Rajeev Alur
	Formal Inductive Synthesis/Oracle-Guided Inductive Synthesis Sanjit A. Seshia
	Combining Logical and Probabilistic Reasoning in Program Analysis Mayur Naik
	Data-driven Program Synthesis From Examples Nagarajan Natarajan
	Leveraging computational models of human cognition for educational interventions Anna Rafferty
	Planning for Cars that Coordinate with People Dorsa Sadigh
	Deduction and Induction – A Match Made in Heaven Stephan Schulz
	Neural Program Synthesis Rishabh Singh
	Learning Continuous Semantic Representations of Symbolic Expressions Charles Sutton
	Some ML Tasks in Theorem Proving Josef Urban
	PSI: Exact Inference for Probabilistic Programs Martin Vechev
	Learning from RNNs Eran Yahav
	Synthesis with Abstract Examples Eran Yahav
	Smooth Imitation Learning Yisong Yue
	Preference-Based Teaching Sandra Zilles
	Falsification of Cyber-Physical Systems with Machine Learning Components Sanjit A. Seshia

	Breakout Groups
	Participants

