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Abstract
This reports briefly describes the organization and the plenary talks given during the Dagstuhl
Perspectives Workshop 17442. The goal of this workshop was to investigate the state-of-the-art
and to delineate a roadmap and research challenges for performance modeling and prediction
in three neighbour domains, namely information retrieval (IR), recommender systems (RecSys),
and natural language processing (NLP).
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Information systems, which manage, access, extract and process non-structured information,
typically deal with vague and implicit information needs, natural language and complex
user tasks. Examples of such systems are information retrieval (IR) systems, recommender
systems (RecSys), and applications of natural language processing (NLP) such as e.g. machine
translation, document classification, sentiment analysis or search engines. The discipline
behind these systems differs from other areas of computer science, and other fields of science
and engineering in general, due to the lack of models that allow us to predict system
performances in a specific operational context and to design systems ahead to achieve a
desired level of effectiveness. In the type of information systems we want to look at, we
deal with domains characterized by complex algorithms, dependent on many parameters and
confronted with uncertainty both in the information to be processed and the needs to be
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addressed, where the lack of predictive models is somehow bypassed by massive trials of as
many combinations as possible.

These approaches relying on massive experimentation, construction of testbeds, and
heuristics are neither indefinitely scaled as the complexity of systems and tasks increases nor
applicable outside the context of big Internet companies, which still have the resources to
cope with them.

The workshop was organized as follows. The first day was devoted to plenary talks
focused on providing a general introduction to IR, RecSys, and NLP and on digging into
some specific issues in performance modeling and prediction in these three domains. The
second day, participants split into three groups – IR, RecSys, and NLP – and explored
performance modeling and prediction issues and challenges within each domain; the working
groups then reconvened to present the output of their discussion in a plenary session in
order to cross-fertilize across disciplines and to identify cross-discipline themes to be further
investigated. The third day, participant split into groups which explored these themes
– namely measures, performance analysis, documenting and understanding assumptions,
application features, and modeling performance – and reported back in plenary sessions to
keep all the participants aligned with the ongoing discussions. The fourth and fifth days have
been devoted to the drafting of this report and the manifesto originated from the workshop.

This documents reports the overview of the talks given by the participants on the first
day. The outcomes of the working groups – both within-discipline themes and cross-discipline
themes – as well as the identified research challenges and directions are presented in the
Dagstuhl Manifesto corresponding to this Perspectives Workshop [1].

Acknowledgements. We thank Schloss Dagstuhl for hosting us.
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3 Overview of the Talks

3.1 The Validity Problems of IR
Norbert Fuhr (University of Duisburg-Essen, DE)
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Current IR experiments often suffer from flaws that affect the internal validity, such as e.g.
invalid or inappropriate metrics, poor test design, multiple testing without correction, or
lack of reproducibility. External validity deals with the extent to which the findings of a
study can be generalized. For addressing this issue, we must deepen out understanding of
the models used, especially their underlying assumptions, and devise methods for checking
these assumptions in a new setting. Furthermore, we need to investigate the relationship
between application properties and performance, i.e. characteristics of the controlled variables
(documents, topics and relevance assessments) of an IR experiment and the evaluation result.

3.2 Recommender Systems: The Evaluation Challenge
Joseph A. Konstan (University of Minnesota – Minneapolis, US)
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Recommender systems have become ubiquitous, helping businesses market and users find
desired information and products. They employ a variety of techniques including non-
personalized summary statistics, content-based information filtering, and personalized col-
laborative filtering, often using latent-factor models based on or approximating matrix
factorization. Evaluating recommender system performance is challenging because the most
accessible measures such as predictive accuracy, rank performance, etc., all fail to capture the
actual utility of the system–recommending items the user would not have selected anyway
without the aid of the recommender. We review a variety of algorithms, offline and online
evaluation metrics, and the challenge of effectively evaluating performance of recommender
systems in the context of actual use.

3.3 Evaluation in Natural Language Processing
Gregory Grefenstette (Institute for Human Machine Cognition, US)
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In this talk, I present the two main ways that Natural Language Processing (NLP) systems
are evaluated. One way is calculating the improvement in some applications that use NLP
processes to produce their results. Examples of these applications are Summarisation, Ques-
tion Answering, Plagiarism Detection, Speech Recognition, Entity Extraction, Classification,
Machine Translation, Author Identification, Image Labeling, Information Retrieval and
Recommendation, among others. The second way is intrinsic evaluation of individual NLP
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modules, such as Language Identification, Tokenisation, Morphological Analysis, Part-of-
Speech Tagging, Chunking, Shallow Parsing and Semantic Role Labelling, Deeper Parsing,
Co-reference resolution, Topic Detection and Taxonomy/Thesaurus Extraction. We will
explain how automated evaluation systems are set up, run and results reported, based upon
gold standards and common metrics. For prediction, we will also describe some ways to
characterize collections (used for training or testing). Finally, we will give an example of
how much data is needed to produce expected results for analogy tests in word embeddings
systems.

3.4 Bad for IR, Worse for Recommenders: Missing Data and the
External Validity of Offline Evaluations

Michael D. Ekstrand (Boise State University, US)

License Creative Commons BY 3.0 Unported license
© Michael D. Ekstrand

Missing data impedes the realistic offline evaluation of information retrieval and recommender
systems. Data sets do not have complete data on the relevance of items or documents to
users or queries. The information retrieval community has developed several techniques that
attempt to address these problems, but these techniques are not applicable to evaluating
recommender systems due to the personalized and entirely subjective nature of relevance in
recommender applications. Further, the nature of recommendation tasks and the subjectivity
of relevance mean that this missing data is particularly detrimental to the validity of
recommender evaluations. In this talk, I review the problem of missing data in information
retrieval and recommendation tasks, the methods IR has developed, and explain why those
methods are not suitable for evaluating recommenders. I also describe some additional
concerns in recommender system evaluation that arise from missing data, and demonstrate
that proposed solutions depend on missing theoretical knowledge or unrealistic assumptions.

3.5 Advanced Performance Modelling (and Prediction?) Techniques in
IR

Nicola Ferro (University of Padova, IT)
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Trying to explain the performance of a set of Information Retrieval (IR) systems across
a set of topics is a preliminary step indispensable to start envisioning how to predict the
performance of such systems. In this talk we discuss the different types of performance
models which have been developed so far, which are all based on General Linear Mixed
Models (GLMM) and ANalysis Of VAriance (ANOVA).

We start from the Topic and System effects models [1, 6]. We then consider the break-
down of the System effect into those of its components, namely stop lists, stemmers, and
IR models [3, 4]. We discuss the use of simulation for showing the importance of the
Topic*System interaction effect [5] as well as very recent work on using random partitions of
the document corpus to estimate this effect [7]. Finally, we report on preliminary results
about the Sub-Corpus effect and System*Sub-Corpus interaction effect [2].
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We conclude by discussing how these explanatory models might be turned into predictive
ones by using features describing these different factors and regression-like techniques.
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3.6 Objective or Subjective measures?
Martijn C. Willemsen (Eindhoven University of Technology, NL)
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Recommenders are traditionally evaluated using offline evaluation on historical data. More
recently, focus has shifted to online evaluation of objective behavioral data using AB testing.
However, such behavior is hard to interpret without using subjective measures that help
interpreting the meaning of the behavior. For example lower click-rates might not be reflecting
reduced interest, but increased engagement of a user consuming the recommended content
from beginning to end without additional interactions. In this talk I first introduce our
user-centric evaluation framework [3] and subsequently show in three cases how objective
and subjective measures go hand in hand in predicting and understanding user behavior
and system effectiveness. The first case demonstrates how we can build a better prediction
model for user segments based on subjective survey data of only 3000 users than on the
behavioral data of all 100k users [2]. In the second case I show how objective measures of
similarity, obscurity and accuracy can be linked to subjective perceptions of diversity, novelty
and satisfaction. These subjective measures can explain the different relative preferences
of users for three classical recommender algorithms (item-item, user-user and SVD) [1].
In the final case I show how choice difficulty of recommendation lists can be reduced by
using latent-feature diversification, which reduces similarity between items while maintaining
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sufficient levels of attractiveness. The study shows that a diverse 5-item set is experienced as
more satisfactory than a top-5 item set, despite the lower predicted accuracy of the list and
the lower average rank of the items chosen by the user [4].
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3.7 User Utterance Understanding in Conversational Systems
Bernardo Magnini (Fondazione Bruno Kessler, IT)
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In the context of the recent resurge of Artificial Intelligence, Conversational Agents have
been attracting the attention of the NLP community. Conversational systems offer an
interesting scenario for cross-domain predictability in NLP, for two reasons: (i) task oriented
conversational agents are being developed in a huge numbers of application scenarios (e.g.
virtual coaching, personal assistant, e-commerce, etc.) in different domains (e.g. food, sport)
and for different languages; (ii) there are very few conversational datasets available for
training models. In this context predictability is crucial for successfully develop high quality
conversational systems. However, it opens several fundamental research questions. Which are
the characteristics of the language (e.g. specific terminology, typical conversational patterns)
of a certain domain that mainly affect the system performance? Which are the relevant
characteristics of the application domain (e.g. complexity of entities and properties)? Which
are the characteristics of the task (i.e. the problem to be solved by conversation, like booking
a restaurant, or recommending a book)? How these three levels are related one with the
other to determine predictability?
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