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Abstract
A continuing goal of current multiprocessor software design is to improve the performance and
reliability of parallel algorithms. Parallel programming has traditionally been attacked from
widely different angles by different groups of people: Hardware designers designing instruction
sets, programming language designers designing languages and library interfaces, and theoreti-
cians developing models of parallel computation. Unsurprisingly, this has not always led to
consistent results. Newly developing areas show every sign of leading to similar divergence. This
Dagstuhl Seminar will bring together researchers and practitioners from all three areas to discuss
and reconcile thoughts on these challenges.

Memory Models and Platforms

Fundamental questions about the semantics of shared memory remain. For example, it becomes
increasingly clear that atomic accesses to variables without memory ordering guarantees, or with
very weak ordering guarantees, are important in practice. It is surprisingly common to find data
structures, such as simple counters, that effectively consist of a single machine word. These con-
tinue to be “supported” in languages like Java and C++, but there remains no generally accepted
way of defining their semantics, and the specifications in these languages are clearly inadequate.
Fundamental questions about memory models and concurrent data structures continue to be
unresolved. Many Java concurrent data structures provide weaker than interleaving (”sequen-
tially consistent”) semantics that can only be fully understood with a thorough understanding
of the memory model. This fact seems to be neither widely appreciated nor discussed. Are the
“acquire/release” semantics often used in practice sufficient? Could we afford the overhead of
providing the programmer with a simpler model? The more theoretical side of our discipline
often uses concepts, such as “safe” and “regular” registers that are quite foreign to the way in
which parallel programming languages are actually defined. Are these notions reconcilable?

Non-Volatile Memory and Concurrency

Non-volatile memory (NVM) technologies are expected to support persistence in byte- address-
able memory at densities higher than DRAM and at competitive speed. It is expected that NVM
will unify the DRAM and SSD into a one-level storage system of persistent main memory with no
need for a hard drive, and directly accessible from the programming language. Such a change in
the platforms has a significant impact on the design of software and in particular on concurrent
algorithms. One implication is that standard functionalities need to be written for a single-tier
memory rather then the standard two-tier paradigm. The design of widely available applications,
such as database systems, assume that two-tier memory levels are present, and optimizations
are based on the fact that these two memory levels have very different behaviors. Concurrency
needs to be re-thought in the presence of the new memory structure. Another implication is
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that software is now expected to deal with persistence. This has strong connections to thread
synchronization issues, but has not been traditionally studied with concurrent algorithms. Ad-
dressing these challenges is crucial for building systems on non-volatile memories and we would
like to explore potential solutions in the Seminar.
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Improving the performance and reliability of parallel and concurrent programs is an ongoing
topic in multiprocessor software and hardware research. Despite numerous efforts, the
semantics of weak memory models remains subtle and fragile. There has not been established
a generally accepted way of defining their semantics, and the specifications of programming
languages supporting weak memory models with shared accesses are clearly inadequate. In
addition, new advances in hardware are adding further complexity. For example, recently,
non-volatile memory (NVM) generated a lot of interest in different communities: Hardware
designers coming up with instruction sets and layouts of NVM, system designers integrating
NVM into the storage stack, programming language designers proposing library interfaces, and
theoreticians developing a new theory of persistence under concurrent access and algorithms
adapted for persistency.

This Dagstuhl Seminar on “Future Challenges in Parallelism” touched on different aspects
on topics in this broad area of research. In this report, we briefly give a summary of the
presentations and discussions that took place during the seminar.

Presentations started with an introductory broad overview talk on the non-volatile memory
technology. This survey was followed by shorter talks ranging from hardware techniques for
efficiently controlling write-back ordering from caches to theoretical foundations and design
of specific data structures.

There was agreement that non-volatile memory is likely to become commercially important
in the near future, and that it is tempting to exploit it to provide persistence of user data
structures. However, there was little agreement on detailed assumptions and direction. The
emphasis of the presentations was on manually designed data structures programmed to
a near-hardware-level interface. Some participants expressed concerns that this was too
low-level and that the community should instead focus on constructs at the level of durable
transactions. Transactional semantics are likely to play an important role: When restarting
an application from its persisted state, this state must be consistent in order to prevent
data corruption and loss. Much of the work presented in the workshop assumed that we
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will have non-volatile memory combined with visibly volatile caches that require explicit
flush operations to persist data. But it was pointed out that the problem could be greatly
simplified by either providing sufficient battery backup to ensure that the entire cache is
flushed on failure, or providing other hardware support.

Some of the participants discussed the definitions of correctness. On the one hand, the
standard definition of durable linearizability is a strong requirement that typically brings
a large performance overhead. On the other hand, the weaker buffered linearizability does
not compose well. Other participants suggested some hardware modifications that could
make the life of the programmer easier. For example, a discussion emerged on whether
we could pin a cache line to make sure it is not written back to memory. We also tackled
the programmability of systems with non-volatile memories. How difficult should it be
to program them? Are application programmers expected to employ it directly or only
via dedicated data structures provided in libraries? The experience report of porting the
application memcached to non-volatile memory raised a lot of interest with the participants.
It turned out that the task was rather difficult due to complex interactions between the
different modules in the application, in particular between modules that required persistence
and modules that did not. The lack of tools was strongly felt, and the obtained performance
was not satisfactory. The conclusion was that applications had better be redesigned from
scratch to work with non-volatile memory. The general feeling at the end of the seminar was
that we are in the beginning of exciting times for research on non-volatile memories and that
the discussions must and will continue.

Memory models formed the second major thread of presentations and discussions, with
participants expressing widely different viewpoints and technical directions. At one extreme,
Madan Musuvathi presented evidence that a simple interleaving-based “sequentially consistent”
semantics can be provided at reasonable cost, together with an argument that this is a good
direction for future programming languages. At the other extreme, Viktor Vafeiadis argued
that a weaker “acquire-release” memory model is easier to reason about, an argument that
was backed up by model-checking time measurements. Needless to say, this was followed by
lively discussion resulting, we believe in at least a more thorough understanding of different
perspectives by everyone involved. There were also several brief presentations and extensive
discussion on different approaches for addressing the long-standing C++ and Java (among
others) out-of-thin-air problem. Current semantics for these languages allow outcomes that
are universally accepted as absurd, but which we do not know how to prohibit in any precise
way. It is clear that none of the solutions are quite ready to be adopted, but there are
encouraging results along several different paths. There is a consensus that this problem
makes formal reasoning about programs nearly impossible and that it is a serious obstruction
for tool development. There was less consensus about the extent to which it obstructs
day-to-day programming efforts.

In conclusion, the seminar inspired discussions and proposed challenging problems to
tackle for the research community. As the discussions showed, designing sound and performant
parallel systems require the cooperation of researchers on hardware and software level, with
both theoretical and practical analyses and evaluations.
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3 Overview of Talks

3.1 Coherence, Consistency, and Deja Vu: Memory Hierarchies in the
Era of Specialization

Sarita Adve (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
© Sarita Adve

Joint work of Matthew D. Sinclair, Johnathan Alsop, Sarita Adve, and many others
Main reference Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve: “Efficient GPU synchronization without

scopes: saying no to complex consistency models”, in Proc. of the 48th International Symposium on
Microarchitecture, MICRO 2015, Waikiki, HI, USA, December 5-9, 2015, pp. 647–659, ACM, 2015.

URL http://dx.doi.org/10.1145/2830772.2830821

Memory models for homogeneous multicore systems have traced an arc of complexity that was
often precipitated by hardware designs that did not pay enough attention to programmabilty
or portability. As we now enter the brave new world of heterogeneous computing and
specialization, it is deja vu. We describe how hardware designers are again on a trajectory of
exposing too much hardware to software, resulting in complex hierarchies and consistency
models. We draw on results from the DeNovo project to show that this trajectory is neither
necessary nor effective. With appropriately designed coherence and careful interfaces, we can
reap the efficiency benefits of specialization while retaining a simple memory model.

3.2 Global-Local View: Scalable Consistency for Concurrent Data
Types

Deepthi Devaki Akkoorath (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Deepthi Devaki Akkoorath

Joint work of Deepthi Devaki Akkoorath, Annette Bieniusa, Carlos Baquero, José Brandão

Concurrent linearizable access to shared objects can be prohibitively expensive in a high
contention workload. Many applications apply ad-hoc techniques to eliminate the need of
synchronous atomic updates, which may result in non-linearizable implementations. We
propose a global-local view model which leverages such patterns for concurrent access to
objects in a shared memory system. In this model, each thread maintains different views
on the shared object – a thread-local view and a global view. As the thread-local view is
not shared, it can be updated without incurring synchronization costs. These local updates
become visible to other threads only after the thread-local view is merged with the global view.
By executing operations on the local state without synchronization, while only synchronizing
with the shared state when needed, applications can achieve better scalability at the expense
of linearizability – the default correctness criteria for concurrent objects.
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3.3 Remote Memory References at Block Granularity
Hagit Attiya (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Hagit Attiya

Joint work of Hagit Attiya, Gili Yavneh
Main reference To appear in OPODIS 2017.

The cost of accessing shared objects that are stored in remote memory, while neglecting
accesses to shared objects that are cached in the local memory, can be evaluated by the
number of remote memory references (RMRs) in an execution. We propose a new measure,
called block RMRs, counting the number of remote memory references while taking into
account the fact that shared objects can be grouped into blocks. On the one hand, this
measure reflects the fact that the RMR incurred for bringing a shared object to the local
memory might save another RMR for bringing another object placed at the same block.
On the other hand, this measure accounts for false sharing: the fact that an RMR may be
incurred when accessing an object due to a concurrent access to another object in the same
block.

3.4 Analyzing Contention and Backoff in Asynchronous Shared
Memory

Naama Ben-David (Carnegie Mellon University – Pittsburgh, US) and Guy E. Blelloch

License Creative Commons BY 3.0 Unported license
© Naama Ben-David and Guy E. Blelloch

Joint work of Naama Ben-David, Guy E. Blelloch
Main reference Naama Ben-David, Guy E. Blelloch: “Analyzing Contention and Backoff in Asynchronous Shared

Memory”, in Proc. of the ACM Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, July 25-27, 2017, pp. 53–62, ACM, 2017.

URL http://dx.doi.org/10.1145/3087801.3087828

Randomized backoff protocols have long been used to reduce contention on shared resources.
They are heavily used in communication channels and radio networks, and have also been
shown to greatly improve the performance of shared memory algorithms in real systems.
However, while backoff protocols are well understood in many settings, their effect in shared
memory has never been theoretically analyzed. This discrepency may be due to the difficulty
of modeling asynchrony without eliminating the advantage gained by local delays.

In this talk, I will present a new cost model for contention in shared memory, which
allows restricted adversarial asynchrony while capturing the effect of process delays. Using
this model, I’ll show that we can asymptotically separate the performance of a read-modify-
write loop with and without exponential backoff, demonstrating that the model reflects
a phenomenon that has evaded rigorous characterization in the past. I’ll also introduce
a new backoff protocol based on adaptive write-probabilities and show that this protocol
outperforms classic exponential backoff under our model.
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3.5 Concurrency as First-class Entity
Annette Bieniusa (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Annette Bieniusa

Joint work of Mathias Weber, Annette Bieniusa, Arnd Poetzsch-Heffter
Main reference Mathias Weber, Annette Bieniusa, Arnd Poetzsch-Heffter: “EPTL - A Temporal Logic for Weakly

Consistent Systems (Short Paper)”, in Proc. of the Formal Techniques for Distributed Objects,
Components, and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as
Part of the 12th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, Lecture Notes in Computer
Science, Vol. 10321, pp. 236–242, Springer, 2017.

URL https://doi.org/10.1007/978-3-319-60225-7_17

Concurrency is a natural phenomenon. Information is essentially local to a process and
becomes only visible once processes interact and communicate. Yet, programming models
are typically choosing linearizability as standard semantics.

In my talk I am presenting a novel temporal logic, event-based parallel temporal logic
(EPTL), that allows to reason about weakly-consistent systems. In contrast to other temporal
logics like LTL or CTL, EPTL allows to model semantics of components that are truly
concurrent while abstracting from implementation and communication details.

3.6 What consistency guarantees should concurrent data structure
libraries provide?

Hans-J. Boehm (Google – Palo Alto, US)

License Creative Commons BY 3.0 Unported license
© Hans-J. Boehm

Main reference Hans-J. Boehm, P0387R0: Memory Model Issues for Concurrent Data Structures (WG21
standards committee paper)

URL http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0387r0.html

The C++ standards committee is is attempting to add concurrent data structures, for
example concurrent queues, to the standard library. This has raised interesting questions
about desired correctness properties for such libraries. The traditional linearizability criterion
is not entirely consistent with the underlying C++ memory model, and does not sufficiently
address interactions with visibility of simple assignments. This is complicated by the fact
that there is little agreement on the correct visibility guarantees, and that they seem to vary
between data structures. We briefly addressed some of the issues, tradeoffs, and challenges.
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3.7 Remote memory in the age of fast networks
Irina Calciu (VMware – Palo Alto, US)

License Creative Commons BY 3.0 Unported license
© Irina Calciu

Joint work of Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Pratap
Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, Michael Wei

Main reference Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Pratap
Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, Michael Wei: “Remote
memory in the age of fast networks”, in Proc. of the 2017 Symposium on Cloud Computing, SoCC
2017, Santa Clara, CA, USA, September 24 - 27, 2017, pp. 121–127, ACM, 2017.

URL http://dx.doi.org/10.1145/3127479.3131612

As the latency of the network approaches that of memory, it becomes increasingly attractive
for applications to use remote memory–random-access memory at another computer that is
accessed using the virtual memory subsystem. This is an old idea whose time has come, in
the age of fast networks. To work effectively, remote memory must address many technical
challenges. We hope to provide a broad research agenda around this topic, by proposing
more problems than solutions.

3.8 NVM ReConstruction: Object-Oriented Recovery for Non-Volatile
Memory

Nachshon Cohen (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
© Nachshon Cohen

Joint work of Nachshon Cohen, Virendra Marathe, James Larus

New non-volatile memory (NVM) technologies allow direct, durable storage of data in an
application’s heap. This type of random-access memory can simplify the construction of
reliable applications that do not lose data at a system shutdown or power failure. Existing
NVM programming frameworks for native languages are applicable to non-object oriented
languages such as C, and do not gracefully support richer abstractions and constructs available
in an object-oriented language like C++. Support for even mundane abstractions, such as
pointers, leads to highly error prone programming practices. This paper presents a new
persistent memory programming model designed to naturally align with the object-oriented
programming style, while addressing programming pitfalls of prior approaches. At the heart
of our approach is the notion of object reconstruction, the ability to transparently reconstruct
a persistent object’s state at runtime after a restart event. Object reconstruction enables
several desirable features that significantly simplify the programmer’s task of writing correct
programs that leverage byte-addressability of persistent memory. It (i) enables support
for key object-oriented features such as type inheritance and virtual functions in persistent
types, (ii) accommodates co-location of nonpersistent fields within persistent type instances,
(iii) allows representation of persistent pointers as virtual addresses, and (iv) enables type
specific reconstruction of the entire state of a persistent object after a restart. Our prototype
implementation as a C++ library demonstrates the versatility of object reconstruction at
virtually zero performance overhead.
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3.9 Waiting Policies
Dave Dice (Oracle Corp. – Burlington, US)

License Creative Commons BY 3.0 Unported license
© Dave Dice

Main reference Dave Dice: “Malthusian Locks”, CoRR, Vol. abs/1511.06035, 2015.
URL http://arxiv.org/abs/1511.06035

The “best practice” for waiting – threads waiting for another thread to change a location in
shared memory – has shifted with modern architectures. We briefly survey the motivating
architectural factors and suggest new practices.

3.10 Performance Isolation on Modern Multi-Socket Systems
Sandhya Dwarkadas (University of Rochester, US)

License Creative Commons BY 3.0 Unported license
© Sandhya Dwarkadas

Joint work of Sharanyan Srikanthan and Kai Shen
URL http://www.cs.rochester.edu/u/sandhya

Recognizing that parallel applications are rarely executed in isolation today, I will discuss
some practical challenges in making best use of available hardware and our approach to
addressing these challenges. I describe two independent control mechanisms: a sharing- and
resource-aware mapper (SAM) to effect task placement with the goal of localizing shared
data communication and minimizing resource contention based on the offered load; and
an application parallelism manager (MAP) that controls the offered load with the goal
of improving system parallel efficiency. Our results emphasize the need for low-overhead
monitoring of application behavior under changing environmental condiitons in order to
adapt to environment and application behavior changes.

References
1 Coherence Stalls or Latency Tolerance: Informed CPU Scheduling for Socket and Core Shar-

ing, Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen, Usenix Annual Technical
Conference (Usenix ATC), Denver, CO, June 2016.

2 Data Sharing or Resource Contention: Toward Performance Transparency on Multicore
Systems, Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen, Usenix Annual Tech-
nical Conference (Usenix ATC), Santa Clara, CA, July 2015.
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3.11 Efficient Distributed Data Structures for Future Many-core
Architectures

Panagiota Fatourou (University of Crete – Heraklion, GR), Nikolaos D. Kallimanis, Eleni
Kanellou, Odysseas Makridakis, and Christi Symeonidou

License Creative Commons BY 3.0 Unported license
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Main reference Panagiota Fatourou, Nikolaos D. Kallimanis, Eleni Kanellou, Odysseas Makridakis, Christi
Symeonidou: “Efficient Distributed Data Structures for Future Many-Core Architectures”, in Proc.
of the 22nd IEEE International Conference on Parallel and Distributed Systems, ICPADS 2016,
Wuhan, China, December 13-16, 2016, pp. 835–842, IEEE Computer Society, 2016.

URL http://dx.doi.org/10.1109/ICPADS.2016.0113

We study general techniques for implementing distributed data structures on top of future
many-core architectures with non cache-coherent or partially cache-coherent memory. With
the goal of contributing towards what might become, in the future, the concurrency utilities
package in Java collections for such architectures, we end up with a comprehensive collection
of data structures by considering different variants of these techniques. To achieve scalability,
we study a generic scheme which makes all our implementations hierarchical. We also describe
a collection of techniques for further improving scalability in most implementations. We have
performed experiments which illustrate nice scalability characteristics for some of the proposed
techniques and reveal the performance and scalability power of the hierarchical approach. We
distill the experimental observations into a metric that expresses the scalability potential of
such implementations. We finally present experiments to study energy consumption aspects
of the proposed techniques by using an energy model recently proposed for such architectures.

3.12 Persistent Lock-Free Data Structures for Non-Volatile Memory
Michal Friedman (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
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Joint work of Michal Friedman, Erez Petrank, Maurice Herlihy, Virendra Marathe, Nachshon Cohen
Main reference Michal Friedman, Maurice Herlihy, Virendra J. Marathe, Erez Petrank: “Brief Announcement: A

Persistent Lock-Free Queue for Non-Volatile Memory”, in Proc. of the 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, LIPIcs,
Vol. 91, pp. 50:1–50:4, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

URL http://dx.doi.org/10.4230/LIPIcs.DISC.2017.50

Non-volatile memory is expected to coexist with (or even displace) volatile DRAM for main
memory in upcoming ar- chitectures. This has led to increasing interest in the problem of
designing and specifying durable data structures that can recover from system crashes. Data
structures may be designed to satisfy stricter or weaker durability guarantees to provide a
balance between the strength of the provided guarantees and performance overhead. The talk
proposes three novel implementations of a concurrent lock-free data structures. These im-
plementations illustrate algorithmic challenges in building persistent lock-free data structures
with different levels of durability guarantees. In presenting these challenges, the pro- posed
algorithmic designs, and the different durability guaran- tees, we hope to shed light on ways
to build a wide variety of durable data structures.
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3.13 Everything Better Than Everything Else
Tim Harris (Oracle Labs – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Tim Harris

Evaluating shared-memory data structures is difficult: there are lots of possible metrics,
lots of possible ways to run experiments, and lots of ways in which low-level details of
the hardware can have unexpectedly large impacts on performance. It is hard to untangle
algorithmic improvements from coding prowess. I am going to talk about some of the ways
in which I have been bitten by these problems in the past, and some of the techniques I use
to try to organize my own experimental work.

3.14 Recoverable Mutual Exclusion in Sub-logarithmic Time
Danny Hendler (Ben Gurion University – Beer Sheva, IL) and Wojceich Golab

License Creative Commons BY 3.0 Unported license
© Danny Hendler and Wojceich Golab

Joint work of Danny Hendler, Wojciech Golab
Main reference Wojciech M. Golab, Danny Hendler: “Recoverable Mutual Exclusion in Sub-logarithmic Time”, in

Proc. of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington,
DC, USA, July 25-27, 2017, pp. 211–220, ACM, 2017.

URL http://dx.doi.org/10.1145/3087801.3087819

Recent developments in non-volatile main memory (NVRAM) media foreshadow the eventual
convergence of primary and secondary storage into a single layer in the memory hierarchy
that combines the performance benefits of conventional main memory with the durability of
secondary storage. Traditional log-based recovery techniques can be applied correctly in such
systems but fail to take full advantage of the parallelism enabled by allowing processing cores
to access recovery data directly using memory operations rather than slow block transfers
from secondary storage. As a result, harnessing the performance benefts of NVRAM-based
platforms requires a careful rethinking of recovery mechanisms. Recoverable mutual exclusion
(RME) is a variation on the classic mutual exclusion (ME) problem that allows processes
to crash and recover. Prior work on the RME problem has established an upper bound
of O(log N) remote memory references (RMRs) in an asynchronous shared memory model
with N processes that communicate using atomic read and write operations, prompting the
question whether sub-logarithmic RMR complexity is attainable using commonly supported
read-modify-write primitives. We answer this question positively by presenting an RME
algorithm that incurs O(log N/ log log N) RMRs in the cache-coherent model and uses
standard read, write, Fetch-And-Store, and Compare-And-Swap instructions. The algorithm
uses as a building block a new recoverable extension of Mellor-Crummey and Scott’s queue
lock that is interesting in its own right. We also present an O(1) RMRs algorithm that relies
on double-word Compare-And-Swap and a double-word variation of Fetch-And-Store.
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3.15 Hybrid STM/HTM for Java
Antony Hosking (Australian National University – Canberra, AU)

License Creative Commons BY 3.0 Unported license
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Joint work of Keith Chapman, Antony Hosking, Eliot Moss
Main reference Keith Chapman, Antony L. Hosking, J. Eliot B. Moss: “Hybrid STM/HTM for nested transactions

on OpenJDK”, in Proc. of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016, pp. 660–676, ACM, 2016.

URL http://dx.doi.org/10.1145/2983990.2984029

Our work on hybrid STM/HTM for Java allows concurrently executing transactions to use
low-cost HTM when it works, but revert to STM when it doesn’t, even as other transactions
are running STM/HTM. Our implementation is for an extension of Java having syntax
for both open and closed nested transactions, and boosting, running on the OpenJDK.
We demonstrate that HTM offers significant acceleration of both closed and open nested
transactions, while yielding parallel scaling up to the limits of the hardware, whereupon
scaling in software continues but with the usual penalty to throughput imposed by software
mechanisms.

A useful takeaway from our work is the extent that open nesting enables more profitable
use of HTM.

3.16 Concurrent data structures for scalable real-time analytics
Idit Keidar

License Creative Commons BY 3.0 Unported license
© Idit Keidar

Joint work of Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel, H. Porat,
A. Spiegelman, Moshe Sulamy

Main reference Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel, Idit
Keidar, Moshe Sulamy: “KiWi: A Key-Value Map for Scalable Real-Time Analytics”, in Proc. of
the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Austin,
TX, USA, February 4-8, 2017, pp. 357–369, ACM, 2017.

URL http://dl.acm.org/citation.cfm?id=3018761

Modern big data processing platforms employ huge in-memory key-value (KV) maps. Their
applications simultaneously drive high-rate data ingestion and large-scale analytics. These
two scenarios expect KV-map implementations that scale well with both real-time updates
and large atomic scans triggered by range queries.

I will discuss research efforts at Yahoo Research addressing this challenge in the context
of Druid, a high-performance, column-oriented, distributed data store. I will first discuss
recently published work on KiWi – A Key-Value Map for Scalable Real-Time Analytics [1].
I will then discuss two on going projects: Oak – Off-Heap Allocated Keys, and Concurrent
Data Sketches.

References
1 Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel,

Idit Keidar, and Moshe Sulamy. Kiwi: A key-value map for scalable real-time analytics. In
Sarkar and Rauchwerger [2], pages 357–369.

2 Vivek Sarkar and Lawrence Rauchwerger, editors. Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, Austin, TX, USA,
February 4-8, 2017. ACM, 2017.
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3.17 Generic Concurrency Restriction
Alex Kogan (Oracle Labs – Burlington, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Dave Dice, Alex Kogan

Contended locks often degrade the performance of a multithreaded application, leading
to a so-called scalability collapse problem. This problem arises when a growing number
of threads circulating through a saturated lock causes the overall application performance
to fade or even drop abruptly. In this talk, I will introduce GCR (generic concurrency
restriction), a mechanism that aims to avoid the scalability collapse. GCR, designed as a
generic, lock-agnostic wrapper, intercepts lock acquisition calls, and decides when threads
would be allowed to proceed with the acquisition of the underlying lock. Furthermore, I
will describe GCR-NUMA, an adaptation of GCR for non-uniform memory access (NUMA)
settings.

3.18 Flat Combining and Transactional Lock Elision – combining
pessimistic and optimistic mechanisms together

Yossi Lev (Oracle Labs – Burlington, US)

License Creative Commons BY 3.0 Unported license
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Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July
25-27, 2017, pp. 231–240, ACM, 2017.
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Flat combining (FC) is a technique that can significantly improve the performance of
operations that conflict with each other when accessing a shared data structure – e.g.,
they all trying to modify the same field of the data structure. Transactional Lock Elision
(TLE), on the other hand, significantly improve the performance when the operations applied
to the data structure rarely conflict – that is, in the common case, they access different
parts of the data structures; this is done by using an optimistic approach where hardware
transactions execute the operations in parallel, and retry when they conflict with one another.
Both techniques provides the desired property of allowing the programmer to write simple,
sequential code that does not need to handle interference by other operations running in
parallel – as if the operations are ran under a lock protecting all accesses to the data structure.
In this presentation I show how we can combine the two techniques when dealing with data
structures where some of their operations are likely to conflicts with each other, while others
do not, and can there run in parallel using transactional lock elision. The new technique
keeps the simplicity of programming without needing to reason about interference with other
operations running in parallel, and significantly improves the performance comparing to use
either of these techniques by its own.
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3.19 Verifying Concurrent GC Running in Weakly Ordered Memories
J. Eliot B. Moss (University of Massachusetts – Amherst, US)

License Creative Commons BY 3.0 Unported license
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We are in the process of developing a suite of state-of-the-art concurrent garbage collectors
for a language-independent virtual machine, intended to simply the implementation of
managed languages. This VM, called Mu (for its efforts to be small, i.e., a “micro” VM), has
an intermediate language similar to LLVM (close to hardware, but with unbounded local
“registers” and SSA-form, and supporting C/C++-style memory-access ordering specifications)
but tailored and extended for managed language support in a concurrent environment. Mu
is targeting a range of modern processors, including x86 and ARM. Thus the GC must deal
with hardware that reorders memory accesses.

Challenges in mechanical verification of this suite of GCs include the sheer size and
subtlety of the necessary code, and he desire to reuse, as much as possible, proofs when
dealing with code variations of largely local impact. What kinds of specifications and logics
will aid in this effort? What proof strategies will make the size of the tasks manageable?

3.20 How much does sequential consistency cost anyway
Madan Musuvathi (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
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applications”, PACMPL, Vol. 1(OOPSLA), pp. 49:1–49:25, 2017.

URL http://dx.doi.org/10.1145/3133873

Research on weak memory-models assume that sequential consistency (SC) is expensive for
modern languages on modern hardware. Over the past few years, we have attempted to
empirically answer the question: how much does SC cost anyway? While some of the results
are what one would expect, others are surprising, at least to us. In this talk I will describe
these results and what they might imply:

a) turning off C/C++ compiler optimizations that violate SC results in little performance
overhead. This implies that complexities in memory-model design that solely arise due to
compiler optimizations can be avoided

b) when done carefully, SC for Java results in an overhead of 12-28% on Intel architectures,
and recent experiments suggest similar overheads on ARM architectures as well. Significant
part of this overhead comes from inserting hardware fences in a few core libraries. This
suggests that Java should allow programmers to escape into relaxed semantics only for
carefully chosen code segments, just as it allows programmers to selectively escape into
type-unsafe segments.

c) SC has no perceptible overheads for Haskell and possibly for other functional program-
ming languages. This might imply that the strict type isolation that these languages provide
between pure and imperative parts of a program could be incorporated into mainstream
languages to simplify memory models.
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3.21 Efficient Architectural Support for Persistent Memory
Vijay Nagarajan (University of Edinburgh, GB)
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Emerging persistent memory technologies enable fast, fine-grained durability compared to
slow block-based devices. Programming with persistent memory, however, requires primitives
that provide guarantees about what has been made durable. Two primitives that programmers
understand well are: ordering (persist barrier) and atomicity (atomic durable transactions).
A persist barrier guarantees that stores before the barrier, update persistent memory before
stores that follow it. An atomic durable transaction guarantees that stores within the
transaction update persistent memory atomically. In this talk, we will show how these two
primitives can be efficiently implemented using architectural support.

3.22 Concurrent Data structures for Non-Volatile Memory
Erez Petrank (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
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Non-volatile memory is expected to coexist with (or even displace) volatile DRAM for main
memory in upcoming architectures. This has led to increasing interest in the problem
of designing and specifying durable data structures that can recover from system crashes.
Definitions for durable linearizability have been recently proposed by Israelevitz et al. They
have also proposed an automatic transformation for making lock-free data structures resilient
to crashed on non-volatile memories. However, the automatic construction is typically
inefficient. In this lecture we report an effort to design data structures that are appropriate
for this setting, and also discuss some additional definitions.

3.23 Efficient Inspected Critical Sections in data-parallel GPU codes
Michael Philippsen (Universität Erlangen-Nürnberg, DE) and Thorsten Blass

License Creative Commons BY 3.0 Unported license
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Main reference Thorsten Blass, Michael Philippsen, Ronald Veldema: “Efficient Inspected Critical Sections in
data-parallel GPU codes”, in Proc. of the 30th Int’l Workshop on Languages and Compilers for
Parallel Computing (LCPC 2017), to be published as LNCS volume, Springer, 2018.

Optimistic concurrency control and STMs rely on the assumption of sparse conflicts. For
data-parallel GPU codes with many or with dynamic data dependences, a pessimistic and
lock-based approach may be faster, if only GPUs would offer hardware support for GPU-wide
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fine-grained synchronization. Instead, current GPUs inflict dead- and livelocks on attempts
to implement such synchronization in software.

The paper demonstrates how to build GPU-wide non-hanging critical sections that are as
easy to use as STMs but also get close to the performance of traditional fine-grained locks.
Instead of sequentializing all threads that enter a critical section, the novel programmer-
guided Inspected Critical Sections (ICS) keep the degree of parallelism up. As in optimistic
approaches threads that are known not to interfere, may execute the body of the inspected
critical section concurrently.

3.24 The old challenge: How to support users?
Mirko Rahn (Fraunhofer ITWM – Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
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In High Performance Computing many application developers are experts in their current
domain rather than in computer science. To deal with parallelism adds a layer of complexity
that is not easy to manage for them. We show some common misconceptions that occur in
real life programs. Some of the bugs are easy to spot for well trained readers. So where are
the tools that support the users?

3.25 Durable Linearizability
Michael L. Scott (University of Rochester, US)
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The prospect of ubiquitous nonvolatile main memory suggests the possibility of maintaining
long-lived data unmediated by the file system, but only if data is carefully managed to ensure
consistency in the wake of a crash. In keeping with “real world” systems, we introduce the
notion of durable linearizability to govern the safety of concurrent objects when all transient
state (of all threads) is lost on a crash; we also introduce a buffered variant in which the
recoverable state is consistent but not necessarily up to date. At the implementation level,
we present explicit epoch persistency, a formal model that builds upon and generalizes prior
work, together with an automated transform to convert any linearizable, nonblocking but
data-race–free concurrent object into one that is (buffered) durably linearizable. We also
present a design pattern, analogous to linearization points, for the construction of other,
more optimized objects. On top of this formal foundation, we present a series of software
mechanisms–JUSTDO logging, iDO logging, and periodic persistence–for fast, composable
persistence.
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3.26 Just-Right Consistency: As available as possible, consistent when
necessary

Marc Shapiro (University Pierre & Marie Curie – Paris, FR), Annette Bieniusa, Christoper
Meiklejohn, Nuno Preguiça, and Valter Balegas
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In a distributed data store, the CAP theorem forces a choice between strong consistency (CP)
and availability and responsiveness (AP) when the network can partition. To address this
issue, we take an application-driven approach, Just-Right Consistency (JRC). JRC defines
a consistency model that is sufficient to maintain the application’s specific invariants, and
otherwise remaining as available as possible.

JRC leverages knowledge of the application. Two invariant-maintaining programming
patterns, ordered updates and atomic grouping, are compatible with asynchronous updates,
orthogonally to CAP. In contrast, checking a data precondition on replicated state is CAP-
sensitive. However, if two updates do not negate each other’s precondition, they may safely
execute concurrently. Updates must synchronise only if one negates the precondition of the
other.

The JRC approach is supported by the CRDT data model that ensures that concurrent
updates converge; by Antidote, a cloud-scale CRDT data store that guarantees transactional
causal consistency; and by developer tools (static analysers and domain-specific languages)
that help guarantee invariants.

3.27 Causal atomicity
Simon Doherty, John Derrick, Brijesh Dongol, Heike Wehrheim

License Creative Commons BY 3.0 Unported license
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Correctness conditions for concurrent objects (like linearizability or opacity) require “seem-
ingly atomic”, though concurrent, access to shared memory. So far, these correctness
conditions build on an interleaving model of concurrency: concurrent executions are rep-
resented as totally ordered sequences of invocations and returns of operations (so called
histories). Behind this concept of histories is the assumption of a notion of global time and
the total observability of orderings of operations. This assumption, however, fails to hold for
weak memory models in which there are only partial orders on operations, as for instance
generated by a happens-before relation.

We propose a generalization of concurrent correctness conditions to weak memory called
causal atomicity. It is based on Lamport’s execution structures which are sets of events
together with two relations: a partially ordered precedence relation together with a relation
describing communication among events (like reads-from relations). Causal atomicity com-
pares execution structures to sequential specifications. Alike linearizability and opacity, we
have shown causal atomicity to be compositional in that the composition of causally atomic
objects yields causally atomic structures.
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3.28 Chasing Away RAts: Semantics and Evaluation for Relaxed
Atomics on Heterogeneous Systems

Matthew Sinclair (AMD Research – Bellevue, US)
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Joint work of Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve
Main reference Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve: “Chasing Away RAts: Semantics and

Evaluation for Relaxed Atomics on Heterogeneous Systems”, in Proc. of the 44th Annual
International Symposium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June
24-28, 2017, pp. 161–174, ACM, 2017.

URL http://dx.doi.org/10.1145/3079856.3080206

An unambiguous and easy-to-understand memory consistency model is crucial for ensuring
correct synchronization and guiding future design of heterogeneous systems. In a widely
adopted approach, the memory model guarantees sequential consistency (SC) as long as
programmers obey certain rules. The popular data-race-free-0 (DRF0) model exemplifies this
SC-centric approach by requiring programmers to avoid data races. Recent industry models,
however, have extended such SC-centric models to incorporate relaxed atomics. These
extensions can improve performance, but are difficult to specify formally and use correctly.
This work addresses the impact of relaxed atomics on consistency models for heterogeneous
systems in two ways. First, we introduce a new model, Data-Race-Free-Relaxed (DRFrlx),
that extends DRF0 to provide SC-centric semantics for the common use cases of relaxed
atomics. Second, we evaluate the performance of relaxed atomics in CPU-GPU systems for
these use cases. We find mixed results – for most cases, relaxed atomics provide only a small
benefit in execution time, but for some cases, they help significantly (e.g., up to 51% for
DRFrlx over DRF0).

3.29 Memory Instrumentation As A First-Class Language Feature
Michael F. Spear (Lehigh University – Bethlehem, US)
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Joint work of Michael F. Spear, Xiaochen Guo, Aviral Shrivastava, Gang Tan

Across a wide range of domains, researchers require the ability to quickly instrument specific
loads and stores in a program, in order to achieve novel memory behaviors. In this talk, I
will introduce the first fruit of the Abstract Instrumented Memory Interface (AIMI) project:
an LLVM plugin that allows researchers to perform region-based memory instrumentation of
arbitrary C and C++ programs. I will first discuss motivation, then implementation, and
finally discuss performance and design tradeoffs, with a focus on the AIMI submodule for
Transactional Memory.
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3.30 Sequential consistency considered harmful
Viktor Vafeiadis (MPI-SWS – Kaiserslautern, DE)
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Sequential consistency (SC) is typically presented as the ideal semantics for shared-memory
concurrency, because it is has a simple and understandable definition. This definitional
simplicity, however, does not necessarily extend when SC accesses are incorporated in a weak
memory model; see, e.g., [1]. In this talk, I highlighted some of the pitfalls of SC, and why it
might not be such an ideal model after all. I further discussed release/acquire consistency
(RA) [2] as an alternative model that has some tangible benefits over SC and may thus be a
better model for shared-memory concurrency.

First, I showed two automated verification problems that are easier to solve for RA than
for SC. Specifically, checking whether a given execution of a program annotated with reads-
from edges is consistent is an NP-complete problem for SC, but is decidable in polynomial
time for RA. As a result, bounded model checking for RA can be made to run significantly
faster than the state of the art SC model checking tools; see, e.g., [3].

Second, regarding manual software verification, I argued that RA permits the two most
useful forms of reasoning–namely local reasoning and causal reasoning–which are nicely
encompassed in concurrent separation logics, such as RSL [4] and GPS [5, 6]. On the other
hand, it forbids global reasoning [7]; i.e. reasoning in terms of which action of a thread was
executed first. Global reasoning, which is sound according to SC, is a poor form of reasoning
about the correctness of programs: it is complicated and error-prone; and as such is rarely
used to prove the correctness of concurrent programs. By forbidding this kind of reasoning,
therefore, RA may actually be a better programming model.

Finally, I briefly argued that multicopy atomicity–a crucial aspect of SC–prevents scalabil-
ity, because it enforces a global order on every two totally independent writes by independent
processors. Yet, multicopy atomicity does not seem relevant for reasoning about the correct-
ness of concurrent programs and could thus be dropped without a perceivable difference in
semantics.
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3.31 Applying lock-free data structures to fabric-attached memory
Haris Volos (HP Labs – Palo Alto, US)
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Next-generation rack-scale architectures will enable a fabric-attached non-volatile memory
pool accessible by all compute resources. Fabric-attached memory will make interesting new
programming styles possible. In this talk, I will report on our experience with one such style
obtained by applying lock-free data-structure techniques to fabric-attached memory.

3.32 Isoefficiency in Practice: Configuring and Understanding the
Performance of Task-based Applications

Felix Wolf (TU Darmstadt, DE)
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Task-based programming offers an elegant way to express units of computation and the
dependencies among them, making it easier to distribute the computational load evenly
across multiple cores. However, this separation of problem decomposition and parallelism
requires a sufficiently large input problem to achieve satisfactory efficiency on a given number
of cores. Unfortunately, finding a good match between input size and core count usually
requires significant experimentation, which is expensive and sometimes even impractical. In
this paper, we propose an automated empirical method for finding the isoefficiency function
of a task-based program, binding efficiency, core count, and the input size in one analytical
expression. This allows the latter two to be adjusted according to given (realistic) efficiency
objectives. Moreover, we not only find (i) the actual isoefficiency function but also (ii) the
function one would yield if the program execution was free of resource contention and (iii)
an upper bound that could only be reached if the program was able to maintain its average
parallelism throughout its execution. The difference between the three helps to explain
low efficiency, and in particular, it helps to differentiate between resource contention and
structural conflicts related to task dependencies or scheduling. The insights gained can be
used to co-design programs and shared system resources.
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3.33 Effect Summaries for Thread-Modular Analysis
Sebastian Wolff (TU Braunschweig, DE), Lukáš Holík, Roland Meyer, and Tomáš Vojnar
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Thread-modular verification is the state of the art approach for verifying lock-free data
structures. However, existing approaches have problems with scalability when applied in
environments with manual memory management (i.e. no garbage collection).

To overcome this limitation, we identified a common programming idiom in lock-free
data structures: so-called copy-and-check blocks. We show how to exploit such patterns for
thread-modular analyses and report on our findings.

4 Working groups

4.1 Distributed Concurrency
Michal Friedman (Technion – Haifa, IL) and Virendra Marathe (Oracle Corp. – Burlington,
US)
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Summary:
The discussion, though meandering through several different topics, seemed to gravitate

toward the similarities between shared memory and distributed systems. The final takeaway
was that with ongoing and future technology changes, distributed systems are looking much
more like shared memory systems, and vice versa. This unlocks the potential to apply wisdom
learned in one setting to the other.

Details:
Maurice Herlihy’s observations of similarities between the environments and challenges

faced today by the world of Blockchains has strong resonance with the world of concurrency.
Many of the solutions applied to the latter seem applicable to the former.

What hardware offers you and how it can be leveraged? For instance, for many-core
NUMA systems, Barrelfish presents a distributed view of a shared memory system. Maybe
we can think of NUMA systems as distributed systems (which is already happening).

Can lessons learned from distributed system settings be applied in shared memory setting?
Today’s multi-core systems are essentially distributed, with larger systems and different
coherence domains (with accelerators showing up more and more in our systems), and explicit
programmer intervention between these different domains.

Should we make a distinction between distributed systems and shared memory systems?
There are several points in the spectrum. Even when you are presenting a simple shared
memory model, discussing the implementation complexities that go into making that happen
would be an interesting topic. Trade offs of programming complexity: make locality simpler
at the expense of going through hoops for global access, or vice versa. In another words,
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better locality vs. complicated communication. Also, people have the knowledge to transfer
from multicore to distributed systems. Can they do the opposite? yes!

An important difference between distributed and shared memory systems is their failure
models – fail-stop models for shared memory systems, whereas the failure models of distributed
systems emphasize fault tolerance, including hardware failure tolerance. However, fault
isolation and security in the new containerized cloud computing world is another form of
distributed computing specific issues that are applicable to shared memory systems.

Furthermore, modern hardware trends toward fast and direct remote access (RDMA) is
changing the interface to distributed systems as well, where they are now looking increasingly
like shared memory NUMA systems. As the cost of communication drops with these
technologies, the incentive to make interfaces look similar to a single shared memory system
increases.

4.2 Relaxed Atomicity
Madan Musuvathi (Microsoft Research – Redmond, US)
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During the Dagstuhl we had two great discussions on weak memory models and the challenges
in both providing an easy to understand interface to programmers while allowing the compiler
and hardware enough freedom to implement useful optimizations. While performance of a
memory model can be easily measured, a measure of its naturalness or ease of understanding
to programmers is much harder to define. One proposal was to measure the complexity in
the number of English words required to precisely define the memory model to a first year
undergraduate student. For instance, sequential consistency can be explained with “memory
as a table” abstraction, where the threads issue memory operations one at a time and these
operations atomically read or update the table. Weaker memory models should seek for such
simple explanations. On the other hand, an independent concern raised was for languages
like C/C++ to allow programmers the ability to harness the raw power of the hardware,
which falls very much in line with the philosophy of these languages. There was a lot of
excitement about a proposal from Viktor Vafeiadis for a “rectified” C++ memory model that
provides a logical foundation for solving the “out-of-thin-air” issues in C++ and Java. The
model uses promises to model speculation and an execution is valid only when all threads
eventually keep all of their promises. It also has the nice property that a restricted version
of separation logic that only allows local reasoning is sound for this model. Another valuable
direction of research is to identify the common patterns of relaxed variable usage in programs
today to identify good patterns similar to “data-race freedom” which when enforced will
provide easy-to-understand memory models.
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5 Panel discussions

5.1 Panel Discussion: Concurrency vs. Parallelism
Matthew Sinclair (AMD Research – Bellevue, US)
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This discussion session focused on parallelism and concurrency, both in practice and in how
we teach it. Broadly, the discussion can be sub-divided into two areas of discussion: how and
what we should be teaching parallelism to better equip our students for the post-university
world, and what exactly is the difference between concurrency and parallelism.

Initially, the discussion revolved around teaching and using parallelism. In his talk prior to
the discussion and again during the discussion, Mirko Rahn emphasized that many students
are not adequately prepared to write (and debug) parallel programs in the real world. In
particular, he highlighted three inter-related issues: lack of understanding about the cost
of inter-processor communication, how long latency operations affect the order operations
appear, and the cost of doing synchronization to ensure that operations appear in a consistent
order across many processors. To Mirko, all of these problems are ultimately related to
the latency of inter-processor communication, because it hurts performance, impacts what
values a processor sees, and potentially requires additional, costly synchronization. Petr
Kuznetsov pointed out that some of this boils down to how we teach students – and that
we need to decide if we want to teach concurrency and parallelism or show students how it
works. In his opinion, focusing on the underlying concepts is more important, which he does
in a course he teaches that uses Java. However, Matt Sinclair pointed out that some of the
universities are starting to introduce parallelism pervasively throughout the curriculum seem
to focus more on the practical, performance-driven benefits. Michael Scott subsequently
postulated that there is no one language or approach to teach these concepts, but that a
steady, incremental approach is best – at earliest levels, we should introduce students to
deterministic, independent parallelism (which have no subtleties); in later courses introduce
more subtle but structured paradigms (e.g., messaging between distributed processors in
distributed computing course; DRF model; event-driven programs in HCI courses); and
finally in an OS course teach Peterson’s algorithm (but only after making them comfortable
with structured parallelism). Panagiota Fatourou presented an alternate, more theory-centric
approach: she teaches an upper-level course on concurrency that starts with simpler concepts
like mutual exclusion and uses small snippets of code to demonstrate how to write correct
and incorrect code. Then she moves onto more complicated concepts, with liberal use of
team parallel programming and examples to give the students practical experience.

The above discussion on parallel programming and concurrency led to a spirited dis-
cussion, initially raised by Victor Luchangco, about what exactly parallelism is compared
to concurrency. Michael Scott emphasized that there is no one definition that separates
them, and that reasonable people will disagree about them. Victor Luchangco and Michael
Spear talked about concurrency in the context of robots (and later git repositories), as they
believe that robotics represents one situation where students (especially students who are
unfamiliar or less experienced with writing even sequential code) must think about events
that are not dependent on one another (and thus could be done simultaneously). Michael
Spears also focused on inexperienced programmers, and how they will likely only see a
parallelized QuickSort algorithm as a performance optimization, not a way of thinking. In
comparison, distributed systems (like robots) are much clearer about why concurrency is
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necessary/important. Subsequently, Michael Scott opined that the key here is to present
algorithms where control flow shows the potential parallelism – clear thinking is the most
important part, not performance (which echoes Petr’s point above). This struck discussion
struck me as potentially the most interesting – even a room full of experts had problems
coming to a consensus about what the definition of these terms are, as well as what the best
ways to introduce them to students.
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