
Report from Dagstuhl Seminar 17371

Deduction Beyond First-Order Logic
Edited by
Jasmin Christian Blanchette1, Carsten Fuhs2,
Viorica Sofronie-Stokkermans3, and Cesare Tinelli4

1 Vrije Universiteit Amsterdam, NL, j.c.blanchette@vu.nl
2 Birkbeck, University of London, GB, carsten@dcs.bbk.ac.uk
3 Universität Koblenz-Landau, DE, sofronie@uni-koblenz.de
4 The University of Iowa – Iowa City, US, cesare-tinelli@uiowa.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17371 “Deduction
Beyond First-Order Logic.” Much research in the past two decades was dedicated to automating
first-order logic with equality. However, applications often need reasoning beyond this logic. This
includes genuinely higher-order reasoning, reasoning in theories that are not finitely axiomatisable
in first-order logic (such as those including transitive closure operators or standard arithmetic
on integers or reals), or reasoning by mathematical induction. Other practical problems need
a mixture of first-order proof search and some more advanced reasoning (for instance, about
higher-order formulas), or simply higher-level reasoning steps. The aim of the seminar was to
bring together first-order automated reasoning experts and researchers working on deduction
methods and tools that go beyond first-order logic. The seminar was dedicated to the exchange
of ideas to facilitate the transition from first-order to more expressive settings.

Seminar September 10–15, 2017 – http://www.dagstuhl.de/17371
1998 ACM Subject Classification D.2.4 Software/Program Verification, F.2.2 Nonnumerical Al-

gorithms and Problems, F.3.1 Specifying and Verifying and Reasoning about Programs, F.4.1
Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems, G.1.6 Optimization,
I.2.3 Deduction and Theorem Proving

Keywords and phrases Automated Deduction, Program Verification, Certification
Digital Object Identifier 10.4230/DagRep.7.9.26
Edited in cooperation with Philipp Rümmer

1 Executive Summary

Jasmin Christian Blanchette
Carsten Fuhs
Viorica Sofronie-Stokkermans
Cesare Tinelli

License Creative Commons BY 3.0 Unported license
© Jasmin Christian Blanchette, Carsten Fuhs, Viorica Sofronie-Stokkermans, and Cesare Tinelli

Much research on automated deduction has traditionally focused on automated reasoning
in first-order logic. First-order logic with equality is generally considered a sweet spot on
the logic design continuum. Yet, from the point of view of several applications it can be too
restrictive as a modeling and reasoning tool. In recent years, there has been a realization
that while first-order reasoning is very useful to discharge the bulk of proof obligations, it
must be tightly integrated with richer features to be useful in many applications. Practical

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Deduction Beyond First-Order Logic, Dagstuhl Reports, Vol. 7, Issue 09, pp. 26–46
Editors: Jasmin Christian Blanchette, Carsten Fuhs, Viorica Sofronie-Stokkermans, and Cesare Tinelli

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17371
http://dx.doi.org/10.4230/DagRep.7.9.26
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 27

problems often need a mixture of first-order proof search and some more advanced reasoning,
for instance, about non-first-order-axiomatisable theories, higher-order formulas, or simply
higher-level reasoning steps.

First-order logic cannot be used to finitely axiomatize many interesting theories, such as
those including transitive closure operators, inductive predicates, datatypes, and standard
arithmetic on integers or reals. Even provers that provide native support for some of these
theories typically fail to prove trivial-looking problems because they lack general support
for mathematical induction. Some applications need a richer set of constructs than those
provided by first-order logic such as, for instance, the separating conjunction (∗) and magic
wand (−∗) connectives of Separation Logic or the disjunctive well-foundedness predicates
used in HSF, a popular approach to software model checking based on first-order Horn logic.

There are potential synergies between automatic first-order proving and verification
methods developed in the context of richer logics. However, they have not received enough
attention by the various deduction sub-communities so far. In general, there is a cultural
gap between the various deduction communities that hinders cross-fertilization of ideas and
progress.

This Dagstuhl Seminar brought together experts in automated reasoning in first-order
logic and researchers working on deduction methods and tools that go beyond first-order
logic. The latter included specialists on proof methods for induction, proof planning, and
other higher-order or higher-level procedures; and consumers of deduction technology whose
specification languages contain non-first-order features. The main goal of the seminar was
to exchange ideas and explore ways to facilitate the transition from first-order to more
expressive settings.

Research questions that were discussed and answered at the seminar included the following:
What higher-order features do applications need, and what features can be incorporated
smoothly in existing first-order proof calculi and provers?
How can we best extend first-order reasoning techniques beyond first-order logic?
Can proof-assistant-style automation and first-order reasoning techniques be combined in
a synergetic fashion?
What are good strategies for automatic induction and coinduction or invariant synthesis?
Is a higher layer of reasoning, in the spirit of proof planning, necessary to solve more
difficult higher-order problems?

17371

28 17371 – Deduction Beyond First-Order Logic

2 Table of Contents

Executive Summary
Jasmin Christian Blanchette, Carsten Fuhs, Viorica Sofronie-Stokkermans, and Cesare
Tinelli . 26

Overview of Talks
What QFBAPA can do for Description Logics
Franz Baader . 30

Automating Free Logic in HOL, with an Experimental Application in Category
Theory
Christoph Benzmüller . 30

Towards Strong Higher-Order Automation for Fast Interactive Verification
Jasmin Christian Blanchette . 31

Building a Proof Checker with Partial Functions
Hans de Nivelle . 31

Scalable Fine-Grained Proofs for Formula Processing
Pascal Fontaine . 32

Harnessing First Order Termination Provers Using Higher Order Dependency Pairs
Carsten Fuhs . 32

Automated Complexity Analysis for Java Programs
Jürgen Giesl and Florian Frohn . 33

Why user experiments matter for automated reasoning
Reiner Hähnle . 33

Automating Proofs by (co)-Induction and Theory Exploration
Moa Johansson . 33

What else can automation do for proof assistants
Cezary Kaliszyk . 34

Efficient Interpolant generation algorithms based on quantifier elimination: EUF,
Octagons, . . .
Deepak Kapur . 34

Higher-order Term Rewriting
Cynthia Kop . 35

An Abstraction-Refinement Framework for Reasoning with Large Theories
Konstantin Korovin . 35

Constrained Resolution via (Almost) First-order Theorem Provers
Tomer Libal . 36

Root-balanced Trees: Verified Algorithms Analysis
Tobias Nipkow . 36

Difference between Program Verification via Hoare Logic and Rewriting Induction
Naoki Nishida . 37

Featherweight alias control using types
Andrei Paskevich . 37

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 29

Automating Separation Logic Reasoning using SMT Solvers
Ruzica Piskac . 37

Friends with benefits: Coinduction and corecursion in Isabelle/HOL
Andrei Popescu . 38

Fast and Slow Synthesis Procedures in SMT
Andrew Joseph Reynolds . 38

Synthesising Regular Sets and Relations with a SAT Solver
Philipp Rümmer . 39

Automated Forgetting, Uniform Interpolation and Second-Order Quantifier Elimin-
ation
Renate Schmidt . 39

Towards a classification of ATP proof tasks (part 2)
Stephan Schulz . 40

Compositional entailment checking for theories based on separation logic
Mihaela Sighireanu . 41

On Symbol Elimination in Theory Extensions
Viorica Sofronie-Stokkermans . 41

Flexible Theorem Proving in Modal Logics
Alexander Steen . 42

Cyclic Proofs with Ordering Constraints
Sorin Stratulat . 42

Symbolic Execution and Program Synthesis
Thomas Ströder . 43

Recent Improvements of Theory Reasoning in Vampire
Martin Suda . 43

SMT-LIB 3: Bringing higher-order logic to SMT
Cesare Tinelli . 44

Beyond Deduction
Josef Urban . 44

Participants . 46

17371

30 17371 – Deduction Beyond First-Order Logic

3 Overview of Talks

3.1 What QFBAPA can do for Description Logics
Franz Baader (TU Dresden, DE)

License Creative Commons BY 3.0 Unported license
© Franz Baader

Joint work of Franz Baader, Andreas Ecke
Main reference Franz Baader, Andreas Ecke: “Extending the Description Logic ALC with More Expressive

Cardinality Constraints on Concepts”, in Proc. of the 3rd Global Conf. on Artificial Intelligence
(GCAI 2017), EPiC Series in Computing, Vol. 50, pp. 6–19, EasyChair, 2017.

URL http://dx.doi.org/10.29007/f3hh

Considered from an abstract point of view, Description Logics (DLs) allow their users to
state inclusion constraints between concepts (i.e., sets) and to state cardinality constraints
for concepts and role successors. The constraints that can be formulated in DLs are
usually of a very restricted form. We show that, by using the quantifier-free fragment of
Boolean Algebra with Presburger Arithmetic (QFBAPA) to formulate constraints on sets
and their cardinalities, we can considerably extend the expressive power without increasing
the complexity of reasoning.

3.2 Automating Free Logic in HOL, with an Experimental Application
in Category Theory

Christoph Benzmüller (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Christoph Benzmüller

Joint work of Christoph Benzmüller, Dana S. Scott
Main reference Christoph Benzmüller, Dana S. Scott: “Axiomatizing Category Theory in Free Logic”, CoRR,

Vol. abs/1609.01493, 2016.
URL http://arxiv.org/abs/1609.01493

A shallow semantical embedding of free logic in classical higher-order logic is presented,
which enables the off-the-shelf application of higher-order interactive and automated theorem
provers for the formalisation and verification of free logic theories. Subsequently, this approach
is applied to a selected domain of mathematics: starting from a generalization of the standard
axioms for a monoid a stepwise development of various, mutually equivalent foundational
axiom systems for category theory is presented. As a side-effect of this work some (minor)
issue in a prominent category theory textbook has been revealed.

The purpose of this work is not to claim any novel results in category theory, but to
demonstrate an elegant way to “implement” and utilize interactive and automated reasoning
in free logic, and to present illustrative experiments.

References
1 Christoph Benzmüller and Dana Scott. Automating free logic in Isabelle/HOL. In G.-

M. Greuel, T. Koch, P. Paule, and A. Sommese, editors, Mathematical Software – ICMS
2016, 5th International Congress, Proceedings, volume 9725 of LNCS, pages 43–50, Berlin,
Germany, 2016. Springer. URL: http://christoph-benzmueller.de/papers/C57.pdf, doi:
10.1007/978-3-319-42432-3_6.

2 Christoph Benzmüller and Dana S. Scott. Axiomatizing category theory in free logic. arXiv,
http://arxiv.org/abs/1609.01493 , 2016.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.29007/f3hh
https://doi.org/10.29007/f3hh
https://doi.org/10.29007/f3hh
http://dx.doi.org/10.29007/f3hh
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1609.01493
http://arxiv.org/abs/1609.01493
http://arxiv.org/abs/1609.01493
http://christoph-benzmueller.de/papers/C57.pdf
http://dx.doi.org/10.1007/978-3-319-42432-3_6
http://dx.doi.org/10.1007/978-3-319-42432-3_6
http://arxiv.org/abs/1609.01493

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 31

3 Christoph Benzmüller. Universal Reasoning, Rational Argumentation and Human-Machine
Interaction. arXiv, http://arxiv.org/abs/1703.09620 , 2017.

3.3 Towards Strong Higher-Order Automation for Fast Interactive
Verification

Jasmin Christian Blanchette (Vrije Universiteit Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Jasmin Christian Blanchette

We believe that first-order automatic provers are the best tools available to perform most of
the tedious logical work inside proof assistants. From this point of view, it seems desirable
to enrich superposition and SMT (satisfiability modulo theories) with higher-order reasoning
in a careful manner, to preserve their good properties. Representative benchmarks from the
interactive theorem proving community can guide the design of proof rules and strategies.
With higher-order superposition and higher-order SMT in place, highly automatic provers
could be built on modern superposition provers and SMT solvers, following a stratified
architecture reminiscent of that of modern SMT solvers. We hope that these provers will
bring a new level of automation to the users of proof assistants. These challenges and
work plan are at the core of the Matryoshka project, funded for five years by the European
Research Council. We encourage researchers motivated by the same goals to get in touch
with us, subscribe to our mailing list, and join forces.

3.4 Building a Proof Checker with Partial Functions
Hans de Nivelle (University of Wroclaw, PL)

License Creative Commons BY 3.0 Unported license
© Hans de Nivelle

Main reference Hans de Nivelle: “Theorem proving for classical logic with partial functions by reduction to Kleene
logic”, J. Log. Comput., Vol. 27(2), pp. 509–548, 2017.

URL http://dx.doi.org/10.1093/logcom/exu071

In 2010–2013 I developed a 3-valued logic for partial functions. During 2013–2014, I tried to
integrate this logic into an interactive proof checker. This attempt was unsuccessful. The
system worked, but the main goal, to obtain a truly user friendly proof checker, was not
obtained. In this talk, I summarize a new attempt, which has not been implemented yet,
hoping to get feedback. I discuss the following components:

The basics of the underlaying 3-valued logic and how to generalize this logic to higher-
order.
How I think that one should build theories (using the little theory approach of Farmer,
Guttman and Thayer). Theories can be substantive or adjective in nature.
Type Reductions. Explicit type conditions are useful, but turned out unpleasant in
practical use, especially in higher-order. I explain how conventional, more user-friendly
type declarations can be translated into explicit type declarations by means of reduction.

17371

http://arxiv.org/abs/1703.09620
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1093/logcom/exu071
http://dx.doi.org/10.1093/logcom/exu071
http://dx.doi.org/10.1093/logcom/exu071

32 17371 – Deduction Beyond First-Order Logic

3.5 Scalable Fine-Grained Proofs for Formula Processing
Pascal Fontaine (LORIA & Inria – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Pascal Fontaine

Joint work of Haniel Barbosa, Jasmin Christian Blanchette, Simon Cruanes, Daniel El Ouraoui, Pascal Fontaine
Main reference Haniel Barbosa, Jasmin Christian Blanchette, Pascal Fontaine: “Scalable Fine-Grained Proofs for

Formula Processing”, in Proc. of the Automated Deduction - CADE 26 - 26th International
Conference on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings,
Lecture Notes in Computer Science, Vol. 10395, pp. 398–412, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-63046-5_25

We presented a framework for processing formulas in automatic theorem provers, with
generation of detailed proofs. The main components are a generic contextual recursion
algorithm and an extensible set of inference rules. Clausification, skolemization, theory-
specific simplifications, and expansion of ‘let’ expressions, and beta-reduction are instances
of this framework. With suitable data structures, proof generation adds only a linear-time
overhead, and proofs can be checked in linear time. We implemented the approach in the
SMT solver veriT. This allowed us to dramatically simplify the code base while increasing
the number of problems for which detailed proofs can be produced, which is important for
independent checking and reconstruction in proof assistants. This talk presented material
accepted at CADE 2017 and at PxTP 2017.

3.6 Harnessing First Order Termination Provers Using Higher Order
Dependency Pairs

Carsten Fuhs (Birkbeck, University of London, GB)

License Creative Commons BY 3.0 Unported license
© Carsten Fuhs

Joint work of Carsten Fuhs, Cynthia Kop
Main reference Carsten Fuhs, Cynthia Kop: “Harnessing First Order Termination Provers Using Higher Order

Dependency Pairs”, in Proc. of the Frontiers of Combining Systems, 8th International Symposium,
FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011. Proceedings, Lecture Notes in Computer
Science, Vol. 6989, pp. 147–162, Springer, 2011.

URL https://doi.org/10.1007/978-3-642-24364-6_11

Many functional programs and higher order term rewrite systems contain, besides higher
order rules, also a significant first order part. We discuss how an automatic termination
prover can split a rewrite system into a first order and a higher order part. The results are
applicable to all common styles of higher order rewriting with simple types, although some
dependency pair approach is needed to use them.

This talk is based on joint work with Cynthia Kop. A corresponding paper has appeared
in the proceedings of FroCoS 2011.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-24364-6_11
http://dx.doi.org/10.1007/978-3-642-24364-6_11
http://dx.doi.org/10.1007/978-3-642-24364-6_11
http://dx.doi.org/10.1007/978-3-642-24364-6_11
https://doi.org/10.1007/978-3-642-24364-6_11

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 33

3.7 Automated Complexity Analysis for Java Programs
Jürgen Giesl (RWTH Aachen, DE) and Florian Frohn

License Creative Commons BY 3.0 Unported license
© Jürgen Giesl and Florian Frohn

Joint work of Florian Frohn, Jürgen Giesl
Main reference Florian Frohn, Jürgen Giesl: “Complexity Analysis for Java with AProVE”, in Proc. of the

Integrated Formal Methods - 13th International Conference, IFM 2017, Turin, Italy, September
20-22, 2017, Proceedings, Lecture Notes in Computer Science, Vol. 10510, pp. 85–101, Springer,
2017.

URL https://doi.org/10.1007/978-3-319-66845-1_6

Automated termination analysis is an important area in program verification which goes
beyond classical first-order reasoning. While AProVE is one of the most powerful tools for
termination analysis of Java since many years, we now extend our technique in order to
analyze the complexity of Java programs as well.

Our approach first executes the program symbolically on an abstract domain which
uses heap predicates in addition to the usual first-order constructs. Based on this symbolic
execution, we develop a novel transformation of (possibly heap-manipulating) Java programs
to integer transition systems (ITSs). This allows us to apply existing complexity analyzers for
standard first-order ITSs in order to infer runtime bounds for Java programs. We demonstrate
the power of our implementation on an established benchmark set.

3.8 Why user experiments matter for automated reasoning
Reiner Hähnle (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Reiner Hähnle

Joint work of Martin Hentschel, Reiner Hähnle, Richard Bubel
Main reference Martin Hentschel, Reiner Hähnle, Richard Bubel: “An empirical evaluation of two user interfaces

of an interactive program verifier”, in Proc. of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pp. 403–413, ACM,
2016.

URL http://dx.doi.org/10.1145/2970276.2970303

I argue why empirical research, such as experimental studies, are a valuable form of contri-
bution in automated reasoning and should have a place in our conferences and journals.

3.9 Automating Proofs by (co)-Induction and Theory Exploration
Moa Johansson (Chalmers University of Technology – Göteborg, SE)

License Creative Commons BY 3.0 Unported license
© Moa Johansson

Joint work of Moa Johansson, Nicholas Smallbone, Koen Claessen, Dan Rosen, Irene Lobo Valbuena
Main reference Moa Johansson: “Automated Theory Exploration for Interactive Theorem Proving: - An

Introduction to the Hipster System”, in Proc. of the Interactive Theorem Proving - 8th
International Conference, ITP 2017, Brasília, Brazil, September 26-29, 2017, Proceedings, Lecture
Notes in Computer Science, Vol. 10499, pp. 1–11, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-66107-0_1

One of the more challenging aspects in automating all but the simplest inductive proofs
is how to discover auxiliary lemmas. In our recent work, we have taken a “bottom-up”
approach to lemma discovery using theory exploration. Theory exploration is a technique

17371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-66845-1_6
http://dx.doi.org/10.1007/978-3-319-66845-1_6
http://dx.doi.org/10.1007/978-3-319-66845-1_6
http://dx.doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-319-66845-1_6
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2970276.2970303
http://dx.doi.org/10.1145/2970276.2970303
http://dx.doi.org/10.1145/2970276.2970303
http://dx.doi.org/10.1145/2970276.2970303
http://dx.doi.org/10.1145/2970276.2970303
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-66107-0_1
http://dx.doi.org/10.1007/978-3-319-66107-0_1
http://dx.doi.org/10.1007/978-3-319-66107-0_1
http://dx.doi.org/10.1007/978-3-319-66107-0_1
http://dx.doi.org/10.1007/978-3-319-66107-0_1

34 17371 – Deduction Beyond First-Order Logic

for automatically discovering interesting lemmas using testing. A richer background theory
can then be constructed, allowing harder theorems to be proved automatically. I will show a
demo of our theory exploration system Hipster for Isabelle/HOL, and explain a bit about
how it works.

Earlier work on lemma discovery by proof-planning critics took the opposite “top-down”
approach: here proof failures were analysed in an attempt to patch the failed proof. This
worked very well for many cases were the missing lemma was a simple generalisation of
the stuck proof state (called lemma calculation), but less well when the required lemma for
instance was a generalisation of the original conjecture.

I believe lemma discovery by theory exploration could fit very nicely in with systems like
Sledgehammer. It can work as a complement when useful facts are missing from the available
libraries, for example in new theory developments. Unlike proof-critics, it is not dependent
on particular proof-planning heuristics and systems (like rippling), and could therefore more
easily be used in conjunction with first- or higher-order automated provers.

3.10 What else can automation do for proof assistants
Cezary Kaliszyk (Universität Innsbruck, AT)

License Creative Commons BY 3.0 Unported license
© Cezary Kaliszyk

Joint work of Łukasz Czajka, Thibault Gauthier, Cezary Kaliszyk

I this talk I will present the progress in automation for proof assistants. I will introduce the
hammer for Coq, which can now re-prove 40% of the theorems in the Coq standard library
fully automatically. I will discuss combining hammer-style premise selection with learning
to use tactics and discuss automation optimizations for reasoning about types in a logical
framework.

References
1 Łukasz Czajka and Cezary Kaliszyk. Hammer for Coq: Automation for Dependent Type

Theory. Submitted, 2017
2 Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe: Learning to reason with

HOL4 Tactics. LPAR 2017, volume 46 of EPiC, pp. 125–143. 2017

3.11 Efficient Interpolant generation algorithms based on quantifier
elimination: EUF, Octagons, . . .

Deepak Kapur (University of New Mexico – Albuquerque, US)

License Creative Commons BY 3.0 Unported license
© Deepak Kapur

In a paper in 2006, Kapur, Majumdar and Zarba observed a connection between quantifier
elimination and interpolant generation which was probably well-known but not explicitly
reported in the literature on automated reasoning and formal methods. Since then I have
been investigating how to develop heuristics for quantifier elimination to generate interpolants.
Particularly, there is no need to have access to a proof to generate interpolants, a methodology
widely used in the formal methods community.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 35

I will start with an interpolant generation algorithm in the quantifier-free theory of
equality over uninterpreted symbols. Even though there are many algorithms reported in
the literature, there is little investigation about their complexity. Interpolants generated are
simple and can be efficiently represented using new symbols defined in terms of common
symbols. This is followed by an interpolant generation algorithm for octagonal formulas,
which is of complexity O(n3), where n is the number of variables; an interpolant generated
is a conjunction of octagonal formulas. Combination methods for interpolant generation over
subtheories can be developed as well. Another interesting outcome is an efficient algorithm
for generating congruence closure of conditional equations.

3.12 Higher-order Term Rewriting
Cynthia Kop (Radboud University Nijmegen, NL)

License Creative Commons BY 3.0 Unported license
© Cynthia Kop

One of the key problems in higher-order term rewriting is that there is no true consensus of
what, exactly, “higher-order term rewriting” means. There are disagreements on the necessity
of including types and/or binders, and various–sometimes incompatible–definitions.

In this talk, I have discussed a number of different styles of higher-order term rewriting,
their strengths and weaknesses, and the rough differences between them. I have also discussed
some of the technology for proving termination, in particular the notion of computability.

3.13 An Abstraction-Refinement Framework for Reasoning with Large
Theories

Konstantin Korovin (University of Manchester, UK)

License Creative Commons BY 3.0 Unported license
© Konstantin Korovin

Joint work of Konstantin Korovin, Julio Cesar Lopez Hernandez
Main reference Julio Cesar Lopez Hernandez, Konstantin Korovin: “Towards an Abstraction-Refinement

Framework for Reasoning with Large Theories”, in IWIL@LPAR 2017, Vol. 1, pp. 119-123, Kalpa
Publications in Computing, EasyChair, 2017.

URL https://doi.org/10.29007/4zh8

We presented an approach to reasoning with large theories which is based on the abstraction-
refinement framework [1]. The proposed approach consists of over-approximations, under-
approximations and their combination. We discussed different abstractions and refinement
strategies for reasoning with large first-order theories.

References
1 Julio Cesar Lopez Hernandez and Konstantin Korovin. Towards an Abstraction-Refinement

Framework for Reasoning with Large Theories. IWIL@LPAR 2017, vol. 1, Kalpa Publica-
tions in Computing, EasyChair, 2017.

17371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.29007/4zh8
https://doi.org/10.29007/4zh8
https://doi.org/10.29007/4zh8
https://doi.org/10.29007/4zh8

36 17371 – Deduction Beyond First-Order Logic

3.14 Constrained Resolution via (Almost) First-order Theorem Provers
Tomer Libal (Inria Saclay – Île-de-France, FR)

License Creative Commons BY 3.0 Unported license
© Tomer Libal

When considering how to use techniques from first-order theorem proving in higher-order
provers, the ideal would be to use the first-order theorem provers themselves. In order to
deal with the complexities which arise when dealing with higher-order terms, these provers
are sometimes being applied in a constrained manner within higher-order ones. We consider
a possible approach of isolating the (almost) first-order content of higher-order formulae
by pre-processing and then using existing first-order provers in order to obtain a (partial)
proof. This proof will be pending the successful discharge of constraints generated in the
pre-processing step. An advantage of this approach is its ability to use the full spectrum of
capabilities of first-order theorem provers, such as indexing, redundancy elimination, etc.

3.15 Root-balanced Trees: Verified Algorithms Analysis
Tobias Nipkow (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Tobias Nipkow

Main reference Tobias Nipkow: “Verified Root-Balanced Trees”, in Proc. of the Programming Languages and
Systems - 15th Asian Symposium, APLAS 2017, Suzhou, China, November 27-29, 2017,
Proceedings, Lecture Notes in Computer Science, Vol. 10695, pp. 255–272, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-71237-6_13

This talk presents recent work on verifying complexity of functional programs in Isabelle/HOL
[1, 2, 3]. The focus of the presentation will be on the amortized complexity of a brand of
search trees (invented by Andersson) where rebalancing happens only when the tree becomes
badly unbalanced at the root. This is accompanied by a general discussion on modelling
techniques for timing analysis and on automatic proofs of functional correctness.

References
1 Tobias Nipkow. Amortized Complexity Verified. Interactive Theorem Proving 2015, LNCS

9236, Springer, 2015.
2 Tobias Nipkow. Automatic Functional Correctness Proofs for Functional Search Trees.

Interactive Theorem Proving 2016, LNCS 9807, Springer, 2016.
3 Tobias Nipkow. Verified Root-Balanced Trees. Asian Symposium on Programming Lan-

guages and Systems 2017, LNCS, Springer, 2017.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-71237-6_13
http://dx.doi.org/10.1007/978-3-319-71237-6_13
http://dx.doi.org/10.1007/978-3-319-71237-6_13
http://dx.doi.org/10.1007/978-3-319-71237-6_13

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 37

3.16 Difference between Program Verification via Hoare Logic and
Rewriting Induction

Naoki Nishida (Nagoya University, JP)

License Creative Commons BY 3.0 Unported license
© Naoki Nishida

Joint work of Naoki Nishida, Shinnosuke Mizutani
Main reference Shinnosuke Mizutani, Naoki Nishida, “Transforming Proof Tableaux of Hoare Logic into Inference

Sequences of Rewriting Induction”, Workshop on Rewriting Techniques for Program
Transformations and Evaluation, Oxford, UK, September 8, 2017.

URL https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf

In this talk, I first introduce rewriting induction on constrained term rewriting and then
introduce a transformation of a proof tableau of Hoare logic into an inference sequence of
constrained rewriting induction. Finally, I discuss difference between program verification
via these two approaches.

3.17 Featherweight alias control using types
Andrei Paskevich (University of Paris Sud – Orsay, FR)

License Creative Commons BY 3.0 Unported license
© Andrei Paskevich

Joint work of Andrei Paskevich, Léon Gondelman, Jean-Christophe Filliâtre
Main reference Jean-Christophe Filliâtre, Léon Gondelman, Andrei Paskevich, “A Pragmatic Type System for

Deductive Verification”, Technical report, Inria hal-01256434, 2016.
URL https://hal.inria.fr/hal-01256434

In the context of deductive verification, it is customary today to handle programs with
pointers using either separation logic, dynamic frames, or explicit memory models. Yet we
can observe that in numerous programs, a large amount of code fits within the scope of Hoare
logic, provided we can statically control aliasing. When this is the case, the code correctness
can be reduced to simpler verification conditions which do not require any explicit memory
model. This makes verification conditions more amenable both to automated theorem proving
and to manual inspection and debugging.

In this talk, we show a method of such static aliasing control for a programming language
featuring nested data structures with mutable components. Our solution is based on a type
system with singleton regions and effects.

3.18 Automating Separation Logic Reasoning using SMT Solvers
Ruzica Piskac (Yale University – New Haven, US)

License Creative Commons BY 3.0 Unported license
© Ruzica Piskac

Main reference Ruzica Piskac, Thomas Wies, Damien Zufferey: “Automating Separation Logic Using SMT”, in
Proc. of the Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, Lecture Notes in Computer Science, Vol. 8044,
pp. 773–789, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-39799-8_54

Separation logic (SL) follows a discipline of local reasoning that mimics human intuition
about how to prove the correctness of heap-manipulating programs. Central to this discipline
is the frame rule, a Hoare logic proof rule that decomposes the global heap into a footprint,

17371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf
https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf
https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf
https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://hal.inria.fr/hal-01256434
https://hal.inria.fr/hal-01256434
https://hal.inria.fr/hal-01256434
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54

38 17371 – Deduction Beyond First-Order Logic

the region on which a program fragment operates, and a frame, the region that remains
untouched by the program fragment. Automation of the frame rule involves the actual
inference of the frame from SL assertions expressing the global heap and the footprint.

In this talk, I present reductions of decidable separation logic fragments to decidable
first-order theories that fit well into the SMT framework. We show how these reductions can
be used to automate satisfiability, entailment, frame inference, and abduction problems for
separation logic using SMT solvers. Our approach provides a simple method of integrating
separation logic into existing verification tools that provide SMT backends, and an elegant
way of combining separation logic fragments with other decidable first-order theories.

3.19 Friends with benefits: Coinduction and corecursion in
Isabelle/HOL

Andrei Popescu (Middlesex University – London, GB)

License Creative Commons BY 3.0 Unported license
© Andrei Popescu

Joint work of Andrei Popescu, Jasmin Blanchette, Dmitriy Traytel, Aymeric Bouzy, Andreas Lochbihler, and
others

Main reference Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei Popescu, Dmitriy
Traytel: “Friends with Benefits - Implementing Corecursion in Foundational Proof Assistants”, in
Proc. of the Programming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Lecture Notes in Computer
Science, Vol. 10201, pp. 111–140, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-662-54434-1_5

Isabelle/HOL has been recently endowed with an infrastructure for coinductive datatypes
(codatatypes), corecursive functions and coinductive proofs. A codatatype’s corecursion and
coinduction schemes evolve in tandem by learning of new “friendly” operators from the user.

3.20 Fast and Slow Synthesis Procedures in SMT
Andrew Joseph Reynolds (University of Iowa – Iowa City, US)

License Creative Commons BY 3.0 Unported license
© Andrew Joseph Reynolds

Joint work of Andrew Joseph Reynolds, Cesare Tinelli, Clark Barrett, Viktor Kuncak, Morgan Deters, Tim King
Main reference Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, Clark W. Barrett:

“Counterexample-Guided Quantifier Instantiation for Synthesis in SMT”, in Proc. of the Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part II, Lecture Notes in Computer Science, Vol. 9207, pp. 198–216, Springer,
2015.

URL http://dx.doi.org/10.1007/978-3-319-21668-3_12

Recent techniques for automated synthesis in SMT solvers follow two paradigms. The first
is based on first-order quantifier instantiation, and can be used to tackle a restricted but
fairly common class of properties, known as single invocation properties. The second relies
on a deep embedding of the synthesis problem into the theory of inductive datatypes, which
can then be solved using enumerative syntax-guided techniques. This talk focuses on the
advantages and disadvantages of these two paradigms, and how they can potentially be
combined.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-319-21668-3_12

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 39

3.21 Synthesising Regular Sets and Relations with a SAT Solver
Philipp Rümmer (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Philipp Rümmer

Joint work of Ondrej Lengál, Anthony Widjaja Lin, Rupak Majumdar, Philipp Rümmer
Main reference Anthony W. Lin, Philipp Rümmer: “Liveness of Randomised Parameterised Systems under

Arbitrary Schedulers”, in Proc. of the Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, Lecture
Notes in Computer Science, Vol. 9780, pp. 112–133, Springer, 2016.

URL https://doi.org/10.1007/978-3-319-41540-6_7

We consider the problem of verifying liveness for systems with a finite, but unbounded,
number of processes, commonly known as parameterised systems. Typical examples of such
systems include distributed protocols (e.g., for the dining philosopher problem). Unlike the
case of verifying safety, proving liveness is still considered extremely challenging, especially
in the presence of randomness in the system. We introduce an automatic method of proving
liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness
as a two-player reachability game (between Scheduler and Process), our method is a CEGAR
approach that synthesises a progress relation for Process that can be symbolically represented
as a finite-state automaton. The method constructs a progress relation by means of a suitable
Boolean encoding and incremental SAT solving. Our experiments show that our algorithm
is able to prove liveness automatically for well-known randomised distributed protocols,
including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-
stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this
is the first fully-automatic method that can prove liveness for randomised protocols.

3.22 Automated Forgetting, Uniform Interpolation and Second-Order
Quantifier Elimination

Renate Schmidt (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
© Renate Schmidt

Joint work of Renate Schmidt, Andrzej Szalas, Patrick Koopmann, Yizheng Zhao

Forgetting transforms a knowledge base into a compact representation by eliminating un-
desired symbols, which allows users to focus on specific parts of ontologies in order to
create decompositions and restricted views for in depth analysis or sharing with other users.
Forgetting is also useful for information hiding, explanation generation, semantic difference
computation and ontology debugging. Other names for forgetting are: second-order quantifier
elimination uniform interpolation, variable elimination, predicate elimination, and projection.
Because forgetting is an inherently difficult problem – it is much harder than standard
reasoning (satisfiability and validity testing) – and very few logics are known to be complete
for forgetting (or have the uniform interpolation property), there has been insufficient research
on the topic and few forgetting tools are available.

In my presentation gave a brief overview of the methods and success stories of three
forgetting tools: SCAN which performs second-order quantifier elimination [1, 2], LETHE
which solves the uniform interpolation problem for many expressive description problems
extending ALC [3, 4], and FAME which computes semantic forgetting solutions for description
logics of different expressivity [5, 6].

17371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-41540-6_7
http://dx.doi.org/10.1007/978-3-319-41540-6_7
http://dx.doi.org/10.1007/978-3-319-41540-6_7
http://dx.doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-319-41540-6_7
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

40 17371 – Deduction Beyond First-Order Logic

References
1 Gabbay, D. M. and Ohlbach, H. J. (1992), Quantifier Elimination in Second-Order Predic-

ate Logic. South African Computer Journal 7, 35–43.
2 Gabbay, D. M., Schmidt, R. A. and Szałas, A. (2008), Second-Order Quantifier Elimination:

Foundations, Computational Aspects and Applications. Studies in Logic: Mathematical
Logic and Foundations 12, College Publications.

3 Koopmann, P. and Schmidt, R. A. (2013), Forgetting Concept and Role Symbols in ALCH-
Ontologies. In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2013).
Lecture Notes in Computer Science 8312, Springer, 552–567.

4 Koopmann, P. and Schmidt, R. A. (2014), Count and Forget: Uniform Interpolation of
SHQ-Ontologies. In Automated Reasoning (IJCAR 2014). Lecture Notes in Artificial Intel-
ligence 8562, Springer, 434–448.

5 Zhao, Y. and Schmidt, R. A. (2016), Forgetting Concept and Role Symbols in
ALCOIHµ+(∇,u)-Ontologies. In Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence (IJCAI’16). AAAI Press/IJCAI, 1345–1352.

6 Zhao, Y. and Schmidt, R. A. (2017), Role Forgetting for ALCOQH(∇)-Ontologies Using an
Ackermann Approach. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence (IJCAI’17). AAAI Press/IJCAI, 1354–1361.

3.23 Towards a classification of ATP proof tasks (part 2)
Stephan Schulz (Duale Hochschule Baden-Württemberg – Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Stephan Schulz

Automated theorem provers for first-order logic search for proofs in an infinite and highly
branching search space. To be successful, they critically depend on various search heuristics or
strategies. Experience shows that different strategies perform well on different problems. In
this work, we try to automate the process of assigning a good strategy for a given problem via
machine learning. In a first step, we use extensive test data to automatically cluster problems
into classes showing similar behaviour under different strategies, using a combination of
PCA for dimensionality reduction and k-means clustering to group similar problems. In
a second step, we then learn properties of these clusters using standard machine learning
techniques and a set of signature-structural features. Initial results already suggest better
performance than the previous method of hand-selecting features and feature value splits for
the classification.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 41

3.24 Compositional entailment checking for theories based on
separation logic

Mihaela Sighireanu (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
© Mihaela Sighireanu

Joint work of Constantin Enea, Mihaela Sighireanu, and Zhilin Wu
Main reference Constantin Enea, Mihaela Sighireanu, Zhilin Wu: “On Automated Lemma Generation for

Separation Logic with Inductive Definitions”, in Proc. of the Automated Technology for
Verification and Analysis - 13th International Symposium, ATVA 2015, Shanghai, China, October
12-15, 2015, Proceedings, Lecture Notes in Computer Science, Vol. 9364, pp. 80–96, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-24953-7_7

The core of the SPEN solver is a semi-decision procedure for checking entailment between
separation logic formulas with inductive predicates. In this talk, I’ll briefly present this
procedure and its extensions for theories combining separation logic with arithmetic, set, and
inductive types constraints.

3.25 On Symbol Elimination in Theory Extensions
Viorica Sofronie-Stokkermans (Universität Koblenz-Landau, DE)

License Creative Commons BY 3.0 Unported license
© Viorica Sofronie-Stokkermans

Main reference Viorica Sofronie-Stokkermans: “On Interpolation and Symbol Elimination in Theory Extensions”,
in Proc. of the Automated Reasoning - 8th International Joint Conference, IJCAR 2016, Coimbra,
Portugal, June 27 - July 2, 2016, Proceedings, Lecture Notes in Computer Science, Vol. 9706,
pp. 273–289, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-319-40229-1_19

Many problems in computer science (e.g. in program verification) can be reduced to checking
satisfiability of ground formulae w.r.t. a theory which can be a standard theory (for instance
linear arithmetic) or a complex theory (typically the extension of a base theory T0 with
additional function symbols axiomatized by a set K of formulae, or a combination of theories).
SMT solvers are tuned for efficiently checking satisfiability of ground formulae in increasingly
complex theories; the output can be “satisfiable”, “unsatisfiable” – or possibly “unknown” if
incomplete methods are used, or else termination cannot be guaranteed.

More interesting is to go beyond yes/no answers, i.e. to consider parametric systems – in
which the parameters can be values or functions – and infer constraints on the parameters
which guarantee that certain properties are met (for instance constraints which guarantee
the unsatisfiability of certain formulae). Such constraints can be obtained by performing
quantifier elimination or, more generally, symbol elimination.

In this talk we present a symbol elimination method in extensions of a theory T0 with
additional function symbols whose properties are axiomatised using a set K of clauses. We
analyze situations in which we can perform symbol elimination in a hierarchical way, relying
on existing mechanisms for symbol elimination in T0. This is for instance possible if the
theory T0 allows quantifier elimination. We present various applications of this method. The
results are described in [1].

References
1 Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory extensions.

In: Olivetti, N. and Tiwari, A. (eds), Proc. IJCAR 2016, volume 9706 of LNCS, pages
273–289, Springer (2016)

17371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-40229-1_19
http://dx.doi.org/10.1007/978-3-319-40229-1_19
http://dx.doi.org/10.1007/978-3-319-40229-1_19
http://dx.doi.org/10.1007/978-3-319-40229-1_19
http://dx.doi.org/10.1007/978-3-319-40229-1_19

42 17371 – Deduction Beyond First-Order Logic

3.26 Flexible Theorem Proving in Modal Logics
Alexander Steen (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Alexander Steen

Joint work of Alexander Steen, Christoph Benzmüller, Alexander Steen, Tobias Gleißner
Main reference T. Gleißner, A. Steen, C. Benzmüller: “Theorem Provers For Every Normal Modal Logic,” in Proc.

of the 21st Int’l Conf. on Logic for Programming (LPAR-21), Artificial Intelligence and Reasoning,
Maun, Botswana, 7-12th May 2017, EPiC Series in Computing, Vol. 46, pp. 14–30, EasyChair,
2017.

URL https://doi.org/10.29007/jsb9

Computer-assisted reasoning in non-classical logics is of increasing interest in artificial
intelligence (AI), computer science, mathematics and philosophy. Several powerful automated
and interactive theorem proving systems have been developed over the past decades. However,
with a few exceptions, most of the available systems focus on classical logics only. In particular
for quantified variants there are only few systems available to date. In this talk, I present a
uniform automation approach for a wide range of different modal logics. It is based on a
shallow embedding into classical higher-order logic and can flexibly account for semantical
variations of the desired modal logic at hand. Based on a specification of the modal logic’s
semantics, a procedure is presented that algorithmically translates the source problem into a
classical (non-modal) HOL problem. This procedure was implemented within Leo-III and as a
stand-alone pre-processing tool, ready to use in conjunction with any THF-compliant theorem
prover. The choice of the concrete modal logic is thereby specified within the problem as a
meta-logical statement. By combining our tool with one or more THF-compliant theorem
provers we accomplish the most widely applicable modal logic theorem prover available to
date, i.e. no other available prover covers more variants of propositional and quantified modal
logics. Despite this generality, our approach remains competitive, at least for quantified
modal logics, as our experiments demonstrate.

References
1 Christoph Benzmüller and Alexander Steen and Max Wisniewski. Leo-III Version 1.1 (Sys-

tem description), In IWIL Workshop and LPAR Short Presentations, EasyChair, Kalpa
Publications in Computing, Volume 1, pp. 11-26, 2017.

3.27 Cyclic Proofs with Ordering Constraints
Sorin Stratulat (University of Lorraine – Metz, FR)

License Creative Commons BY 3.0 Unported license
© Sorin Stratulat

Main reference Sorin Stratulat: “Cyclic Proofs with Ordering Constraints”, in Proc. of the Automated Reasoning
with Analytic Tableaux and Related Methods - 26th International Conference, TABLEAUX 2017,
Brasília, Brazil, September 25-28, 2017, Proceedings, Lecture Notes in Computer Science,
Vol. 10501, pp. 311–327, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-66902-1_19

CLKIDω is a sequent-based cyclic inference system able to reason on first-order logic with
inductive definitions. The current approach for verifying the soundness of CLKIDω proofs
is based on expensive model-checking techniques leading to an explosion in the number of
states.

We propose proof strategies that guarantee the soundness of a class of CLKIDω proofs
if some ordering and derivability constraints are satisfied. They are inspired from previous

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.29007/jsb9
https://doi.org/10.29007/jsb9
https://doi.org/10.29007/jsb9
https://doi.org/10.29007/jsb9
https://doi.org/10.29007/jsb9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-66902-1_19
http://dx.doi.org/10.1007/978-3-319-66902-1_19
http://dx.doi.org/10.1007/978-3-319-66902-1_19
http://dx.doi.org/10.1007/978-3-319-66902-1_19
http://dx.doi.org/10.1007/978-3-319-66902-1_19

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 43

works about cyclic well-founded induction reasoning, known to provide effective sets of
ordering constraints. A derivability constraint can be checked in linear time. Under certain
conditions, one can build proofs that implicitly satisfy the ordering constraints.

3.28 Symbolic Execution and Program Synthesis
Thomas Ströder (Metro Systems GmbH – Düsseldorf, DE)

License Creative Commons BY 3.0 Unported license
© Thomas Ströder

Joint work of Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten Fuhs, Jera Hensel,
Peter Schneider-Kamp, Cornelius Aschermann

Main reference Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten Fuhs, Jera Hensel,
Peter Schneider-Kamp, Cornelius Aschermann: “Automatically Proving Termination and Memory
Safety for Programs with Pointer Arithmetic”, J. Autom. Reasoning, Vol. 58(1), pp. 33–65, 2017.

URL http://dx.doi.org/10.1007/s10817-016-9389-x

Symbolic execution is a very powerful and flexible technique to obtain abstract representations
of program behaviors. From the abstraction, we synthesize programs in simple formal
languages for which sophisticated analyses of the properties we are interested in exist (of
course, the program synthesis must retain all relevant properties such that results for the
analyzed programs carry over to the original programs). Using this approach, we can reduce
higher-order reasoning problems to pure first-order reasoning. We illustrate this approach
by an example termination analysis of the strlen C program and give a brief outlook why
METRO is interested in such research topics.

3.29 Recent Improvements of Theory Reasoning in Vampire
Martin Suda (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Martin Suda

Joint work of Giles Reger, Martin Suda, Andrei Voronkov
Main reference M. Suda, G. Reger, A. Voronkov: “Unification with abstraction and theory instantiation in

saturation-based reasoning”, EasyChair Preprint no. 1, EasyChair, 2017.
URL https://doi.org/10.29007/hsh2

Over the past years Vampire has been progressively improving its ability to reason with
quantifiers and theories. Originally theory reasoning was only via theory axioms and
evaluation but over the past year two new techniques have been introduced. The first
is the recent work of AVATAR modulo theories, previously presented, for ground theory
reasoning. The second, the focus of this talk, consists of two new methods for reasoning with
non-ground theory clauses (where we currently focus on the theory of arithmetic). The first
new method is unification with abstraction where the notion of unification is extended to
introduce constraints where theory terms may not otherwise unify, e.g., p(2) may unify with
¬p(x+ 1)∨ q(x) to produce 2 6= x+ 1∨ q(x). This abstraction is performed lazily, as needed,
to allow the superposition theorem prover to make as much progress as possible without
the search space growing too quickly. The second new method utilises theory constraint
solving (an SMT solver) to perform reasoning within a clause to find an instance where
we can remove theory literals. This utilises the power of SMT solvers for theory reasoning
with non-ground clauses, reasoning which is currently achieved by the addition of prolific
theory axioms. Additionally, this second method can be used to discharge the constraints

17371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10817-016-9389-x
http://dx.doi.org/10.1007/s10817-016-9389-x
http://dx.doi.org/10.1007/s10817-016-9389-x
http://dx.doi.org/10.1007/s10817-016-9389-x
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.29007/hsh2
https://doi.org/10.29007/hsh2
https://doi.org/10.29007/hsh2

44 17371 – Deduction Beyond First-Order Logic

introduced by unification with abstraction. These methods were implemented within the
Vampire theorem prover and experimental results show that they are useful for solving
currently unsolved problems.

3.30 SMT-LIB 3: Bringing higher-order logic to SMT
Cesare Tinelli (University of Iowa – Iowa City, US)

License Creative Commons BY 3.0 Unported license
© Cesare Tinelli

Joint work of Clark Barrett, Pascal Fontaine, Cesare Tinelli

The SMT-LIB standard defines a common input/output language of commands to commu-
nicate with solvers for Satisfiability Modulo Theories (SMT) via a textual interface. The
widely adopted most recent version of the standard, Version 2.6, is based on an extension of
many-sorted first-order logic. Historically, has been adequate in most cases because SMT
solvers are themselves based on automated reasoning techniques for first-order logic. A
growing number of tools (interactive theorem provers, in particular) that leverage the power
of SMT solvers, however, are based on more powerful logics. This forces the developers of
these tools to implement often complex encodings of their problems in the less powerful
logic of SMT-LIB 2. Given the interest of some SMT solver developers in extending their
tools to higher-order logics, it would be beneficial for the field to extend the SMT-LIB 2
standard to some basic higher-order logic. This would simplify current encodings to SMT
and might also improve runtime performance. This talk proposes a higher-order version of
SMT-LIB based on simple type theory with rank-1 polymorphism. A distinguishing feature
of the new version is that it is largely backward compatible with SMT-LIB 2, which means
that applications and solvers not interested to the higher-order logic extensions are not
affected. Non-backward-compatible portions are essentially orthogonal to the higher-order
logic extension. They address other shortcomings of the current standard related to the way
a user can specify the particular logical fragment the input problem belongs to.

3.31 Beyond Deduction
Josef Urban (Czech Technical University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Josef Urban

Joint work of Josef Urban, Thibault Gauthier, Jan Jakubuv, Cezary Kaliszyk, Jiri Vyskocil
Main reference Cezary Kaliszyk, Josef Urban: “Learning-Assisted Automated Reasoning with Flyspeck”, J.

Autom. Reasoning, Vol. 53(2), pp. 173–213, 2014.
URL http://dx.doi.org/10.1007/s10817-014-9303-3

The talk will describe several ways of applying machine learning methods in theorem proving
and some ways of combining learning and deduction in feedback loops.

References
1 Jan Jakubuv, Josef Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine.

CICM 2017: 292-302. 2017
2 Cezary Kaliszyk, Josef Urban, Jiri Vyskocil: Automating Formalization by Statistical and

Semantic Parsing of Mathematics. ITP 2017: 12-27. 2017

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10817-014-9303-3
http://dx.doi.org/10.1007/s10817-014-9303-3
http://dx.doi.org/10.1007/s10817-014-9303-3

J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 45

3 Jan Jakubuv, Josef Urban: BliStrTune: hierarchical invention of theorem proving strategies.
CPP 2017: 43-52. 2017

4 Thibault Gauthier, Cezary Kaliszyk, Josef Urban: Initial Experiments with Statistical
Conjecturing over Large Formal Corpora. FM4M/MathUI/ThEdu/DP/WIP@CIKM 2016:
219-228. 2016

5 Cezary Kaliszyk, Josef Urban: MizAR 40 for Mizar 40. J. Autom. Reasoning 55(3): 245-256
(2015)

6 Cezary Kaliszyk, Josef Urban: Learning-Assisted Automated Reasoning with Flyspeck. J.
Autom. Reasoning 53(2): 173-213 (2014)

17371

46 17371 – Deduction Beyond First-Order Logic

Participants
Franz Baader

TU Dresden, DE
Christoph Benzmüller

FU Berlin, DE
Nikolaj S. Bjorner

Microsoft Corporation –
Redmond, US

Jasmin Christian Blanchette
VU University of Amsterdam, NL

James Brotherston
University College
London, GB

Chad E. Brown
Czech Technical University –
Prague, CZ

Hans de Nivelle
University of Wroclaw, PL

Pascal Fontaine
LORIA & INRIA – Nancy, FR

Carsten Fuhs
Birkbeck, University of
London, GB

Jürgen Giesl
RWTH Aachen, DE

Georges Gonthier
INRIA Saclay –
Île-de-France, FR

Reiner Hähnle
TU Darmstadt, DE

Swen Jacobs
Universität des Saarlandes, DE

Moa Johansson
Chalmers University of
Technology – Göteborg, SE

Cezary Kaliszyk
Universität Innsbruck, AT

Deepak Kapur
University of New Mexico –
Albuquerque, US

Chantal Keller
University of Paris Sud –
Orsay, FR

Cynthia Kop
University of Copenhagen, DK

Konstantin Korovin
University of Manchester, GB

K. Rustan M. Leino
Microsoft Corporation –
Redmond, US

Tomer Libal
INRIA Saclay –
Île-de-France, FR

Tobias Nipkow
TU München, DE

Naoki Nishida
Nagoya University, JP

Andrei Paskevich
University of Paris Sud –
Orsay, FR

Ruzica Piskac
Yale University – New Haven, US

Andrei Popescu
Middlesex University –
London, GB

Andrew Joseph Reynolds
University of Iowa –
Iowa City, US

Philipp Rümmer
Uppsala University, SE

Renate Schmidt
University of Manchester, GB

Stephan Schulz
Duale Hochschule
Baden-Württemberg –
Stuttgart, DE

Thomas Sewell
Data61 – Sydney, AU

Natarajan Shankar
SRI – Menlo Park, US

Mihaela Sighireanu
University Paris-Diderot, FR

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau, DE

Alexander Steen
FU Berlin, DE

Sorin Stratulat
University of Lorraine –
Metz, FR

Thomas Ströder
Metro Systems GmbH –
Düsseldorf, DE

Martin Suda
TU Wien, AT

Laurent Théry
INRIA Sophia Antipolis, FR

Cesare Tinelli
University of Iowa –
Iowa City, US

Josef Urban
Czech Technical University –
Prague, CZ

Christoph Weidenbach
MPI für Informatik –
Saarbrücken, DE

	Executive Summary Jasmin Christian Blanchette, Carsten Fuhs, Viorica Sofronie-Stokkermans, and Cesare Tinelli
	Table of Contents
	Overview of Talks
	What QFBAPA can do for Description Logics Franz Baader
	Automating Free Logic in HOL, with an Experimental Application in Category Theory Christoph Benzmüller
	Towards Strong Higher-Order Automation for Fast Interactive Verification Jasmin Christian Blanchette
	Building a Proof Checker with Partial Functions Hans de Nivelle
	Scalable Fine-Grained Proofs for Formula Processing Pascal Fontaine
	Harnessing First Order Termination Provers Using Higher Order Dependency Pairs Carsten Fuhs
	Automated Complexity Analysis for Java Programs Jürgen Giesl and Florian Frohn
	Why user experiments matter for automated reasoning Reiner Hähnle
	Automating Proofs by (co)-Induction and Theory Exploration Moa Johansson
	What else can automation do for proof assistants Cezary Kaliszyk
	Efficient Interpolant generation algorithms based on quantifier elimination: EUF, Octagons, … Deepak Kapur
	Higher-order Term Rewriting Cynthia Kop
	An Abstraction-Refinement Framework for Reasoning with Large Theories Konstantin Korovin
	Constrained Resolution via (Almost) First-order Theorem Provers Tomer Libal
	Root-balanced Trees: Verified Algorithms Analysis Tobias Nipkow
	Difference between Program Verification via Hoare Logic and Rewriting Induction Naoki Nishida
	Featherweight alias control using types Andrei Paskevich
	Automating Separation Logic Reasoning using SMT Solvers Ruzica Piskac
	Friends with benefits: Coinduction and corecursion in Isabelle/HOL Andrei Popescu
	Fast and Slow Synthesis Procedures in SMT Andrew Joseph Reynolds
	Synthesising Regular Sets and Relations with a SAT Solver Philipp Rümmer
	Automated Forgetting, Uniform Interpolation and Second-Order Quantifier Elimination Renate Schmidt
	Towards a classification of ATP proof tasks (part 2) Stephan Schulz
	Compositional entailment checking for theories based on separation logic Mihaela Sighireanu
	On Symbol Elimination in Theory Extensions Viorica Sofronie-Stokkermans
	Flexible Theorem Proving in Modal Logics Alexander Steen
	Cyclic Proofs with Ordering Constraints Sorin Stratulat
	Symbolic Execution and Program Synthesis Thomas Ströder
	Recent Improvements of Theory Reasoning in Vampire Martin Suda
	SMT-LIB 3: Bringing higher-order logic to SMT Cesare Tinelli
	Beyond Deduction Josef Urban

	Participants

