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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17371 “Deduction
Beyond First-Order Logic.” Much research in the past two decades was dedicated to automating
first-order logic with equality. However, applications often need reasoning beyond this logic. This
includes genuinely higher-order reasoning, reasoning in theories that are not finitely axiomatisable
in first-order logic (such as those including transitive closure operators or standard arithmetic
on integers or reals), or reasoning by mathematical induction. Other practical problems need
a mixture of first-order proof search and some more advanced reasoning (for instance, about
higher-order formulas), or simply higher-level reasoning steps. The aim of the seminar was to
bring together first-order automated reasoning experts and researchers working on deduction
methods and tools that go beyond first-order logic. The seminar was dedicated to the exchange
of ideas to facilitate the transition from first-order to more expressive settings.
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Much research on automated deduction has traditionally focused on automated reasoning
in first-order logic. First-order logic with equality is generally considered a sweet spot on
the logic design continuum. Yet, from the point of view of several applications it can be too
restrictive as a modeling and reasoning tool. In recent years, there has been a realization
that while first-order reasoning is very useful to discharge the bulk of proof obligations, it
must be tightly integrated with richer features to be useful in many applications. Practical
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problems often need a mixture of first-order proof search and some more advanced reasoning,
for instance, about non-first-order-axiomatisable theories, higher-order formulas, or simply
higher-level reasoning steps.

First-order logic cannot be used to finitely axiomatize many interesting theories, such as
those including transitive closure operators, inductive predicates, datatypes, and standard
arithmetic on integers or reals. Even provers that provide native support for some of these
theories typically fail to prove trivial-looking problems because they lack general support
for mathematical induction. Some applications need a richer set of constructs than those
provided by first-order logic such as, for instance, the separating conjunction (∗) and magic
wand (−∗) connectives of Separation Logic or the disjunctive well-foundedness predicates
used in HSF, a popular approach to software model checking based on first-order Horn logic.

There are potential synergies between automatic first-order proving and verification
methods developed in the context of richer logics. However, they have not received enough
attention by the various deduction sub-communities so far. In general, there is a cultural
gap between the various deduction communities that hinders cross-fertilization of ideas and
progress.

This Dagstuhl Seminar brought together experts in automated reasoning in first-order
logic and researchers working on deduction methods and tools that go beyond first-order
logic. The latter included specialists on proof methods for induction, proof planning, and
other higher-order or higher-level procedures; and consumers of deduction technology whose
specification languages contain non-first-order features. The main goal of the seminar was
to exchange ideas and explore ways to facilitate the transition from first-order to more
expressive settings.

Research questions that were discussed and answered at the seminar included the following:
What higher-order features do applications need, and what features can be incorporated
smoothly in existing first-order proof calculi and provers?
How can we best extend first-order reasoning techniques beyond first-order logic?
Can proof-assistant-style automation and first-order reasoning techniques be combined in
a synergetic fashion?
What are good strategies for automatic induction and coinduction or invariant synthesis?
Is a higher layer of reasoning, in the spirit of proof planning, necessary to solve more
difficult higher-order problems?
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3 Overview of Talks

3.1 What QFBAPA can do for Description Logics
Franz Baader (TU Dresden, DE)
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Cardinality Constraints on Concepts”, in Proc. of the 3rd Global Conf. on Artificial Intelligence
(GCAI 2017), EPiC Series in Computing, Vol. 50, pp. 6–19, EasyChair, 2017.

URL http://dx.doi.org/10.29007/f3hh

Considered from an abstract point of view, Description Logics (DLs) allow their users to
state inclusion constraints between concepts (i.e., sets) and to state cardinality constraints
for concepts and role successors. The constraints that can be formulated in DLs are
usually of a very restricted form. We show that, by using the quantifier-free fragment of
Boolean Algebra with Presburger Arithmetic (QFBAPA) to formulate constraints on sets
and their cardinalities, we can considerably extend the expressive power without increasing
the complexity of reasoning.

3.2 Automating Free Logic in HOL, with an Experimental Application
in Category Theory

Christoph Benzmüller (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Christoph Benzmüller, Dana S. Scott
Main reference Christoph Benzmüller, Dana S. Scott: “Axiomatizing Category Theory in Free Logic”, CoRR,

Vol. abs/1609.01493, 2016.
URL http://arxiv.org/abs/1609.01493

A shallow semantical embedding of free logic in classical higher-order logic is presented,
which enables the off-the-shelf application of higher-order interactive and automated theorem
provers for the formalisation and verification of free logic theories. Subsequently, this approach
is applied to a selected domain of mathematics: starting from a generalization of the standard
axioms for a monoid a stepwise development of various, mutually equivalent foundational
axiom systems for category theory is presented. As a side-effect of this work some (minor)
issue in a prominent category theory textbook has been revealed.

The purpose of this work is not to claim any novel results in category theory, but to
demonstrate an elegant way to “implement” and utilize interactive and automated reasoning
in free logic, and to present illustrative experiments.

References
1 Christoph Benzmüller and Dana Scott. Automating free logic in Isabelle/HOL. In G.-

M. Greuel, T. Koch, P. Paule, and A. Sommese, editors, Mathematical Software – ICMS
2016, 5th International Congress, Proceedings, volume 9725 of LNCS, pages 43–50, Berlin,
Germany, 2016. Springer. URL: http://christoph-benzmueller.de/papers/C57.pdf, doi:
10.1007/978-3-319-42432-3_6.

2 Christoph Benzmüller and Dana S. Scott. Axiomatizing category theory in free logic. arXiv,
http://arxiv.org/abs/1609.01493 , 2016.
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3 Christoph Benzmüller. Universal Reasoning, Rational Argumentation and Human-Machine
Interaction. arXiv, http://arxiv.org/abs/1703.09620 , 2017.

3.3 Towards Strong Higher-Order Automation for Fast Interactive
Verification

Jasmin Christian Blanchette (Vrije Universiteit Amsterdam, NL)
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We believe that first-order automatic provers are the best tools available to perform most of
the tedious logical work inside proof assistants. From this point of view, it seems desirable
to enrich superposition and SMT (satisfiability modulo theories) with higher-order reasoning
in a careful manner, to preserve their good properties. Representative benchmarks from the
interactive theorem proving community can guide the design of proof rules and strategies.
With higher-order superposition and higher-order SMT in place, highly automatic provers
could be built on modern superposition provers and SMT solvers, following a stratified
architecture reminiscent of that of modern SMT solvers. We hope that these provers will
bring a new level of automation to the users of proof assistants. These challenges and
work plan are at the core of the Matryoshka project, funded for five years by the European
Research Council. We encourage researchers motivated by the same goals to get in touch
with us, subscribe to our mailing list, and join forces.

3.4 Building a Proof Checker with Partial Functions
Hans de Nivelle (University of Wroclaw, PL)

License Creative Commons BY 3.0 Unported license
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In 2010–2013 I developed a 3-valued logic for partial functions. During 2013–2014, I tried to
integrate this logic into an interactive proof checker. This attempt was unsuccessful. The
system worked, but the main goal, to obtain a truly user friendly proof checker, was not
obtained. In this talk, I summarize a new attempt, which has not been implemented yet,
hoping to get feedback. I discuss the following components:

The basics of the underlaying 3-valued logic and how to generalize this logic to higher-
order.
How I think that one should build theories (using the little theory approach of Farmer,
Guttman and Thayer). Theories can be substantive or adjective in nature.
Type Reductions. Explicit type conditions are useful, but turned out unpleasant in
practical use, especially in higher-order. I explain how conventional, more user-friendly
type declarations can be translated into explicit type declarations by means of reduction.
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3.5 Scalable Fine-Grained Proofs for Formula Processing
Pascal Fontaine (LORIA & Inria – Nancy, FR)
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Lecture Notes in Computer Science, Vol. 10395, pp. 398–412, Springer, 2017.
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We presented a framework for processing formulas in automatic theorem provers, with
generation of detailed proofs. The main components are a generic contextual recursion
algorithm and an extensible set of inference rules. Clausification, skolemization, theory-
specific simplifications, and expansion of ‘let’ expressions, and beta-reduction are instances
of this framework. With suitable data structures, proof generation adds only a linear-time
overhead, and proofs can be checked in linear time. We implemented the approach in the
SMT solver veriT. This allowed us to dramatically simplify the code base while increasing
the number of problems for which detailed proofs can be produced, which is important for
independent checking and reconstruction in proof assistants. This talk presented material
accepted at CADE 2017 and at PxTP 2017.

3.6 Harnessing First Order Termination Provers Using Higher Order
Dependency Pairs

Carsten Fuhs (Birkbeck, University of London, GB)

License Creative Commons BY 3.0 Unported license
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Dependency Pairs”, in Proc. of the Frontiers of Combining Systems, 8th International Symposium,
FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011. Proceedings, Lecture Notes in Computer
Science, Vol. 6989, pp. 147–162, Springer, 2011.

URL https://doi.org/10.1007/978-3-642-24364-6_11

Many functional programs and higher order term rewrite systems contain, besides higher
order rules, also a significant first order part. We discuss how an automatic termination
prover can split a rewrite system into a first order and a higher order part. The results are
applicable to all common styles of higher order rewriting with simple types, although some
dependency pair approach is needed to use them.

This talk is based on joint work with Cynthia Kop. A corresponding paper has appeared
in the proceedings of FroCoS 2011.
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3.7 Automated Complexity Analysis for Java Programs
Jürgen Giesl (RWTH Aachen, DE) and Florian Frohn

License Creative Commons BY 3.0 Unported license
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Integrated Formal Methods - 13th International Conference, IFM 2017, Turin, Italy, September
20-22, 2017, Proceedings, Lecture Notes in Computer Science, Vol. 10510, pp. 85–101, Springer,
2017.

URL https://doi.org/10.1007/978-3-319-66845-1_6

Automated termination analysis is an important area in program verification which goes
beyond classical first-order reasoning. While AProVE is one of the most powerful tools for
termination analysis of Java since many years, we now extend our technique in order to
analyze the complexity of Java programs as well.

Our approach first executes the program symbolically on an abstract domain which
uses heap predicates in addition to the usual first-order constructs. Based on this symbolic
execution, we develop a novel transformation of (possibly heap-manipulating) Java programs
to integer transition systems (ITSs). This allows us to apply existing complexity analyzers for
standard first-order ITSs in order to infer runtime bounds for Java programs. We demonstrate
the power of our implementation on an established benchmark set.

3.8 Why user experiments matter for automated reasoning
Reiner Hähnle (TU Darmstadt, DE)
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Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pp. 403–413, ACM,
2016.

URL http://dx.doi.org/10.1145/2970276.2970303

I argue why empirical research, such as experimental studies, are a valuable form of contri-
bution in automated reasoning and should have a place in our conferences and journals.

3.9 Automating Proofs by (co)-Induction and Theory Exploration
Moa Johansson (Chalmers University of Technology – Göteborg, SE)

License Creative Commons BY 3.0 Unported license
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International Conference, ITP 2017, Brasília, Brazil, September 26-29, 2017, Proceedings, Lecture
Notes in Computer Science, Vol. 10499, pp. 1–11, Springer, 2017.
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One of the more challenging aspects in automating all but the simplest inductive proofs
is how to discover auxiliary lemmas. In our recent work, we have taken a “bottom-up”
approach to lemma discovery using theory exploration. Theory exploration is a technique
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for automatically discovering interesting lemmas using testing. A richer background theory
can then be constructed, allowing harder theorems to be proved automatically. I will show a
demo of our theory exploration system Hipster for Isabelle/HOL, and explain a bit about
how it works.

Earlier work on lemma discovery by proof-planning critics took the opposite “top-down”
approach: here proof failures were analysed in an attempt to patch the failed proof. This
worked very well for many cases were the missing lemma was a simple generalisation of
the stuck proof state (called lemma calculation), but less well when the required lemma for
instance was a generalisation of the original conjecture.

I believe lemma discovery by theory exploration could fit very nicely in with systems like
Sledgehammer. It can work as a complement when useful facts are missing from the available
libraries, for example in new theory developments. Unlike proof-critics, it is not dependent
on particular proof-planning heuristics and systems (like rippling), and could therefore more
easily be used in conjunction with first- or higher-order automated provers.

3.10 What else can automation do for proof assistants
Cezary Kaliszyk (Universität Innsbruck, AT)
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Joint work of Łukasz Czajka, Thibault Gauthier, Cezary Kaliszyk

I this talk I will present the progress in automation for proof assistants. I will introduce the
hammer for Coq, which can now re-prove 40% of the theorems in the Coq standard library
fully automatically. I will discuss combining hammer-style premise selection with learning
to use tactics and discuss automation optimizations for reasoning about types in a logical
framework.
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3.11 Efficient Interpolant generation algorithms based on quantifier
elimination: EUF, Octagons, . . .

Deepak Kapur (University of New Mexico – Albuquerque, US)
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In a paper in 2006, Kapur, Majumdar and Zarba observed a connection between quantifier
elimination and interpolant generation which was probably well-known but not explicitly
reported in the literature on automated reasoning and formal methods. Since then I have
been investigating how to develop heuristics for quantifier elimination to generate interpolants.
Particularly, there is no need to have access to a proof to generate interpolants, a methodology
widely used in the formal methods community.
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I will start with an interpolant generation algorithm in the quantifier-free theory of
equality over uninterpreted symbols. Even though there are many algorithms reported in
the literature, there is little investigation about their complexity. Interpolants generated are
simple and can be efficiently represented using new symbols defined in terms of common
symbols. This is followed by an interpolant generation algorithm for octagonal formulas,
which is of complexity O(n3), where n is the number of variables; an interpolant generated
is a conjunction of octagonal formulas. Combination methods for interpolant generation over
subtheories can be developed as well. Another interesting outcome is an efficient algorithm
for generating congruence closure of conditional equations.

3.12 Higher-order Term Rewriting
Cynthia Kop (Radboud University Nijmegen, NL)

License Creative Commons BY 3.0 Unported license
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One of the key problems in higher-order term rewriting is that there is no true consensus of
what, exactly, “higher-order term rewriting” means. There are disagreements on the necessity
of including types and/or binders, and various–sometimes incompatible–definitions.

In this talk, I have discussed a number of different styles of higher-order term rewriting,
their strengths and weaknesses, and the rough differences between them. I have also discussed
some of the technology for proving termination, in particular the notion of computability.

3.13 An Abstraction-Refinement Framework for Reasoning with Large
Theories

Konstantin Korovin (University of Manchester, UK)
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We presented an approach to reasoning with large theories which is based on the abstraction-
refinement framework [1]. The proposed approach consists of over-approximations, under-
approximations and their combination. We discussed different abstractions and refinement
strategies for reasoning with large first-order theories.
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3.14 Constrained Resolution via (Almost) First-order Theorem Provers
Tomer Libal (Inria Saclay – Île-de-France, FR)

License Creative Commons BY 3.0 Unported license
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When considering how to use techniques from first-order theorem proving in higher-order
provers, the ideal would be to use the first-order theorem provers themselves. In order to
deal with the complexities which arise when dealing with higher-order terms, these provers
are sometimes being applied in a constrained manner within higher-order ones. We consider
a possible approach of isolating the (almost) first-order content of higher-order formulae
by pre-processing and then using existing first-order provers in order to obtain a (partial)
proof. This proof will be pending the successful discharge of constraints generated in the
pre-processing step. An advantage of this approach is its ability to use the full spectrum of
capabilities of first-order theorem provers, such as indexing, redundancy elimination, etc.

3.15 Root-balanced Trees: Verified Algorithms Analysis
Tobias Nipkow (TU München, DE)

License Creative Commons BY 3.0 Unported license
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Main reference Tobias Nipkow: “Verified Root-Balanced Trees”, in Proc. of the Programming Languages and
Systems - 15th Asian Symposium, APLAS 2017, Suzhou, China, November 27-29, 2017,
Proceedings, Lecture Notes in Computer Science, Vol. 10695, pp. 255–272, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-71237-6_13

This talk presents recent work on verifying complexity of functional programs in Isabelle/HOL
[1, 2, 3]. The focus of the presentation will be on the amortized complexity of a brand of
search trees (invented by Andersson) where rebalancing happens only when the tree becomes
badly unbalanced at the root. This is accompanied by a general discussion on modelling
techniques for timing analysis and on automatic proofs of functional correctness.
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3.16 Difference between Program Verification via Hoare Logic and
Rewriting Induction

Naoki Nishida (Nagoya University, JP)
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In this talk, I first introduce rewriting induction on constrained term rewriting and then
introduce a transformation of a proof tableau of Hoare logic into an inference sequence of
constrained rewriting induction. Finally, I discuss difference between program verification
via these two approaches.

3.17 Featherweight alias control using types
Andrei Paskevich (University of Paris Sud – Orsay, FR)

License Creative Commons BY 3.0 Unported license
© Andrei Paskevich
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Deductive Verification”, Technical report, Inria hal-01256434, 2016.
URL https://hal.inria.fr/hal-01256434

In the context of deductive verification, it is customary today to handle programs with
pointers using either separation logic, dynamic frames, or explicit memory models. Yet we
can observe that in numerous programs, a large amount of code fits within the scope of Hoare
logic, provided we can statically control aliasing. When this is the case, the code correctness
can be reduced to simpler verification conditions which do not require any explicit memory
model. This makes verification conditions more amenable both to automated theorem proving
and to manual inspection and debugging.

In this talk, we show a method of such static aliasing control for a programming language
featuring nested data structures with mutable components. Our solution is based on a type
system with singleton regions and effects.

3.18 Automating Separation Logic Reasoning using SMT Solvers
Ruzica Piskac (Yale University – New Haven, US)
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Main reference Ruzica Piskac, Thomas Wies, Damien Zufferey: “Automating Separation Logic Using SMT”, in
Proc. of the Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, Lecture Notes in Computer Science, Vol. 8044,
pp. 773–789, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-39799-8_54

Separation logic (SL) follows a discipline of local reasoning that mimics human intuition
about how to prove the correctness of heap-manipulating programs. Central to this discipline
is the frame rule, a Hoare logic proof rule that decomposes the global heap into a footprint,

17371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf
https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf
https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf
https://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/WPTE_Mizutani.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://hal.inria.fr/hal-01256434
https://hal.inria.fr/hal-01256434
https://hal.inria.fr/hal-01256434
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54


38 17371 – Deduction Beyond First-Order Logic

the region on which a program fragment operates, and a frame, the region that remains
untouched by the program fragment. Automation of the frame rule involves the actual
inference of the frame from SL assertions expressing the global heap and the footprint.

In this talk, I present reductions of decidable separation logic fragments to decidable
first-order theories that fit well into the SMT framework. We show how these reductions can
be used to automate satisfiability, entailment, frame inference, and abduction problems for
separation logic using SMT solvers. Our approach provides a simple method of integrating
separation logic into existing verification tools that provide SMT backends, and an elegant
way of combining separation logic fragments with other decidable first-order theories.

3.19 Friends with benefits: Coinduction and corecursion in
Isabelle/HOL

Andrei Popescu (Middlesex University – London, GB)
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Proc. of the Programming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Lecture Notes in Computer
Science, Vol. 10201, pp. 111–140, Springer, 2017.
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Isabelle/HOL has been recently endowed with an infrastructure for coinductive datatypes
(codatatypes), corecursive functions and coinductive proofs. A codatatype’s corecursion and
coinduction schemes evolve in tandem by learning of new “friendly” operators from the user.

3.20 Fast and Slow Synthesis Procedures in SMT
Andrew Joseph Reynolds (University of Iowa – Iowa City, US)

License Creative Commons BY 3.0 Unported license
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2015, Proceedings, Part II, Lecture Notes in Computer Science, Vol. 9207, pp. 198–216, Springer,
2015.

URL http://dx.doi.org/10.1007/978-3-319-21668-3_12

Recent techniques for automated synthesis in SMT solvers follow two paradigms. The first
is based on first-order quantifier instantiation, and can be used to tackle a restricted but
fairly common class of properties, known as single invocation properties. The second relies
on a deep embedding of the synthesis problem into the theory of inductive datatypes, which
can then be solved using enumerative syntax-guided techniques. This talk focuses on the
advantages and disadvantages of these two paradigms, and how they can potentially be
combined.
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3.21 Synthesising Regular Sets and Relations with a SAT Solver
Philipp Rümmer (Uppsala University, SE)
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We consider the problem of verifying liveness for systems with a finite, but unbounded,
number of processes, commonly known as parameterised systems. Typical examples of such
systems include distributed protocols (e.g., for the dining philosopher problem). Unlike the
case of verifying safety, proving liveness is still considered extremely challenging, especially
in the presence of randomness in the system. We introduce an automatic method of proving
liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness
as a two-player reachability game (between Scheduler and Process), our method is a CEGAR
approach that synthesises a progress relation for Process that can be symbolically represented
as a finite-state automaton. The method constructs a progress relation by means of a suitable
Boolean encoding and incremental SAT solving. Our experiments show that our algorithm
is able to prove liveness automatically for well-known randomised distributed protocols,
including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-
stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this
is the first fully-automatic method that can prove liveness for randomised protocols.

3.22 Automated Forgetting, Uniform Interpolation and Second-Order
Quantifier Elimination

Renate Schmidt (University of Manchester, GB)
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Forgetting transforms a knowledge base into a compact representation by eliminating un-
desired symbols, which allows users to focus on specific parts of ontologies in order to
create decompositions and restricted views for in depth analysis or sharing with other users.
Forgetting is also useful for information hiding, explanation generation, semantic difference
computation and ontology debugging. Other names for forgetting are: second-order quantifier
elimination uniform interpolation, variable elimination, predicate elimination, and projection.
Because forgetting is an inherently difficult problem – it is much harder than standard
reasoning (satisfiability and validity testing) – and very few logics are known to be complete
for forgetting (or have the uniform interpolation property), there has been insufficient research
on the topic and few forgetting tools are available.

In my presentation gave a brief overview of the methods and success stories of three
forgetting tools: SCAN which performs second-order quantifier elimination [1, 2], LETHE
which solves the uniform interpolation problem for many expressive description problems
extending ALC [3, 4], and FAME which computes semantic forgetting solutions for description
logics of different expressivity [5, 6].
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3.23 Towards a classification of ATP proof tasks (part 2)
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Automated theorem provers for first-order logic search for proofs in an infinite and highly
branching search space. To be successful, they critically depend on various search heuristics or
strategies. Experience shows that different strategies perform well on different problems. In
this work, we try to automate the process of assigning a good strategy for a given problem via
machine learning. In a first step, we use extensive test data to automatically cluster problems
into classes showing similar behaviour under different strategies, using a combination of
PCA for dimensionality reduction and k-means clustering to group similar problems. In
a second step, we then learn properties of these clusters using standard machine learning
techniques and a set of signature-structural features. Initial results already suggest better
performance than the previous method of hand-selecting features and feature value splits for
the classification.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


J. Blanchette, C. Fuhs, V. Sofronie-Stokkermans, and C. Tinelli 41

3.24 Compositional entailment checking for theories based on
separation logic
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The core of the SPEN solver is a semi-decision procedure for checking entailment between
separation logic formulas with inductive predicates. In this talk, I’ll briefly present this
procedure and its extensions for theories combining separation logic with arithmetic, set, and
inductive types constraints.

3.25 On Symbol Elimination in Theory Extensions
Viorica Sofronie-Stokkermans (Universität Koblenz-Landau, DE)
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Many problems in computer science (e.g. in program verification) can be reduced to checking
satisfiability of ground formulae w.r.t. a theory which can be a standard theory (for instance
linear arithmetic) or a complex theory (typically the extension of a base theory T0 with
additional function symbols axiomatized by a set K of formulae, or a combination of theories).
SMT solvers are tuned for efficiently checking satisfiability of ground formulae in increasingly
complex theories; the output can be “satisfiable”, “unsatisfiable” – or possibly “unknown” if
incomplete methods are used, or else termination cannot be guaranteed.

More interesting is to go beyond yes/no answers, i.e. to consider parametric systems – in
which the parameters can be values or functions – and infer constraints on the parameters
which guarantee that certain properties are met (for instance constraints which guarantee
the unsatisfiability of certain formulae). Such constraints can be obtained by performing
quantifier elimination or, more generally, symbol elimination.

In this talk we present a symbol elimination method in extensions of a theory T0 with
additional function symbols whose properties are axiomatised using a set K of clauses. We
analyze situations in which we can perform symbol elimination in a hierarchical way, relying
on existing mechanisms for symbol elimination in T0. This is for instance possible if the
theory T0 allows quantifier elimination. We present various applications of this method. The
results are described in [1].
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3.26 Flexible Theorem Proving in Modal Logics
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Computer-assisted reasoning in non-classical logics is of increasing interest in artificial
intelligence (AI), computer science, mathematics and philosophy. Several powerful automated
and interactive theorem proving systems have been developed over the past decades. However,
with a few exceptions, most of the available systems focus on classical logics only. In particular
for quantified variants there are only few systems available to date. In this talk, I present a
uniform automation approach for a wide range of different modal logics. It is based on a
shallow embedding into classical higher-order logic and can flexibly account for semantical
variations of the desired modal logic at hand. Based on a specification of the modal logic’s
semantics, a procedure is presented that algorithmically translates the source problem into a
classical (non-modal) HOL problem. This procedure was implemented within Leo-III and as a
stand-alone pre-processing tool, ready to use in conjunction with any THF-compliant theorem
prover. The choice of the concrete modal logic is thereby specified within the problem as a
meta-logical statement. By combining our tool with one or more THF-compliant theorem
provers we accomplish the most widely applicable modal logic theorem prover available to
date, i.e. no other available prover covers more variants of propositional and quantified modal
logics. Despite this generality, our approach remains competitive, at least for quantified
modal logics, as our experiments demonstrate.
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3.27 Cyclic Proofs with Ordering Constraints
Sorin Stratulat (University of Lorraine – Metz, FR)
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CLKIDω is a sequent-based cyclic inference system able to reason on first-order logic with
inductive definitions. The current approach for verifying the soundness of CLKIDω proofs
is based on expensive model-checking techniques leading to an explosion in the number of
states.

We propose proof strategies that guarantee the soundness of a class of CLKIDω proofs
if some ordering and derivability constraints are satisfied. They are inspired from previous
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works about cyclic well-founded induction reasoning, known to provide effective sets of
ordering constraints. A derivability constraint can be checked in linear time. Under certain
conditions, one can build proofs that implicitly satisfy the ordering constraints.

3.28 Symbolic Execution and Program Synthesis
Thomas Ströder (Metro Systems GmbH – Düsseldorf, DE)
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Peter Schneider-Kamp, Cornelius Aschermann: “Automatically Proving Termination and Memory
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Symbolic execution is a very powerful and flexible technique to obtain abstract representations
of program behaviors. From the abstraction, we synthesize programs in simple formal
languages for which sophisticated analyses of the properties we are interested in exist (of
course, the program synthesis must retain all relevant properties such that results for the
analyzed programs carry over to the original programs). Using this approach, we can reduce
higher-order reasoning problems to pure first-order reasoning. We illustrate this approach
by an example termination analysis of the strlen C program and give a brief outlook why
METRO is interested in such research topics.

3.29 Recent Improvements of Theory Reasoning in Vampire
Martin Suda (TU Wien, AT)
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Over the past years Vampire has been progressively improving its ability to reason with
quantifiers and theories. Originally theory reasoning was only via theory axioms and
evaluation but over the past year two new techniques have been introduced. The first
is the recent work of AVATAR modulo theories, previously presented, for ground theory
reasoning. The second, the focus of this talk, consists of two new methods for reasoning with
non-ground theory clauses (where we currently focus on the theory of arithmetic). The first
new method is unification with abstraction where the notion of unification is extended to
introduce constraints where theory terms may not otherwise unify, e.g., p(2) may unify with
¬p(x+ 1)∨ q(x) to produce 2 6= x+ 1∨ q(x). This abstraction is performed lazily, as needed,
to allow the superposition theorem prover to make as much progress as possible without
the search space growing too quickly. The second new method utilises theory constraint
solving (an SMT solver) to perform reasoning within a clause to find an instance where
we can remove theory literals. This utilises the power of SMT solvers for theory reasoning
with non-ground clauses, reasoning which is currently achieved by the addition of prolific
theory axioms. Additionally, this second method can be used to discharge the constraints
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introduced by unification with abstraction. These methods were implemented within the
Vampire theorem prover and experimental results show that they are useful for solving
currently unsolved problems.

3.30 SMT-LIB 3: Bringing higher-order logic to SMT
Cesare Tinelli (University of Iowa – Iowa City, US)
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The SMT-LIB standard defines a common input/output language of commands to commu-
nicate with solvers for Satisfiability Modulo Theories (SMT) via a textual interface. The
widely adopted most recent version of the standard, Version 2.6, is based on an extension of
many-sorted first-order logic. Historically, has been adequate in most cases because SMT
solvers are themselves based on automated reasoning techniques for first-order logic. A
growing number of tools (interactive theorem provers, in particular) that leverage the power
of SMT solvers, however, are based on more powerful logics. This forces the developers of
these tools to implement often complex encodings of their problems in the less powerful
logic of SMT-LIB 2. Given the interest of some SMT solver developers in extending their
tools to higher-order logics, it would be beneficial for the field to extend the SMT-LIB 2
standard to some basic higher-order logic. This would simplify current encodings to SMT
and might also improve runtime performance. This talk proposes a higher-order version of
SMT-LIB based on simple type theory with rank-1 polymorphism. A distinguishing feature
of the new version is that it is largely backward compatible with SMT-LIB 2, which means
that applications and solvers not interested to the higher-order logic extensions are not
affected. Non-backward-compatible portions are essentially orthogonal to the higher-order
logic extension. They address other shortcomings of the current standard related to the way
a user can specify the particular logical fragment the input problem belongs to.

3.31 Beyond Deduction
Josef Urban (Czech Technical University – Prague, CZ)
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The talk will describe several ways of applying machine learning methods in theorem proving
and some ways of combining learning and deduction in feedback loops.
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