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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17382 “Approaches
and Applications of Inductive Programming”. After a short introduction to the state of the art
to inductive programming research, an overview of the introductory tutorials, the talks, program
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Ute Schmid
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Inductive programming (IP) addresses the automated or semi-automated generation of
computer programs from incomplete information such as input-output examples, constraints,
computation traces, demonstrations, or problem-solving experience [5]. The generated –
typically declarative – program has the status of a hypothesis which has been generalized by
induction. That is, inductive programming can be seen as a special approach to machine
learning. In contrast to standard machine learning, only a small number of training examples
is necessary. Furthermore, learned hypotheses are represented as logic or functional programs,
that is, they are represented on symbol level and therefore are inspectable and comprehensible
[17, 8, 18]. On the other hand, inductive programming is a special approach to program
synthesis. It complements deductive and transformational approaches [20, 14, 2]. In cases
where synthesis of specific algorithm details that are hard to figure out by humans inductive
reasoning can be used to generate program candidates from either user-provided data such
as test cases or from data automatically derived from a formal specification [16].

Inductive program synthesis is of interest for researchers in artificial intelligence since the
late sixties [1]. On the one hand, the complex intellectual cognitive processes involved in
producing program code which satisfies some specification are investigated, on the other hand
methodologies and techniques for automating parts of the program development process are
explored. One of the most relevant areas of application of inductive programming techniques
is end-user programming [3, 12, 4]. For example, the Microsoft Excel plug-in Flashfill
synthesizes programs from a small set of observations of user behavior [8, 7, 6]. Related
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applications are in process mining and in data wrangling [11]. Inductive programming in
general offers powerful approaches to learning from relational data [15, 13] and to learning
from observations in the context of autonomous intelligent agents [10, 17]. Furthermore,
inductive programming can be applied in the context of teaching programming [19, 21].

Recent Trends and Applications
When the first Dagstuhl Seminar on Approaches and Applications of Inductive Programming
took place in 2013, the following trends could be identified:

Combining different approaches to inductive programming to leverage their complementary
strengths.
New inductive programming approaches based on adapting and using well-developed
techniques such as SAT-solving.
Putting inductive programming to application, for example in the areas of automated
string manipulations in spreadsheets or web programming.
Applying concepts of inductive programming to cognitive models of learning structural
concepts.

One of the major outcomes of the first Dagstuhl Seminar was a joint publication in the
Communications of the ACM [8] where these trends and first applications and results were
described. In the seminar 2015, the following additional trends were identified:

Evaluation of inductive programming approaches – in relation to general intelligence and
in relation to standard machine learning.
Application of inductive programming to teaching programming.
Inductive programming as a model of human inductive learning.

The main outcomes of the second seminar were (1) a joint publication in the Artificial
Intelligence Journal with respect to the evaluation of computational models solving intelligence
test problems – among them inductive programming systems [9], (2) a joint publication
addressing comprehensibility as a second criterium to evaluate machine learning approaches
besides accuracy [18], and (3) a NIPS’2016 workshop on Neural Nets and Program Induction1.

Based on the results of the second seminar, the focus of the third seminar has been on
the following aspects:

Identifying the specific contributions of inductive programming to machine learning
research and applications of machine learning, especially identifying problems for which
inductive programming approaches more suited than standard machine learning ap-
proaches, including deep learning.
Establishing criteria for evaluating inductive programming approaches in comparison to
each other and in comparison to other approaches of machine learning and providing a
set of benchmark problems.
Discussing current applications of inductive programming in enduser programming and
programming education and identifying further relevant areas of application.
Establishing stronger relations between cognitive science research on inductive learning
and inductive programming.

In the seminar, we brought together researchers from different areas of computer science –
especially from machine learning, AI, declarative programming, and software engineering

1 https://uclmr.github.io/nampi/
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– and researchers from cognitive psychology interested in inductive learning as well as in
teaching and learning computer programming. Furthermore, participants from industry
presented current as well as visionary applications for inductive programming.

The seminar was opened with lecture style talks introducing the four major approaches
of inductive programming: Inductive functional programming, inductive logic programming,
inductive probabilistic logical programming, and programming by example.

Talks covered current developments of IP algorithms, challenging applications –especially
in data wrangling and in education –, and relations of IP to cognition.

In addition, several system demons and tutorials were given: Igor and EasyIgor (by
Sebastian Seufert and Ute Schmid), MagicHaskeller (by Susumu Katayama), Sketch (by
Armando Solar-Lezama), PROSE (by Oleksandr Polozov), Slipcover (by Fabrizio Riguzzi),
and TaCLe (by Luc De Raedt).

The following topics were identified and further discussed in working groups during the
seminar:

How to determine relevancy of background knowledge to reduce search?
Integrating IP with other types of machine learning, especially Deep Learning?
Data wrangling as exiting area of application.

Additional topics identified as relevant have been anomaly detection, noise, robustnes, as
well as non-example based interaction (e.g., natural language).

Concluding remarks and future plans
In the wrapping-up section, we collected answers to the question

“What would constitute progress at Dagstuhl 2019?”

The most prominent answers were
make available systems, data sets (via IP webpage2)
compare systems
common vocabulary, work on applications attempted by others: drawing problems, string
transformation, general ai challenge, benchmarks starexec, learn robot strategy, grammar
learning what is inductive programming
open problems

As the grand IP challenge we came up with: An IP program should invent an algorithm
publishable in a serious journal (e.g., an integer factorization algorithm) or win
a programming competition!
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3 Introductory Talks

3.1 A Short Introduction to Inductive Functional Programming
Ute Schmid (Universität Bamberg, DE)
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In this talk, a short introduction to inductive functional programming is given. Specifically, a
brief outline of the history of inductive functional programming is presented. The milestone
system Thesys (Summers, 1977) is introduced. Current developments are presented with a
focus on our own system Igor.

3.2 Inductive Logic Programming
Stephen H. Muggleton (Imperial College London, GB)
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London, UK, July 12-15, 2017, Proceedings, Lecture Notes in Computer Science, Vol. 10364,
pp. 1–6, Springer, 2017.
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Meta-Interpretive Learning (MIL) is a recent Inductive Logic Programming technique aimed
at supporting learning of recursive definitions. A powerful and novel aspect of MIL is that
when learning a predicate definition it automatically introduces sub-definitions, allowing
decomposition into a hierarchy of reuseable parts. MIL is based on an adapted version of
a Prolog meta-interpreter. Normally such a meta-interpreter derives a proof by repeatedly
fetching first-order Prolog clauses whose heads unify with a given goal. By contrast, a
meta-interpretive learner additionally fetches higher-order meta-rules whose heads unify
with the goal, and saves the resulting meta-substitutions to form a program. This talk will
overview theoretical and implementational advances in this new area including the ability to
learn Turing computabale functions within a constrained subset of logic programs, the use of
probabilistic representations within Bayesian meta-interpretive and techniques for minimising
the number of meta-rules employed. The talk will also summarise applications of MIL
including the learning of regular and context-free grammars, learning from visual representions
with repeated patterns, learning string transformations for spreadsheet applications, learning
and optimising recursive robot strategies and learning tactics for proving correctness of
programs. The talk will conclude by pointing to the many challenges which remain to be
addressed within this new area.
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3.3 A Short Introduction to Probabilistic Logic Programming
Luc De Raedt (KU Leuven, BE)
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In this introductory talk, a short introduction to probabilistic programming principles was
given. It was centered around the distribution semantics of Sato and the probabilistic
programming language Problog.

3.4 Programming By Examples for Data Transformation and
Integration

Rishabh Singh (Microsoft Research – Redmond, US)
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In this talk, I will briefly summarize some of the past work in building efficient programming
by example (PBE) systems for data wrangling tasks using Version-space algebras [3]. There
are four key parts of designing such PBE systems: 1) designing an expressive and concise
domain-specific language (DSL) for constructing the hypothesis space, 2) designing efficient
data structures to succinctly represent an exponential number of programs in polynomial
space, 3) a learning algorithm that learns a set of consistent programs in the DSL that
conform to a set of user-provided input-output examples, and finally 4) a ranking function
for selecting the most likely programs. I will then present some of the more recent systems
we have built with new advances on top of a similar methodology in the domains of semantic
data transformations [2], input-driven data mainpulation [1], and data integration from web
sources [4].
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input output
"03/29/86"  

"74-03-31"

"99/12/13"  

"11.02.96"

"31/05/17"  

"25/08/85"  

"05 30 85"

input output
"03/29/86"  "29"

"74-03-31"

"99/12/13"

"11.02.96"

"31/05/17"

"25/08/85"

"05 30 85"

input output
"03/29/86"  "29"

"74-03-31"  "31"

"99/12/13"  "13"

"11.02.96"  "11"

"31/05/17"  "31"

"25/08/85"  "25"

"05 30 85"  "30"

 "31"

MagicHaskeller

f “03/29/86” == “29”
&& 
f “74-03-31” == “31”

dates.dom

\a -> extractDayCardinal a

Figure 1 System functionality. Once the user provides input/output examples and the domain
(DBBK), the system tries to induce the possible transformation to be applied.

4 Overview of Talks

4.1 The BigLambda Project
Aws Albarghouthi (University of Wisconsin, Madison, US)
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In this talk, I cover various pieces of the BigLambda project, which aims to synthesize
data analysis programs from examples. First, I discuss the BigLambda system and how
it synthesizes MapReduce-style programs that can execute in parallel. Second, I describe
how one can extract domain-knowledge of a synthesis domain by observing test runs of an
API. Third, I will describe future problems involving synthesizing programs under privacy
constraints.

4.2 Domain Specific Induction for Data Wrangling Automation
Lidia Contreras-Ochando (Technical University of Valencia, ES)
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Main reference Lidia Contreras-Ochando, Cèsar Ferri, José Hernández-Orallo, Fernando Martínez-Plumed, María
José Ramírez-Quintana, Susumu Katayama: “Domain specific induction for data wrangling
automation (Demo)”, Automatic Machine Learning Workshop (AutomML) @ ICML 2017, Sidney,
Australia, 2017.

URL http://users.dsic.upv.es/ flip/papers/AutoML_ICML2017.pdf

Inside the data science process, data wrangling is the step that involves transforming data,
cleaning datasets and combining them to create new ones, and this step can consume up to
80% of the project time [1]. Automating data wrangling process is essential to reduce time and
cost in our projects. Our proposal to solve this problem includes the use of general-purpose
inductive programming learning systems with general-purpose declarative languages, using
an appropriate library that defines a domain-specific background knowledge [2]. The overall
idea is to automate the process of transforming data from one format to another, depending
on the data domain and using MagicHaskeller as the inductive programming system, with
only one or few examples (Figure 1). Our approach is able to solve several problems by using
the correct domain independently of the data format.

Acknowledgments. This work has been partially supported by the EU (FEDER) and the
Spanish MINECO project TIN 2015-69175-C4-1-R (LOBASS) and by Generalitat Valenciana
under ref. PROMETEOII/2015/013 (SmartLogic). Lidia Contreras was supported by
FPU-ME grant FPU15/03219.
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4.3 Learning Higher-Order Logic Programs through Abstraction and
Invention

Andrew Cropper (Imperial College London, GB) and Stephen H. Muggleton (Imperial College
London, GB)
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Many tasks in AI require the design of complex programs and representations, whether
for programming robots, designing game-playing programs, or conducting textual or visual
transformations. This paper [1] explores a novel inductive logic programming approach to
learn such programs from examples. To reduce the complexity of the learned programs,
and thus the search for such a program, we introduce higher-order operations involving an
alternation of Abstraction and Invention. Abstractions are described using logic program
definitions containing higher-order predicate variables. Inventions involve the construction
of definitions for the predicate variables used in the Abstractions. The use of Abstractions
extends the Meta-Interpretive Learning framework and is supported by the use of a user-
extendable set of higher-order operators, such as map, until, and ifthenelse. Using these
operators reduces the textual complexity required to express target classes of programs. We
provide sample complexity results which indicate that the approach leads to reductions in
the numbers of examples required to reach high predictive accuracy, as well as significant
reductions in overall learning time. Our experiments demonstrate increased accuracy and
reduced learning times in all cases. We believe that this paper is the first in the literature
to demonstrate the efficiency and accuracy advantages involved in the use of higher-order
abstractions.
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4.4 Learning Constraints in Spreadsheets and Tabular Data
Luc De Raedt (KU Leuven, BE)
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Spreadsheets, comma separated value files and other tabular data representations are in wide
use today. However, writing, maintaining and identifying good formulas for tabular data
and spreadsheets can be time-consuming and error-prone. We investigate the automatic
learning of constraints (formulas and relations) in raw tabular data in an unsupervised way.
We represent common spreadsheet formulas and relations through predicates and expressions
whose arguments must satisfy the inherent properties of the constraint. The challenge is to
automatically infer the set of constraints present in the data, without labeled examples or
user feedback. This approach is based on inductive programming.

4.5 Applying ILP to Sequence Induction Tasks
Richard Evans (Google DeepMind – London, GB)

License Creative Commons BY 3.0 Unported license
© Richard Evans

We describe a system for solving Hofstadter’s “Seek Whence” tasks. This is an inductive
logic program system, that uses (broadly) Kantian constraints to group its percepts into
persistent objects, changing over time, according to causal laws. This system is able to
achieve human-level performance in the “Seek Whence” domain.

Similar to Hofmann, Kitzelmann, and Schmid [1], we avoid domain-specific heuristics,
and focus on a domain-independent solution to this task. We claim that the prior constraints
we use, inspired by Kant’s Principles in the Critique of Pure Reason, are domain-independent
prior knowledge.
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4.6 What’s behind this model?
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Machine learning is being widely used in applications related to security or applications
that deal with confidential information. Examples of these applications are spam detection,
malware classification, detection of network intrusion ... In many of these cases, data
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can be actively manipulated by an intelligent adversary. Those adversarial agents can
also try to extract and mimic (possibly confidential) machine learning models aiming at
taking advantage of them and, in this way, evade detections and alarms. Many of the
developed methods to manipulate/attack models are technique-based. This implies that
these methods have been defined considering that they know the family of the machine
learning technique (decision trees, neural networks,...) used to learn the target model that
they want to manipulate. In this work we propose some methods to capture information
about models ( seen as black boxes). The information we plan to obtain is: family of the
learning technique, significance of the different members of the feature space and the possible
existence of attribute transformations. Our first approach is based on mimeting the target
models, and then from the mimetic models. we extract meta-features by the application of
meta-learning techniques. We also discuss about the feasibility of extracting knowledge in
declarative models. Examples of details we want to discover from declarative models are:
the existence of relational patterns between features, recursive patterns in the model, or the
existence of attribute transformations, such as the use of propositionalisation for complex
features. We also discuss about the feasibility of extracting knowledge from declarative
models such as the existence of relational patterns between features, recursive patterns in
the model, or the existence of attribute transformations (for instance, propositionalisation
for complex features).

Acknowledgments. This work has been partially supported by the EU (FEDER) and the
Spanish MINECO project TIN 2015-69175-C4-1-R (LOBASS) and by Generalitat Valenciana
under ref. PROMETEOII/2015/013 (SmartLogic).

4.7 Interacting with Program Synthesis by Example: Designing Around
Human Cognition

Elena Glassman (University of California – Berkeley, US)
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This talk is motivated by recent successes and challenges in designing interfaces for interacting
with example-driven synthesis backends, i.e., MistakeBrowser and FixPropagator [Head et al.
2017]. I then explain Variation Theory, a well-tested theory of how humans form hypotheses,
i.e., learn concepts and rules, from examples. Finally, I discuss how interfaces in the future
can help (1) users accurately teach programs to example-driven synthesis backends and (2)
communicate those learned programs back to the user.
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4.8 The Draughtsman’s Assistant
Stephen H. Muggleton (Imperial College London, GB)
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Abstraction is an essential and defining property of human learning and thought. Human
programmers use abstraction to define meaningful variables, data types, procedures, para-
meters, conditions and hierarchical problem decomposition. This presentation provides a
demonstration of the idea of programming by drawing using the Metagol_AI system. We
assume a human teacher draws diagrams on a 2D array and a Meta-Interpretretive Learner
uses primitives from the Postscript drawing language to build programs which imitate the
drawings. It is assumed programs for drawing symbols, such as an L, from a single example.
Abstraction and invention mechanisms can then be used to learn numbers, such as two three
or four which can be applied to L to produce multiple instances of L. Incremental learning is
then used to build larger programs by building on previously learned programs.

4.9 Towards Ultra-Strong Machine Learning Comprehensibility of
Programs Learned with ILP

Stephen H. Muggleton (Imperial College London, GB)
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Revised Selected Papers, Lecture Notes in Computer Science, Vol. 10326, pp. 52–67, Springer, 2016.
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During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of
performance: predictive accuracy and comprehensibility of generated hypotheses. Since
predictive accuracy was readily measurable and comprehensibility not so, later definitions in
the 1990s, such as that of Mitchell, tended to use a one-dimensional approach to Machine
Learning based solely on predictive accuracy, ultimately favouring statistical over symbolic
Machine Learning approaches. In this presentation we provide a definition of comprehensibility
of hypotheses which can be estimated using human participant trials. We present the results
of experiments testing human comprehensibility of logic programs learned with and without
predicate invention. Results indicate that comprehensibility is affected not only by the
complexity of the presented program but also by the existence of anonymous predicate
symbols.
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4.10 Learning from Observation
Katsumi Inoue (National Institute of Informatics – Tokyo, JP)
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Two approaches to Learning from Observation are given in this talk. One is Meta-level
abduction (MLA), and the other is Learning from interpretation transition (LFIT). In MLA,
abduction is performed at the meta-level, enabling us to abduce rules and predicate/object
invention. In LFIT, relational dynamics is learned from transition of states of a system in
the form of state transition rules.
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4.11 MagicHaskeller-based Incrementally Learning Agent
Susumu Katayama (University of Miyazaki, JP)
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This presentation introduced a general AI agent with incremental learning that uses Ma-
gicHaskeller. In addition, experiences of applying the agent to Round 1 of General AI
Challenge was presented.
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4.12 SUPERVASION project – Supervision by Observation using
Inductive Programming

David Nieves Cordones (Technical University of Valencia, ES)
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We present some progress in the project SUPERVASION, part of which was presented at
ILP16 [1]. This project proposes a system for automated monitoring of apprentices using
information from one high-level explanation given by an expert (a narrative) and one (or
very few) video-recorded executions of the procedure. This process of supervision is divided
in two phases: knowledge acquisition, where system learns from expert examples; and online
supervision, in which the automated supervisor assists as a virtual expert to the trainee
during the training. Also, we use Event Calculus [2] for logical reasoning about observable
properties and abstract concepts in time. The newly system has been used to learn and
detect the starting and ending points of high-level fluents in different trainings in minimally
invasive surgery. The experimental results show the potential of the developed tool.

Acknowledgments. This work has been partially supported by the EU (FEDER) and the
Spanish MINECO under grant TIN2014-61716-EXP (SUPERVASION) and TIN 2015-69175-
C4-1-R (LOBASS), and by Generalitat Valenciana under grant PROMETEOII/2015/013.
David Nieves was supported by FPI-MINECO grant BES-2016-078863.

J. H-O was visiting the Leverhulme Centre for the Future of Intelligence, generously
funded by the Leverhulme Trust. He thanks UPV for the sabbatical leave and the funding
from the Spanish MECD programme “Salvador de Madariaga” (PRX17/00467) and the GVA
grants for research stays.

References
1 Monserrat, C., Hernández-Orallo, J., Dolz, J.F., Rupérez, M.J. and Flach, P. Knowledge

Acquisition by Abduction for Skills Monitoring: Application to Surgical Skills. 26th Inter-
national Conference on Inductive Logic Programming, ILP2016, 2016.

2 Artikis, A., Sergot, M., and Paliouras, G. An event calculus for event recognition. IEEE
Transactions on Knowledge and Data Engineering Computer, vol. 27, no. 4, pp. 895–908,
2015.

4.13 Programming Not Only by Examples
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In recent years, there has been tremendous progress in automated synthesis techniques that
are able to automatically generate code based on some intent expressed by the programmer. A
major challenge for the adoption of synthesis remains in having the programmer communicate
their intent. When the expressed intent is coarse-grained (for example, restriction on the
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expected type of an expression), the synthesizer often produces a long list of results for the
programmer to choose from, shifting the heavy-lifting to the user. An alternative approach,
successfully used in end-user synthesis is programming by example (PBE), where the user
leverages examples to interactively and iteratively refine the intent. However, using only
examples is not expressive enough for programmers, who can observe the generated program
and refine the intent by directly relating to parts of the generated program.

We present a novel approach to interacting with a synthesizer using a granular interaction
model. Our approach employs a rich interaction model where (i) the synthesizer decorates a
candidate program with debug information that assists in understanding the program and
identifying good or bad parts, and (ii) the user is allowed to provide feedback not only on the
expected output of a program, but also on the underlying program itself. That is, when the
user identifies a program as (partially) correct or incorrect, they can also explicitly indicate
the good or bad parts, to allow the synthesizer to accept or discard parts of the program
instead of discarding the program as a whole.

We show the value of our approach in a controlled user study. Our study shows that
participants have strong preference to using granular feedback instead of examples, and are
able to provide granular feedback much faster.

4.14 Probabilistic Inductive Logic Programming with SLIPCOVER
Fabrizio Riguzzi (University of Ferrara, IT)
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The combination of logic and probability is very useful for modeling domains with complex
and uncertain relationships among entities. Machine learning approaches based on such
combinations have recently achieved important results, originating the fields of Statistical Re-
lational Learning, Probabilistic Inductive Logic Programming and, more generally, Statistical
Relational Artificial Intelligence.

Probabilistic languages based on Logic Programming are particularly promising because
of the large body of techniques for inference and learning developed in Logic Programming.
Sato’s distribution semantics [9] is a possible worlds semantics that emerged as one of the
more prominent approach for giving a meaning to Probabilistic Logic Programs. It is adopted
by many languages such as the Independent Choice Logic, PRISM, Logic Programs with
Annotated Disjunctions, CP-logic and ProbLog.

The talk will illustrates the basics of semantics and inference for these languages and
will present the SLIPCOVER system [2] for Probabilistic Inductive Logic Programming.
SLIPCOVER learns both the structure and the parameters of Logic Programs with Annotated
Disjunctions and CP-logic by performing clause revision followed by greedy theory search.

The talk will also present the cplint on SWISH [6, 1] (http://cplint.ml.unife.it) web
application for experimenting with SLIPCOVER. The application can also be used to

perform probabilistic inference with the PITA [7, 8] and MCITYRE algorithms [5]
perform Inductive Logic Programming with Aleph [10]
draw ROC and Precision-Recall curves [3, 4].

These features will be briefly discusses in the talk.
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4.15 Human Learning in the Michalski Train Domain
Ute Schmid (Universität Bamberg, DE)
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Human-like computing (HLC) is relevant for designing AI systems which allow for a com-
prehensible interaction between humans and machines. One aspect of HLC is to get a
better understanding of human cognitive processes. We are interested in comparing human
relational learning with ILP and conducted a first experiment to explore how good humans
are to learn rules off different structural complexity in the Michalski train domain. We
could show, that a simple linear recursive rule can be generalized nearly as efficiently as a
conjunction of features while a rule characterizing a relation between objects which can occur
at an arbitrary position is nearly as difficult to learn as a disjunction.

4.16 Learning and Decision-making in Artificial Animals
Claes Strannegård (Chalmers University of Technology Göteborg, SE)
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I will discuss artificial ecosystems with animals and plants that live in blocks worlds, e.g. in
the Minecraft environment. The artificial animals (or animats) are capable of perception,
learning, decision-making, and action. Moreover, they have fixed sets of needs for certain
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resources, e.g. water and energy. If an animat runs out of some resource, then it dies by
definition. The learning and decision-making mechanisms are the same for all animats. The
sole goal for all animats is to avoid death. The animats perceive their environment by means
of extended boolean circuits. These circuits evolve over time according to a fixed set of rules
for learning and forgetting. The animats are capable of sexual or asexual reproduction. In
the sexual case, two animats with similar enough genome are able to reproduce under certain
circumstances. Together these mechanisms give rise to autonomous ecosystems of animats
that interact with each other and continuously adapt to changing environments by learning
and evolution.

4.17 Learning to Forget – First Explorations
Michael Siebers (Universität Bamberg, DE)

License Creative Commons BY 3.0 Unported license
© Michael Siebers

Joint work of Michael Siebers, Ute Schmid, Kyra Göbel, Cornelia Niessen

I present recent advances in the Dare2Del-Project. The goal of the project is to assess the
irrelevance of digital objects. In this talk I will focus on files in an artificial file system. A
first representation is shown together with preliminary results on the learning of the derived
target predicate. I conclude with challenges posed by the learning task.

4.18 Neural Program Synthesis
Rishabh Singh (Microsoft Research – Redmond, US)
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The key to attaining general artificial intelligence is to develop architectures that are capable
of learning complex algorithmic behaviors modeled as programs[1, 2, 3, 4]. The ability to learn
programs allows these architectures to learn to compose high-level abstractions with complex
control-flow, which can lead to many potential benefits: i) enable neural architectures to
perform more complex tasks, ii) learn interpretable representations (programs which can be
analyzed, debugged, or modified), and iii) better generalization to new inputs (like algorithms).
In this talk, I will present some of our recent work in developing neural architectures for
learning complex regular-expression based data transformation programs from input-output
examples, and will also briefly discuss some other applications such as program repair[6] and
fuzzing[5] that can benefit from learning neural program representations.
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5 Working groups

5.1 Meta-Knowledge and Relevance of Background Knowledge
Stephen H. Muggleton, Ute Schmid, Fabrizio Riguzzi, Susumu Katayama, Andrew Cropper,
Hila Peleg, Richard Evans

Motivation

Imagine a life-long learning system, which learns new functions (or predicates) from examples
during a series of teaching episodes. At the end of each episode the learned functions are
added to the library of those available for definitions in subsequent episodes. As the system’s
library of functions expands we need to decide how to prevent the progressive build-up
of available functions swamping the search. We refer to this as the Relevance Problem.
In particular, we need a method for efficiently identifying a small subset of the available
functions which should be used in each new episode. This is a hard and, as yet, unsolved
problem for Inductive Programming.

Identifying Relevant Background Knowledge

The Relevance Problem has some similarities to the Frame Problem, which involves finding
an adequate collections of axioms for a viable description of a robot environment. In the
case of building a learning assistant the Relevance Problem would be critical for applications
such as developing a “personal background knowledge manager”.

Concrete Proposals

Below are a list of the concrete proposals for relevance detection.
1. Order the functions according to how frequently they are used.
2. Annotating functions with type information, and then consider only functions whose

types match the input/output pairs in the provided examples.
3. Simply do not bothering remembering learned functions from previous episodes but

instead invent (or reinvent) new ones as needed.
4. Look at analogous functions: eg this function has the right form, but it operates on lists,

not trees.
5. Generalise metarules from background definitions to form a template. This could be done

by abstracting out the particular variables and predicates used.
6. Store a set of input/output pairs for each learned function, and use this to filter suitable

functions.

Further Ideas

The group also discussed the related issue of IP systems which invent new data-types as
needed to solve a problem. The idea of creating new data-types is a core ingredient of real
programming, and the group agreed it should be studied within IP. Also we discussed the
fact that knowing what is relevant requires knowing what we know and what we do not know.
For this purpose it was suggested we need some way of modelling our ignorance, such as
auto-epistemic logic. Andrew Cropper and Stephen Muggleton have shown that all programs
over dyadic predicates can be subsumed by a single pair of metarules. Ute Schmid asked
whether it is possible that there is one individual metarule that subsumes all of them? (A
Scheffer’s stroke for metarules). We also discussed whether it would be possible to mine
Prolog programs from github to extract a library of background predicates?
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Conclusion

Program Induction presently faces a bottleneck in only ever being able to construct small
programs. The group agreed that solving the Relevance Problem was key in overcoming this
bottleneck and suggested a variety of approaches which might be implemented and tested to
see how effective they are.

5.2 Combining Inductive Programming with Machine Learning
Rishabh Singh, Oleksandr Polozov, Cesar Ferri Ramirez, Aws Albarghouthi, Katsumi Inoue,
Michael Siebers, Christina Zeller
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There has been a lot of recent interest in using machine learning techniques, especially deep
learning techniques, for learning programs from inductive specifications such as input-output
examples. There are three main reasons for this surge in recent interest: 1) Learning
programs allows neural architectures to perform complex algorithmic tasks compared to
simple classification tasks, 2) the prior coming from the underlying hypothesis space in
terms of the Domain-specific language of programs allows the learnt models to generalize
better on unseen data, and finally 3) the learnt models (in the form of programs) are more
interpretable, which can be inspected, verified, and even modified.

There are many ways in which machine learning techniques can aid in the synthesis
process to learn programs. One idea can be to automatically learn a policy to perform
efficient search over a large space of programs. There has been some recent work (e.g. Neural
Turing Machines, Neural Random Access Machines) in embedding program semantics in a
differentiable manner such that the programs can be learned using gradient descent based
optimization techniques in an end-to-end manner. Some other approaches such as RobustFill
learn a generative model of programs in a language conditioned on the examples by learning
a function that predicts expansions in a context-free grammar (DSL). Finally, there can be
some approaches to combine symbolic search approaches (such as VSA, constraint-solving,
integer programming etc.) with machine learning techniques to guide and reduce the search
space of programs.

One of the key tasks in inductive programming is to define a good hypothesis space that is
expressive enough to express a large class of desired programs but at the same concise enough
for efficient search. Machine learning techniques can be used to automatically construct such
hypothesis spaces given a large amount of data in a given domain. For example, they can
be used to learn idioms/sub-routines that are commonly used over a large number of tasks,
which can be used to add new operators in the DSL. One longer term goal would be to see if
the learning techniques may help in constructing the complete DSL from scratch only from
data.

Some specification mechanisms are inherently noisy and ambiguous. For example, consider
specifications in the form of hand drawings, natural language, or pictures. Converting these
ambiguous specifications into a formal representation requires machine learning techniques
such that the specifications can become usable. Even for deterministic specifications such as
FlashFill input-output example strings, there can sometimes be noise in the example strings.
Since the traditional synthesis techniques are sound, they will either generate a very complex
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program for such noisy examples or return no program if there is no DSL program that is
consistent with all noisy examples. Using machine learning techniques can aid these systems
to tolerate some noise in the specification and make the synthesis process more robust.

Inductive Programming techniques can also be used for helping machine learning tech-
niques. For example, inductive programming can be used to automate the search of neural
network architectures that work best for a given dataset. We can design a DSL consisting of
neural network primitives, which can then be searched to compute new networks that compose
the primitives with an objective to achieve the best performance on a dataset. Inductive
programming can also be used for preprocessing background knowledge and generate new
features for machine learning systems. Finally, inductive programming techniques can also
be useful for learning hierarchical symbolic structures on top of low-level black box modules
that are learnt using machine learning. For example, consider the task of summing up all
the digits in a vehicle number plate, where the blackbox modules would be digit recognition
functions, whereas the learnt symbolic structure will iterate over the digits of the recognized
number.

To summarize, Inductive programming and machine learning techniques can greatly
benefit from each other, and it is exciting to see a lot of progress happening currently in
both fronts. We expect even more synergy between the two research areas in coming years.

5.3 IP for Data Wrangling
Frank Jäkel, Lidia Contreras-Ochando, Luc De Raedt, Martin Möhrmann
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In data science the usual work flow starts with data collection and ends with an analysis script
that distills the insights from the data. In between, there is a lot of data wrangling: The
data need to be imported from sometimes esoteric file formats and need to be transformed
into appropriate data structures. Data scientists spend most of their time on writing custom
code for data wrangling, checking and rechecking the correctness of data transformations
and the integrity of the data.

IP systems can help automate this process by learning data transformations from examples.
However, while for small data sets a data scientist can check by hand that data wrangling
code does what it is supposed to do and, e.g., also covers edge cases, exceptions or coding
errors, for large data sets this is not possible. Hence, IP support tools for data scientists
have to be interactive and help them discover potential problems by, e.g., grouping similar
cases for bulk inspection or flagging suspicious or uncertain cases in an active learning mode.
Otherwise it is unlikely that IP systems will be trusted, especially by power users.

Luckily, small training sets of hand-checked examples can not only be used for learning
data transformation but also to automatically generate tests by learning constraints. For
example, if all input strings in a hand-checked subset are of length four, then this constraint
can be learned (e.g. with Sketch) and input data that violate this constraint can be discovered
without the user having to write an explicit test. Such interactive IP system that also uncover
implicit assumptions about the data have the potential to provide substantial increases in
productivity for data scientists.
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