
Report from Dagstuhl Seminar 17462

A Shared Challenge in Behavioural Specification
Edited by
Klaus Havelund1, Martin Leucker2, Giles Reger3, and Volker Stolz4

1 Jet Propulsion Laboratory, US, klaus.havelund@jpl.nasa.gov
2 Universität Lübeck, DE, leucker@isp.uni-luebeck.de
3 University of Manchester, GB, giles.reger@manchester.ac.uk
4 West. Norway Univ. of Applied Sciences – Bergen, NO, vsto@hvl.no

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17462 “A Shared
Challenge in Behavioural Specification”. The seminar considered the issue of behavioral specific-
ation with a focus on its usage in Runtime Verification. The seminar was motivated by the
observations that, whilst the field of Runtime Verification is becoming more mature, there is a
lack of common specification language, in the main part due to the rich setting allowing for highly
expressive languages. The aim of the Seminar was to shed light on the similarities and differences
between the different existing languages, and specifically, suggest directions for future collabora-
tion and research. The seminar consisted of two talk sessions, two working group sessions, and
a feedback and reflection session. Working group topics were suggested and agreed in response
to points raised in talks. One significant outcome was the proposal of a shared challenge project
in which different Runtime Verification approaches can be compared, as outlined in one of the
working group reports.

Seminar November 12–15, 2017 – http://www.dagstuhl.de/17462
1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and

Verifying and Reasoning about Programs, F.4.3 Formal Languages
Keywords and phrases behavioural specification, dynamic properties, runtime verification, tem-

poral logic
Digital Object Identifier 10.4230/DagRep.7.11.59

1 Executive Summary

Giles Reger
Klaus Havelund
Martin Leucker
Volker Stolz

License Creative Commons BY 3.0 Unported license
© Giles Reger, Klaus Havelund, Martin Leucker, and Volker Stolz

This seminar dealt with the issue of behavioural specification from the viewpoint of runtime
verification. Runtime verification (RV) as a field is broadly defined as focusing on processing
execution traces (output of an observed system) for verification and validation purposes. Of
particular interest is the problem of verifying that a sequence of events, a trace, satisfies a
temporal property, formulated in a suitable formalism. Examples of such formalisms include
state machines, regular expressions, temporal logics, context-free grammars, variations of
the mu-calculus, rule systems, stream processing systems, and process algebras. Of special

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

A Shared Challenge in Behavioural Specification, Dagstuhl Reports, Vol. 7, Issue 11, pp. 59–85
Editors: Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17462
http://dx.doi.org/10.4230/DagRep.7.11.59
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

60 17462 – A Shared Challenge in Behavioural Specification

interest is how to specify data-rich systems, where events themselves carry data. Applications
cover such domains as security monitoring and safety monitoring.

Such techniques are characterised by highly expressive languages for specifying behaviour,
enabled by the concreteness of dealing directly with single runtime traces, which makes
the verification problem tractable. However, this permitted expressiveness has also led to
a divergence in such languages. The aim of this Dagstuhl Seminar was to shed light on
the similarities and differences between these different formalisms, and specifically, suggest
directions for future collaboration and research. This effort can potentially lead to an attempt
to standardize an RV formalism.

The seminar included a mixture of tool developers, theoreticians, and industry experts
and the above aim was addressed by two main activities.

The first activity was that each tool developer was asked to produce a brief summary of
their specification language in the form of a set of short examples. These were then presented
as talks during the Seminar, alongside other general contributed talks on issues surrounding
behavioural specification. The examples were uploaded to a shared repository (which will be
available via runtime-verification.org) and eleven participants added their tool descriptions
and examples to this repository, producing a lasting resource from the seminar.

The second activity was carried out through eight working groups formed during the
Seminar to discuss topics raised by the talks. The results of this working groups are detailed
in this report. We take this opportunity to detail the topics (in the form of questions)
proposed during the seminar that were not chosen for discussion in working groups:

Where should we get specifications from? This question addressed both the issue of
designing specification languages that can be usable by engineers but also the trending
topic of inferring specifications from various artifacts and how specification languages
can support this.
How can we measure specification quality? What is a good specification, or when is one
specification better than another? This might be related to coverage of the system being
specified, or might be about interpretability or some other measure of usability.
How do we ensure our specification language is not broken? This question was inspired
by the experience of one speaker with developing the industrial-strength PSL language
and the issues surrounding getting it right.
How can we balance different levels of abstraction (e.g. local and global behaviour) in a
specification? It was noted that specification languages are often closely associated with
specifications at a certain level of abstraction. Is this an inherent restriction or a positive
feature? Should we build specification languages with a certain level of abstraction in
mind?
How do we unify the different uses of a specification? This was inspired by the observation
that a specification may be used to explain behaviour, check behaviour, or synthesize
behaviour, and different presentations may be preferred in these different contexts.

This seminar was the first time the runtime verification community has reflected on the
broad issue of specification and has fed into further developments including new perspectives
for the international runtime verification competition, a proposed shared challenge involving
the NASA core flight system, and the first informal survey and categorisation of actively
developed runtime verification tools.

runtime-verification.org

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 61

2 Table of Contents

Executive Summary
Giles Reger, Klaus Havelund, Martin Leucker, and Volker Stolz 59

Overview of Talks
Trace Focussed and Data Focussed Specification: Complementary, Competing,
Combined?
Wolfgang Ahrendt . 63

Domain-Specific Languages with Scala, and model-based testing as an example
Cyrille Artho . 64

The Tale of Dr Jekyll and Mr Hyde in Pattern-based Specification Languages
Domenico Bianculli . 64

Asynchronous HyperLTL
Borzoo Bonakdarpour . 65

PSL: The good, the bad and the ugly
Cindy Eisner . 66

Two to Tango: A pair of specification languages for runtime monitoring
Adrian Francalanza . 67

A “Do-It-Yourself” Specification Language With BeepBeep 3
Sylvain Hallé . 67

Linking Heterogeneous Models for Intelligent-Cyber-Physical Systems
Zhiming Liu . 68

Specification Languages for CPS
Dejan Nickovic . 68

Automaton-Based Formalisms for Runtime Verification
Gordon Pace . 69

What is parametric trace slicing good for?
Giles Reger . 69

Specification: The Biggest Bottleneck in Formal Methods and Autonomy
Kristin Yvonne Rozier . 70

TeSSLa: A Real-Time Specification Language for Runtime Verification of Non-
synchronized Streams
Torben Scheffel . 70

E-ACSL, an Executable Behavioural Interface Specification Language for C Pro-
grams
Julien Signoles . 71

LOLA
Hazem Torfah . 71

Metric First-Order Dynamic Logic and Beyond
Dmitriy Traytel . 72

Behavioural Type-Based Static Verification Framework for Go
Nobuko Yoshida . 72

17462

62 17462 – A Shared Challenge in Behavioural Specification

Working groups
How do we integrate trace behaviour with state properties
Wolfgang Ahrendt, Stijn de Gouw, Adrian Francalanza, Zhiming Liu, and Julien
Signoles . 73

Specifications that are like implementations
Cyrille Artho, Cindy Eisner, Keiko Nakata, Dejan Nickovic, and Volker Stolz . . . 73

Property Specification Patterns for Runtime Verification
Domenico Bianculli, Borzoo Bonakdarpour, Bernd Finkbeiner, Gordon Pace, Giles
Reger, Kristin Yvonne Rozier, Gerardo Schneider, Dmitriy Traytel, and Nobuko
Yoshida . 75

Exploring the tradeoffs between Declarative and Operational Specification
Adrian Francalanza, Wolfgang Ahrendt, Cindy Eisner, Zhiming Liu, and Gordon Pace 77

Event Stream Processing
Sylvain Hallé, Martin Leucker, Nicolas Rapin, César Sánchez, Torben Scheffel, and
Hazem Torfah . 78

A shared challenge – NASA’s Core Flight System
Volker Stolz, Borzoo Bonakdarpour, Martin Leucker, Nicolas Rapin, Kristin Yvonne
Rozier, Julien Signoles, Hazem Torfah, and Nobuko Yoshida 80

Data Quantification in Temporal Specification Languages
Dmitriy Traytel, Domenico Bianculli, and Giles Reger 82

Participants . 85

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 63

3 Overview of Talks

3.1 Trace Focussed and Data Focussed Specification: Complementary,
Competing, Combined?

Wolfgang Ahrendt (Chalmers University of Technology – Göteborg, SE)

License Creative Commons BY 3.0 Unported license
© Wolfgang Ahrendt

5 Years ago, I participated in Dagstuhl seminar Divide and Conquer: the Quest for Composi-
tional Design and Analysis. In effect, the seminar could have been named Model Checking
meets Deductive Verification. It was a very interesting seminar, but we had some difficulties
to identify the types of properties, and with them specification formalisms, which both
communities are interested in, or can cope with using their respective technologies.

Property languages are often technology driven, and so are properties themselves. To
analyse one system with different methods, we end up using different fomalisms, specifying
disconnected views.

In Runtime Verification, as well as in Model Checking, there is a strong focus on traces,
often traces of events of some kind. In Deductive Versification, as well as in Runtime Assertion
Checking, the focus on properties of the data, at specific points in the execution. Is the
difference really motivated by what either communities consider important system properties,
or rather by what the respective technologies are good at checking? To which extent should
specification formalisms make a pre-choice?

In my talk, I suggest the following community effort:
Integrated/coordinated specification of trace and data focused aspects,
Front-ends mapping divers aspects of the specification to tool/method-oriented formats,
Delegation of sub-tasks to appropriate tools
Delegation of sub-tasks to static or dynamic analysis
Integration of the results from diverse analyses

I mentioned ppDATE [1] as one specific attempt to combine multiple aspects on the
specification level. With that, I hope to trigger a more general discussion about the role and
integration of trace focused and data focused specification.

References
1 Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace, and Gerardo Schneider.

Verifying data- and control-oriented properties combining static and runtime verification:
theory and tools. Formal Methods in System Design, Apr 2017.

17462

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

64 17462 – A Shared Challenge in Behavioural Specification

3.2 Domain-Specific Languages with Scala, and model-based testing
as an example

Cyrille Artho (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Cyrille Artho

Joint work of Cyrille Artho, Klaus Havelund, Rahul Kumar, Yoriyuki Yamagata
Main reference Cyrille Artho, Klaus Havelund, Rahul Kumar, Yoriyuki Yamagata: “Domain-Specific Languages

with Scala”, in Proc. of the Formal Methods and Software Engineering - 17th International
Conference on Formal Engineering Methods, ICFEM 2015, Paris, France, November 3-5, 2015,
Proceedings, Lecture Notes in Computer Science, Vol. 9407, pp. 1–16, Springer, 2015.

URL https://doi.org/10.1007/978-3-319-25423-4_1

Domain-Specific Languages (DSLs) are often classified into external and internal DSLs.
An external DSL is a stand-alone language with its own parser. An internal DSL is an
extension of an existing programming language, the host language, offering the user of the
DSL domain-specific constructs as well as the constructs of the host language.

This presentation gives a brief overview of the concepts and also looks at an internal DSL
used for model-based testing with the tool “Modbat”.

3.3 The Tale of Dr Jekyll and Mr Hyde in Pattern-based Specification
Languages

Domenico Bianculli (University of Luxembourg, LU)

License Creative Commons BY 3.0 Unported license
© Domenico Bianculli

Joint work of Marcello Maria Bersani, Lionel Briand, Wei Dou, Carlo Ghezzi, Srdan Krstic, Pierluigi San Pietro
Main reference Domenico Bianculli, Carlo Ghezzi, Pierluigi San Pietro: “The Tale of SOLOIST: A Specification

Language for Service Compositions Interactions”, in Proc. of the Formal Aspects of Component
Software, 9th International Symposium, FACS 2012, Mountain View, CA, USA, September 12-14,
2012. Revised Selected Papers, Lecture Notes in Computer Science, Vol. 7684, pp. 55–72, Springer,
2012.

URL http://dx.doi.org/10.1007/978-3-642-35861-6_4
Main reference Wei Dou, Domenico Bianculli, Lionel C. Briand: “A Model-Driven Approach to Trace Checking of

Pattern-Based Temporal Properties”, in Proc. of the 20th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MODELS 2017, Austin, TX, USA, September
17-22, 2017, pp. 323–333, IEEE Computer Society, 2017.

URL http://dx.doi.org/10.1109/MODELS.2017.9

This talk presents two specification languages, SOLOIST [6] and TemPsy [8, 7]. Both are
based on property specification patterns [5, 9] and have been defined in the context of an
industrial collaboration.

SOLOIST (SpecificatiOn Language fOr servIce compoSitions inTeractions) is a metric
temporal logic with new, additional temporal modalities that support aggregate operations
on events occurring in a given time window; it can be used to specify both functional and
quality-of-service requirements of the interactions of a composite service with its partner
services. The trace checking algorithms proposed for SOLOIST rely on the use of SMT
solvers [4, 1] and of distributed and parallel computing frameworks [2, 3].

TemPsy (Temporal Properties made easy) is a pattern-based, domain-specific specification
language for temporal properties. Its goal is to make as easy as possible the specification of
the temporal requirements of business processes, by supporting only the constructs needed
to express temporal requirements commonly found in business process applications. TemPsy
comes with an efficient trace checking algorithm [8] which relies on a mapping of temporal
requirements written in TemPsy into Object Constraint Language (OCL) constraints on a
conceptual model of execution traces.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-25423-4_1
http://dx.doi.org/10.1007/978-3-319-25423-4_1
http://dx.doi.org/10.1007/978-3-319-25423-4_1
http://dx.doi.org/10.1007/978-3-319-25423-4_1
https://doi.org/10.1007/978-3-319-25423-4_1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-35861-6_4
http://dx.doi.org/10.1007/978-3-642-35861-6_4
http://dx.doi.org/10.1007/978-3-642-35861-6_4
http://dx.doi.org/10.1007/978-3-642-35861-6_4
http://dx.doi.org/10.1007/978-3-642-35861-6_4
http://dx.doi.org/10.1007/978-3-642-35861-6_4
http://dx.doi.org/10.1109/MODELS.2017.9
http://dx.doi.org/10.1109/MODELS.2017.9
http://dx.doi.org/10.1109/MODELS.2017.9
http://dx.doi.org/10.1109/MODELS.2017.9
http://dx.doi.org/10.1109/MODELS.2017.9

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 65

References
1 Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srdan Krstić, and Pierluigi

San Pietro. SMT-based checking of SOLOIST over sparse traces. In Proceedings of the
17th International Conference on Fundamental Approaches to Software Engineering (FASE
2014), Grenoble, France, volume 8411 of Lecture Notes in Computer Science, pages 276–290.
Springer, April 2014.

2 Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srdan Krstić, and Pierluigi San
Pietro. Efficient large-scale trace checking using MapReduce. In Proceedings of the 38th
International Conference on Software Engineering (ICSE 2016), Austin, TX, USA, pages
888–898. ACM, May 2016.

3 Domenico Bianculli, Carlo Ghezzi, and Srdan Krstić. Trace checking of metric temporal lo-
gic with aggregating modalities using MapReduce. In Proceedings of the 12th International
Conference on Software Engineering and Formal Methods (SEFM 2014), Grenoble, France,
volume 8702 of Lecture Notes in Computer Science, pages 144–158. Springer, September
2014.

4 Domenico Bianculli, Carlo Ghezzi, Srdan Krstić, and Pierluigi San Pietro. Offline trace
checking of quantitative properties of service-based applications. In Proceedings of the 7h
International Conference on Service Oriented Computing and Application (SOCA 2014),
Matsue, Japan, pages 9–16. IEEE, November 2014.

5 Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso, and Patrick Senti. Specification pat-
terns from research to industry: a case study in service-based applications. In Proceed-
ings of the 34th International Conference on Software Engineering (ICSE 2012), Zürich,
Switzerland, pages 968–976. IEEE Computer Society Press, June 2012.

6 Domenico Bianculli, Carlo Ghezzi, and Pierluigi San Pietro. The tale of SOLOIST: a
specification language for service compositions interactions. In Proceedings of the 9th In-
ternational Symposium on Formal Aspects of Component Software (FACS’12), Mountain
View, CA, USA, volume 7684 of Lecture Notes in Computer Science, pages 55–72. Springer,
September 2012.

7 Wei Dou, Domenico Bianculli, and Lionel Briand. OCLR: a more expressive, pattern-
based temporal extension of OCL. In Proceedings of the 2014 European Conference on
Modelling Foundations and Applications (ECMFA 2014), York, United Kingdom, volume
8569 of Lecture Notes in Computer Science, pages 51–66. Springer, July 2014.

8 Wei Dou, Domenico Bianculli, and Lionel Briand. A model-driven approach to trace check-
ing of pattern-based temporal properties. In Proceedings of the 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2017), Austin, TX, USA. IEEE, September 2017.

9 Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in property spe-
cifications for finite-state verification. In Proc. ICSE 1999, pages 411–420, New York, NY,
USA, 1999. ACM.

3.4 Asynchronous HyperLTL
Borzoo Bonakdarpour (McMaster University – Hamilton, CA)

License Creative Commons BY 3.0 Unported license
© Borzoo Bonakdarpour

HyperLTL is a temporal logic for expressing a subclass of hyperproperties. It allows explicit
quantification over traces and inter-trace Boolean relations among traces. The current
semantics of HyperLTL evaluate formula by progressing a set of traces in a lock-step

17462

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

66 17462 – A Shared Challenge in Behavioural Specification

synchronous manner. In this talk, we will present our recent work on relaxing the semantics
of HyperLTL to allow traces to advance with different speeds. While this relaxation makes
the verification problem undecidable, the decidable fragment is expressive enough to express
most commonly used security policies. Our new semantics has also application in model-based
runtime monitoring.

3.5 PSL: The good, the bad and the ugly
Cindy Eisner (IBM – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Cindy Eisner

Joint work of Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, Johan Mårtensson,
David Van Campenhout

For a specification language to be suitable for formal verification by model checking, it must
have sufficient expressive power, its semantics must be formally defined in a rigorous manner,
and the complexity of model checking it must be well understood and reasonable. In order
to allow widespread adoption in the industry, there is an additional requirement: behavioral
specification must be made easy, allowing common properties to be expressed intuitively and
succinctly. But while adding syntax is simple, defining semantics without breaking important
properties of the existing semantics is surprisingly difficult. In this talk I will discuss various
extensions to temporal logic incorporated by PSL, their motivation, and the subtle semantic
issues encountered in their definition. I will emphasize where we succeeded, where we were
less successful, and point out some features that are still missing.

References
1 C. Eisner and D. Fisman. Augmenting a regular expression-based temporal logic with local

variables. In A. Cimatti and R. B. Jones, editors, Formal Methods in Computer Aided
Design (FMCAD), pages 1–8. IEEE, 2008.

2 C. Eisner and D. Fisman. Structural contradictions. In H. Chockler and A. J. Hu, editors,
Intl. Haifa Verification Conference (HVC), volume 5394 of Lecture Notes in Computer
Science, pages 164–178. Springer, 2008.

3 C. Eisner, D. Fisman, and J. Havlicek. A topological characterization of weakness. In M. K.
Aguilera and J. Aspnes, editors, Symp. on Principles of Distributed Computing (PODC),
pages 1–8. ACM, 2005.

4 C. Eisner, D. Fisman, and J. Havlicek. Safety and liveness, weakness and strength, and the
underlying topological relations. ACM Trans. Comput. Log., 15(2), 2014.

5 C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Campenhout. Reas-
oning with temporal logic on truncated paths. In W. A. H. Jr. and F. Somenzi, editors, Intl.
Conf. on Computer-Aided Verification (CAV), volume 2725 of Lecture Notes in Computer
Science, pages 27–39. Springer, 2003.

6 C. Eisner, D. Fisman, J. Havlicek, and J. Mårtensson. The top,bot approach for truncated
semantics.Technical Report 2006.01, Accellera, May 2006.

7 C. Eisner, D. Fisman, J. Havlicek, A. McIsaac, and D. Van Campenhout. The definition of a
temporal clock operator. In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J.Woeginger,
editors, Intl. Coll. on Automata, Languages and Programming (ICALP), volume 2719 of
Lecture Notes in Computer Science, pages 857–870. Springer, 2003.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 67

3.6 Two to Tango: A pair of specification languages for runtime
monitoring

Adrian Francalanza (University of Malta – Msida, MT)

License Creative Commons BY 3.0 Unported license
© Adrian Francalanza

The choice of a specification language is ultimately determined by its intended use. In this
talk we motivate the need to employ two specification languages to be able to study the
problem of monitorability. In particular, we will outline why we chose a variant of the
modal-mu calculus on the one hand, and a process calculus on the other to understand
formally what can and cannot be monitored for at runtime. We will also overview how the
choice of two formalisms can be used to asses the correctness of a monitor that is entrusted
with checking the execution of a system against a specification.

3.7 A “Do-It-Yourself” Specification Language With BeepBeep 3
Sylvain Hallé (University of Quebec at Chicoutimi, CA)

License Creative Commons BY 3.0 Unported license
© Sylvain Hallé

Main reference Sylvain Hallé: “When RV Meets CEP”, in Proc. of the Runtime Verification - 16th International
Conference, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, Lecture Notes in
Computer Science, Vol. 10012, pp. 68–91, Springer, 2016.

URL https://doi.org/10.1007/978-3-319-46982-9_6

BeepBeep is an event stream processing engine [1]. In BeepBeep, streams of events (of any
kind) are piped into computing units called processors. The output of processors can be used
as the input of other processors, forming potentially complex processor chains.

BeepBeep is organized along a modular architecture. The main part of BeepBeep is
called the engine, which provides the basic classes for creating processors and functions,
and contains a handful of general-purpose processors for manipulating traces. The rest of
BeepBeep’s functionalities is dispersed across a number of optional palettes.

BeepBeep provides multiple ways to create processor pipes and to fetch their results. A
first obvious way is programmatically, using BeepBeep as a library and Java as the glue
code for creating the processors and connecting them. In addition to directly instantiating
and connecting processors, BeepBeep also offers the possibility to create domain-specific
languages with subsets of all the available processors. To this end, BeepBeep provides a
parser, which can be given a BNF grammar at runtime, and create a parse tree from any
string. With the help of a grammar file and a custom-made “expression parser”, one can
hence create, in a few lines of code, a domain-specific language with an arbitary syntax, and
a parser that converts an expression of this language into a BeepBeep processor chain.

References
1 S. Hallé. “When RV Meets CEP”. Proc. RV 2016, Springer Lecture Notes in Computer

Science 10012, 68-91, 2016.

17462

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-46982-9_6
http://dx.doi.org/10.1007/978-3-319-46982-9_6
http://dx.doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6

68 17462 – A Shared Challenge in Behavioural Specification

3.8 Linking Heterogeneous Models for Intelligent-Cyber-Physical
Systems

Zhiming Liu (Southwest University – Chongqing, CN)

License Creative Commons BY 3.0 Unported license
© Zhiming Liu

Compared to the challenges in traditional ICT applications that engineers used to face,
CPS systems and their software development are to, based on the infrastructures of existing
systems, develop new components or subsystems, new applications and front end services
and to integrate them onto the existing systems. Such development and integration have
to deal with the complexity of ever evolving architectures digital components, physical
components, together with sensors and smart devices controlled and coordinated by software.
The architectural components are designed with different technologies, run on different
platforms and interact through different communication technologies. Software components
run in these systems for data processing and analytics, computation, and intelligent control.
The requirements and environment of a CPS components keep changing with significant
uncertainty. Thus, a CPS must contain dynamic monitors and adapters. In this talk we intend
to discuss the need of a foundation for the combination of traditional software engineering
and AI (or knowledge-based engineering) and the emerging Big Data technologies. We
propose research problems including monitoring AI (including learning systems) components,
end-to-end specification of composition learning and non-learning components, and a unifying
modeling theory to link the different modeling paradigms of non-learning software components
and learning software components. We believe that the unified modeling framework need to
combine models data functionality, interaction protocols, and timing in both declarative and
operational languages, but yet it has to support separation of different design and verification
concerns.

3.9 Specification Languages for CPS
Dejan Nickovic (AIT Austrian Institute of Technology – Wien, AT)

License Creative Commons BY 3.0 Unported license
© Dejan Nickovic

Continuous and hybrid behaviors naturally arise from cyber-physical systems (CPS). In
this talk, we will present a brief overview of the specification languages that were designed
to tackle CPS-specific properties. We will mainly focus on Signal Temporal Logic (STL)
and Timed Regular Expressions (TRE), but will also present their syntactic and semantic
extensions. We will discuss what are the strength and weaknesses of these languages and in
which situations they should or should not be used.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 69

3.10 Automaton-Based Formalisms for Runtime Verification
Gordon Pace (University of Malta – Msida, MT)

License Creative Commons BY 3.0 Unported license
© Gordon Pace

An open question is the appropriateness of logic-based vs. visual, graph-based formalisms to
be used as specification languages. Clearly there are different ways in which one may measure
appropriateness, ranging from ease of writing, ease of comprehension, maintainability of
specifications, efficiency of verification and conciseness to mention but a few. Over the
past years, we have used graph-based formalisms in various projects and domains, with
a particular focus on their use in runtime verification. The formalisms used range from
DATEs (the formalism used by the Larva runtime verification tool), ppDATEs (an extension
of DATEs used by StaRVOOrs static+dynamic analysis tool), contract automata (used to
formalise contracts, including obligations, prohibitions and permissions) and policy automata
(used to formalise social network privacy policies). The primary drive towards using these
formalisms was the ease of adoption from industrial partners, and correspondence to models
typically documented (or not) of the lifecycles of entities in such systems. We present these
formalisms and issues arising from their use, and go on to discuss formalisms lying above and
below this automaton-based level of abstraction – outlining our experience with controlled
natural languages (above) and guarded-commands (below).

3.11 What is parametric trace slicing good for?
Giles Reger (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
© Giles Reger

Parametric trace slicing [2, 6] is an approach for parametric runtime monitoring that was
introduced by tracematches and JavaMOP [1] and later extended by QEA [3, 4, 5]. In this
talk I will briefly discuss what it is good for and, perhaps more interesting, what it is not
good for. I argue that this approach is very efficient where we have a few quantified variables
and care about the cross-product of their domains (such situations arise reasonably often
when reasoning about API usage). I argue that language based on this approach tend to be
less intuitive and ’non-local’ (i.e. you always need to consider the whole specification when
considering each part). Additionally, specifications tend not to be composable.

References
1 Meredith, P.O., Jin, D., Griffith, D. et al. Int J Softw Tools Technol Transfer (2012) 14:

249.
2 Chen F., Roşu G. (2009) Parametric Trace Slicing and Monitoring. In: Kowalewski S.,

Philippou A. (eds) Tools and Algorithms for the Construction and Analysis of Systems.
TACAS 2009. Lecture Notes in Computer Science, vol 5505. Springer, Berlin, Heidelberg

3 Barringer H., Falcone Y., Havelund K., Reger G., Rydeheard D. (2012) Quantified Event
Automata: Towards Expressive and Efficient Runtime Monitors. In: Giannakopoulou D.,
Méry D. (eds) FM 2012: Formal Methods. FM 2012. Lecture Notes in Computer Science,
vol 7436. Springer, Berlin, Heidelberg

17462

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

70 17462 – A Shared Challenge in Behavioural Specification

4 Havelund K., Reger G. (2015) Specification of Parametric Monitors. In: Drechsler R.,
Kühne U. (eds) Formal Modeling and Verification of Cyber-Physical Systems. Springer
Vieweg, Wiesbaden

5 Reger G., Cruz H.C., Rydeheard D. (2015) MarQ: Monitoring at Runtime with QEA.
In: Baier C., Tinelli C. (eds) Tools and Algorithms for the Construction and Analysis
of Systems. TACAS 2015. Lecture Notes in Computer Science, vol 9035. Springer, Berlin,
Heidelberg

6 K. Havelund and G. Reger and E. Zalinescu and D. Thoma Monitoring Events that Carry
Data, In E. Bartocci and Y. Falcone, editors, Lectures on Runtime Verification – Intro-
ductory and Advanced Topics, volume 10457 of LNCS, pages 60–97, Springer, 2018

3.12 Specification: The Biggest Bottleneck in Formal Methods and
Autonomy

Kristin Yvonne Rozier (Iowa State University, US)

License Creative Commons BY 3.0 Unported license
© Kristin Yvonne Rozier

Advancement of increasingly AI-enhanced control in autonomous systems stands on the
shoulders of formal methods, which make possible the rigorous safety analysis autonomous
systems require. Formal methods are highly dependent on the specifications over which
they reason; not only are specifications required for analysis, but there is no escaping the
“garbage in, garbage out” reality. Correct, covering, and formal specifications are thus an
essential element for enabling autonomy. However, specification is difficult, unglamorous,
and arguably the biggest bottleneck facing verification and validation of aerospace, and
other, autonomous systems. This talk will examine the outlook for the practice of formal
specification, and highlight the on-going challenges of specification, from design-time to
runtime system health management. We will pose challenge questions for specification that
will shape both the future of formal methods, and our ability to more automatically verify
and validate autonomous systems of greater variety and scale.

3.13 TeSSLa: A Real-Time Specification Language for Runtime
Verification of Non-synchronized Streams

Torben Scheffel (Universität Lübeck, DE)

License Creative Commons BY 3.0 Unported license
© Torben Scheffel

Joint work of Torben Scheffel, Sebastian Hungerecker, Martin Leucker, Malte Schmitz, Daniel Thoma

The Temporal Stream-based Specification Language (TeSSLa) operates on non-synchronized
real-time streams. It was first created for specifying properties about programs running on
multi core systems and it is currently used and developed in the COEMS project.

TeSSLa can express a lot of different properties like real time properties, reasoning about
sequential executions orders, calculating and comparing statistics and more. From the
beginning on, TeSSLa was built in a way that the generated monitors can be synthesized
and executed in hardware (more concrete: FPGAs) such that we are able to still process
even huge amounts of data online by exploiting the high parallelism of the hardware.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 71

Furthermore, the goal was that industry software engineers are able to understand and
write TeSSLa specifications easily. Hence, TeSSLa is equipped with a strong macro system
such that we are able to define a huge standard library on top of the basic functions so
software engineers can use TeSSLa. It is also easy to define new functions based on existing
ones if needed. Besides using TeSSLa for hardware supported monitoring, it is also feasible
to use TeSSLa for creating software monitors, which might reason about objects.

This talk shows the basic motivation for TeSSLa, the basic operators of TeSSLa, applica-
tion areas and examples.

3.14 E-ACSL, an Executable Behavioural Interface Specification
Language for C Programs

Julien Signoles (CEA LIST – Gif-sur-Yvette, FR)

License Creative Commons BY 3.0 Unported license
© Julien Signoles

This talk introduces E-ACSL, a behavioral specification language for C programs. It is
based on a typed first order logic whose terms are pure C expressions extended with a few
specific keywords. Every construct may be executed at runtime. Among others, it provides
assertions, contracts, invariants, data dependencies and ghost code. It is powerful enough to
express most functional properties of C programs and encode other properties such as LTL
properties and information flow policies.

References
1 E-ACSL manual available at http://www.frama-c.com/download/e-acsl/e-acsl.pdf
2 Mickaël Delahaye and Nikolaï Kosmatov and Julien Signoles. Common Specification Lan-

guage for Static and Dynamic Analysis of C Programs. In Symposium on Applied Comput-
ing SAC’13, pages 1230–1235, 2013, ACM.

3.15 LOLA
Hazem Torfah (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Hazem Torfah

LOLA is a specification language and stream processing engine for monitoring temporal
properties and computing complex statistical measurements. Lola combines the ease-of-use
of rule-based specification languages with the expressive power of heavy-weight scripting
languages or temporal logics previously needed for the description of complex stateful
dependencies. The language comes with two key features: template stream expressions,
which allow parameterization with data, and dynamic stream generation, where new properties
can be monitored on their own time scale. We give an overview on the development and the
current state of our tool in addition to a series of applications.

17462

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frama-c.com/download/e-acsl/e-acsl.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

72 17462 – A Shared Challenge in Behavioural Specification

3.16 Metric First-Order Dynamic Logic and Beyond
Dmitriy Traytel (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Dmitriy Traytel

I present Metric First-Order Dynamic Logic (MFODL), the “supremum” of the specification
languages Metric First-Order Temporal Logic (MFOTL) [4] and Metric Dynamic Logic
(MDL) [2] used in the MonPoly [1] and Aerial [3] monitoring tools. Moreover, I discuss
a few missing features of MFODL, which can be useful in applications: context-free or
context-sensitive temporal dependencies, aggregations, and absolute time references.

References
1 D. Basin, F. Klaedtke and E. Zalinescu. The MonPoly monitoring tool. In International

Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for
Runtime Verification Tools, 2017.

2 D. Basin, S. Krstić, and D. Traytel. Almost event-rate indepedent monitoring of metric
dynamic logic. In S. Lahiri and G. Reger, editors, RV 2017, volume 10548 of LNCS, pages
85–102. Springer, 2017.

3 D. Basin, S. Krstić, and D. Traytel. Aerial: Almost event-rate indepedent algorithms
for monitoring metric regular properties. In International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools,
2017.

4 J. Chomicki. Efficient checking of temporal integrity constraints using bounded history
encoding. ACM Trans. Database Syst., 20(2):149–186, 1995.

3.17 Behavioural Type-Based Static Verification Framework for Go
Nobuko Yoshida (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Nobuko Yoshida

Main reference Julien Lange , Nicholas Ng , Bernardo Toninho , Nobuko Yoshida: “A Static Verification
Framework for Message Passing in Go using Behavioural Types”, in Proc. of the 40th Int’l Conf.
on Software Engineering (ICSE 2018), to appear, ACM 2018.

I first give an introduction of our group working on session types.
Go is a production-level statically typed programming language whose design features

explicit message-passing primitives and lightweight threads, enabling (and encouraging)
programmers to develop concurrent systems where components interact through commu-
nication more so than by lock-based shared memory concurrency. Go can detect global
deadlocks at runtime, but does not provide any compile-time protection against all too
common communication mismatches and partial deadlocks.

In this work we present a static verification framework for liveness and safety in Go
programs, able to detect communication errors and deadlocks by model checking. Our
toolchain infers from a Go program a faithful representation of its communication patterns
as behavioural types, where the types are model checked for liveness and safety.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Julien Lange , Nicholas Ng , Bernardo Toninho , Nobuko Yoshida: ``A Static Verification Framework for Message Passing in Go using Behavioural Types'', in Proc. of the 40th Int'l Conf. on Software Engineering (ICSE 2018), to appear, ACM 2018.
Julien Lange , Nicholas Ng , Bernardo Toninho , Nobuko Yoshida: ``A Static Verification Framework for Message Passing in Go using Behavioural Types'', in Proc. of the 40th Int'l Conf. on Software Engineering (ICSE 2018), to appear, ACM 2018.
Julien Lange , Nicholas Ng , Bernardo Toninho , Nobuko Yoshida: ``A Static Verification Framework for Message Passing in Go using Behavioural Types'', in Proc. of the 40th Int'l Conf. on Software Engineering (ICSE 2018), to appear, ACM 2018.

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 73

4 Working groups

4.1 How do we integrate trace behaviour with state properties
Wolfgang Ahrendt (Chalmers University of Technology – Göteborg, SE), Stijn de Gouw
(Open University – Heerlen, NL), Adrian Francalanza (University of Malta – Msida, MT),
Zhiming Liu (Southwest University – Chongqing, CN), and Julien Signoles (CEA LIST –
Gif-sur-Yvette, FR)

License Creative Commons BY 3.0 Unported license
© Wolfgang Ahrendt, Stijn de Gouw, Adrian Francalanza, Zhiming Liu, and Julien Signoles

As a follow-up of the talk Trace Focused and Data Focused Specification: Complementary,
Competing, Combined?, this group discussed how the community could move towards integ-
rated/coordinated specification and analysis (static or dynamic) of trace and data focused
aspects. We first made a distinction of specifications and models. The former describe
properties a system is supposed to have, while the latter are a vehicle for system design,
and finally, development. Following the theme of the seminar, we focused on specifications.
Further, we soon converged on the view that the tasks of combining, relating, or even
integrating divers specification styles and aspects requires a common semantic foundation.

An archetypal semantic base for both trace and data focused properties could, among
others, be sequences 〈(e0, v0), (e1, v1), (e2, v2), . . .〉 of pairs (ei, vi), where ei are relevant
events, and vi are valuations, assigning variables (or locations of a heap, or alike) to values.
It is obvious how to interpret trace oriented properties on such traces. But also data oriented
properties can be interpreted on that basis. For instance, a Hoare triple {φ}m(){ψ} could be
defined by using method entry and exit events, here m↓ and m↑, stating that m↓ = ei, m↑ = ej ,
and vi |= φ implies vj |= ψ.

We arrived at the following (sketch of) a method for relating and combining different
formalisms, trace and data oriented.

1. Unify the events relevant for the formalisms.
2. Unify the data (valuations) relevant for the formalisms.
3. Design a semantic domain representing the above, suited to naturally give meaning to

the divers properties of interest.

4.2 Specifications that are like implementations
Cyrille Artho (KTH Royal Institute of Technology – Stockholm, SE), Cindy Eisner (IBM –
Haifa, IL), Keiko Nakata (SAP Innovation Center – Potsdam, DE), Dejan Nickovic (AIT
Austrian Institute of Technology – Wien, AT), and Volker Stolz (West. Norway Univ. of
Applied Sciences – Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Cyrille Artho, Cindy Eisner, Keiko Nakata, Dejan Nickovic, and Volker Stolz

To be flexible and expressive with a specification, it is helpful to combine declarative and
imperative modes. If the model is rich, this avoids the need for a “bridge specification”
that refines an existing model, for example, if parameters are very complex and beyond the
expressiveness of the initial modelling language.

17462

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

74 17462 – A Shared Challenge in Behavioural Specification

4.2.1 Why is this the case?

Many formalisms are too restricted. Temporal logics often feel unnatural to use. Furthermore,
logics and finite-state machines cannot count; to cope with that, either formulas become
unnecessarily complex, or the formalisms have to be extended with counters. (This is the
case, for example, with extended finite-state machines, which are much closer to a possible
implementation of a system than what a basic finite-state machine can express.) To be
flexible and expressive with a specification, it is helpful to combine declarative and imperative
modes. If the model is rich, this avoids the need for a “bridge specification” that refines an
existing model, for example, if parameters are very complex and beyond the expressiveness
of the initial modelling language

4.2.2 Trade-offs

The table below shows some of the trade-offs with the choice of the specification language:

Simple, declarative spe-
cification

Complex (imperative?)
specification

Specific burden (human) High if specification becomes
complex due to limitations

May be lower; feels “natural”
to developers

Level of abstraction High Low
Semantics Well-defined but perhaps diffi-

cult for a human
Loosely-defined but perhaps
clearer to developers

Analysis burden (tool) Low High
Link to implementation Remote Close
Refining specification to imple-
mentation

Difficult More direct

Integration with existing tools Difficult More straightforward

A specification that is very low-level may make it difficult to express complex data
types or properties. Conversely, though, the high level of abstraction required by typical
specification languages is also a desirable trait. The specification should be significantly
simpler than the implementation and not just mirror it. Otherwise, the level of abstraction
leads to the same type of thinking, and hence the same bugs in both the specification and
the implementation; the distinction of “what” (specification) vs. “how” (implementation)
becomes blurred. In many cases, a “rich” specification language may be enticing because
it offers the same features like a programming language. Conversely, certain features are
not available in a programming language. For example, it is not possible (without much
extra code) to quantify over all instances on the heap in a programming language, but some
specification languages may allow that.

On the practical side, using the implementation language (or a subset of it) for specifica-
tions eliminates the need to learn about a new language or platform. This choice makes tool
chain integration straightforward and allows the same tools to be used for static and dynamic
analysis. It also allows properties to refer directly to the implementation. Refinements are
easier to reason about if the language is the same. The semantics of the language may be
clearer to developers, making this a more “practical” choice.

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 75

4.2.3 Solutions

Domain-specific languages seem to be a great way to hide low-level aspects of “classical”
specification languages while restricting the complexity of the specification. For example,
PSL has been very successful because it is on a higher level of abstraction than LTL, allows
for different styles of specification, and has several ways to make specifications more succinct.
However, building better specification languages is difficult; it takes experience to extract
common patterns and “package” them in a nice way. Visual specification languages are
popular for software engineering, but their semantics are often not well-defined and not
executable. A mathematical or textual specification language should still be reasonably close
in appearance to a programming language. This explains why very mathematical notations
like LTL and Z are not so popular with engineers.

The choice of the language depends on the problem to be solved: If problems to be specified
are close to the implementation platform, such as in run-time verification, programming
languages can be suitable. For something that should be platform-agnostic and abstract,
other choices may be better.

If a programming language is used for verification, the language features used should be
limited, and side effects in statements must be avoided. It is good to forgo completeness
(being able to express any property): some abstraction is good and should be enforced at the
level of the specification language. In the extreme case, a reference implementation is an
executable specification, but properties may not be explicit. In this case, the implementation
part should be separate from the monitor that checks results.

A good specification toolkit includes validation tools (vacuity, consistency, realizability
checking; simulation; visualization). High-level languages may be easier to validate in
principle, but programming languages often have good tools for this purpose, too.

Most importantly, we need to support a good V and V process, not just to provide tools.
The given specification language should be used in the spirit of proving a formal model, not
an implementation.

4.3 Property Specification Patterns for Runtime Verification
Domenico Bianculli (University of Luxembourg, LU), Borzoo Bonakdarpour (McMaster
University – Hamilton, CA), Bernd Finkbeiner (Universität des Saarlandes, DE), Gordon
Pace (University of Malta – Msida, MT), Giles Reger (University of Manchester, GB),
Kristin Yvonne Rozier (Iowa State University, US), Gerardo Schneider (Chalmers University
of Technology – Göteborg, SE), Dmitriy Traytel (ETH Zürich, CH), and Nobuko Yoshida
(Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Domenico Bianculli, Borzoo Bonakdarpour, Bernd Finkbeiner, Gordon Pace, Giles Reger,
Kristin Yvonne Rozier, Gerardo Schneider, Dmitriy Traytel, and Nobuko Yoshida

Property specification patterns have been proposed as a means to express recurring properties
in a generalized form, to aid engineers writing system requirements precisely and map them
to formalisms like temporal logics. Starting from the seminal work by Dwyer et al. [4],
several systems (i.e., catalogues) of property specification patterns have been proposed in
the literature [1, 3, 2, 6, 5, 7]. This working group discussed the use of property specification
patterns for writing specifications in the context of Runtime Verification (RV).

17462

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

76 17462 – A Shared Challenge in Behavioural Specification

4.3.1 Why Specification Patterns in RV?

A first discussion point focused on the identification of the main reasons for using property
specification patterns in RV:
abstraction: to raise the level of abstraction when writing specifications;
conciseness: to express complex specifications in a concise way;
reusability: to reuse blocks of specifications in different systems and programming languages;
compositionality: to be able to compose and intertwine different aspects of a specification;
extensibility: to provide a system that can be extended in a coherent way for different

application domains;
automation: to enable the automated transformation of a high-level, abstract specification

into a low-level, concrete specification, by supporting different formalisms, technologies,
and instrumentation strategies.

4.3.2 Towards a System of Property Specification Patterns for RV.

The second part of the discussion pinpointed the main attributes that would characterize a
system of property specification patterns tailored for RV applications. Such a system shall:

support the three main “planes” of RV (i.e., time, data, and algorithms/behaviors) as
first-class entities;
enable the definition of multi-level patterns;
provide pattern combinators;
be built based on existing pattern systems.

Furthermore, several complementary extensions could be envisioned for this system:
anti-patterns, to give guidance about which specifications are better avoided;
design patterns for building observers, verifiers, and enforcers;
an “interface language” to describe the capabilities of observers, verifiers, and enforcers
with respect to certain patterns;
transformational patterns, for transforming specifications into various target formalisms.

Finally, the working group touched upon the main design choices that the designers of
such a system would face:

How deep should the system be embedded in a target formalism?
Should the system account only for functional specifications or also non-functional ones?

References
1 M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang. Aligning qualitative, real-

time, and probabilistic property specification patterns using a structured english grammar.
IEEE Transactions on Software Engineering, 41(7):620–638, July 2015.

2 P. Bellini, P. Nesi, and D. Rogai. Expressing and organizing real-time specification patterns
via temporal logics. J. Syst. Softw., 82(2):183–196, February 2009.

3 Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso, and Patrick Senti. Specification pat-
terns from research to industry: a case study in service-based applications. In ICSE 2012:
Proceedings of the 34th international conference on Software engineering, pages 968–976.
IEEE Computer Society, 2012.

4 Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 411–420. IEEE Computer Society Press, 1999.

5 Volker Gruhn and Ralf Laue. Patterns for timed property specifications. Electron. Notes
Theor. Comput. Sci., 153(2):117–133, 2006.

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 77

6 Lars Grunske. Specification patterns for probabilistic quality properties. In ICSE 2008:
Proceedings of the 30th international conference on Software engineering, pages 31–40, New
York, NY, USA, 2008. ACM.

7 Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In ICSE ’05:
Proceedings of the 27th international conference on Software engineering, pages 372–381,
New York, NY, USA, 2005. ACM.

4.4 Exploring the tradeoffs between Declarative and Operational
Specification

Adrian Francalanza (University of Malta – Msida, MT), Wolfgang Ahrendt (Chalmers
University of Technology – Göteborg, SE), Cindy Eisner (IBM – Haifa, IL), Zhiming Liu
(Southwest University – Chongqing, CN), and Gordon Pace (University of Malta – Msida,
MT)

License Creative Commons BY 3.0 Unported license
© Adrian Francalanza, Wolfgang Ahrendt, Cindy Eisner, Zhiming Liu, and Gordon Pace

This working group explored the tradeoffs between declarative and operational/algorithm
approaches to specification. We begin with defining these two terms:

By “Declarative” (D) what we understand is “What” is expected to hold. A good example
here would be regular expressions, defined (denotationally) as the sets of strings that
they represent.
By “Algorithmic” (A) what we understand is “How” we intend to check what is expected
to hold. A good example here would be DFSAs: they may be used to denote the sets of
strings that they accept, via the operational procedure of processing a string from the
start state to the final state.

Another analogy could be the one between state-based vs action-based specification,
though it is not clear that it fits exactly. In practice, this clear delineation is often blurred.

Next we consider what criteria one may want to consider when assessing/evaluating/de-
ciding whether to prefer one style over the other.

Readability and Understandable. In general (D) tend to be more concise, hence potentially
more readable. This, of course, need not be the case and is also very subjective. Certain (A)
approaches have a graphical representation which improves substantially the understandability
(e.g. automata). Various anecdotal evidence was brought forward. Whereas it was certainly
the case for small specifications, it was unclear whether these advantages would scale for
larger/real-world properties. Syntactic sugaring is also very useful in these cases, and (D)
may be more amenable to this due to the compositional operators. These points were also
linked to the need to have Domain-Specific language adaptations of these formalisms where,
perhaps, only a subset of the expressive power may be needed.

Maintainability/adaptability. In general (D) are more algebraic by nature and come
equipped with operations to compose specifications. This tends to affect maintainabil-
ity/adaptability/compositionality/decompositionality.

Specification procurement. To give a bit of context, there seems to be a general aversion
of engineers towards using specifications altogether. One criteria could thus be to lean
towards the form of specification that facilitate best specification procurement. To this
end, techniques such as visualisations and connections to controlled natural languages are

17462

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

78 17462 – A Shared Challenge in Behavioural Specification

definitely a plus. Neither form, (D) or (A), offered a particular advantage over the other.
For instance the box modality [α]ψ can be expressed as whenever α then ψ must hold. A
case can be made that logical operators are not as intuitive to the“general public” e.g. by or
they often understand exclusive or, believe that implication is associated with causality etc.
Another aspect that was briefly touched upon was that of integrating these things into the
workflow of a company, having good error reporting etc.

4.5 Event Stream Processing
Sylvain Hallé (University of Quebec at Chicoutimi, CA), Martin Leucker (Universität Lübeck,
DE), Nicolas Rapin (CEA – Gif sur Yvette, FR), César Sánchez (IMDEA Software –
Madrid, ES), Torben Scheffel (Universität Lübeck, DE), and Hazem Torfah (Universität des
Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Sylvain Hallé, Martin Leucker, Nicolas Rapin, César Sánchez, Torben Scheffel, and Hazem
Torfah

This working group concentrated on the topic of behavioural specification through Event
Stream Processing (ESP). All the participants in this working group were involved in the
design and development of one of several ESP tools: ARTiMon [5], BeepBeep [4], LOLA [1],
and TeSSLa [3]. The discussion revolved around a few broad questions, which are summarized
in the following.

4.5.1 Motivation

A first discussion topic focused on the reasons the various ESP tools have been developed
in the first place. This point is relevant, given that most of us come from the Runtime
Verification (RV) community, where specification languages are generally based on logic or
automata. For most of us, the shift to ESP came “out of necessity” –that is, some use cases
we were faced with were difficult or flatly impossible to model using traditional logic or
automata.

Case in point, one participant recalled an experience with members of the industry, who
were shown specifications expressed in temporal logic in a first meeting, and specifications
expressed as stream equations during a subsequent meeting. The overall reception to the
stream equations was much more positive than for the temporal logic formulæ (“why didn’t
you show this in the first place?” was the reaction of one of the attendees). For some classes
of problems, and for some audiences, the use of streams to model a specification may prove a
better fit than existing logics and automata-based notations.

It shall be noted that, although the use of event streams in a verification or testing
context is relatively recent, it can be seen as a generalization of much older concepts. For
example, temporal testers have been introduced for the verification of Linear Temporal Logic
specifications more than twenty years ago [2]. By using the same core principles (composition,
incremental update upon each event), contemporary ESP tools extend temporal testers
beyond Boolean streams and temporal logic, and generalize them to allow the computation
of aggregations over numerical values and many other functions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 79

4.5.2 Declarative or Imperative?

A second point of discussion is the classification of event stream languages as declarative or
imperative. For example, the main mode of operation of BeepBeep is to programmatically
instantiate and connect “boxes” that each perform a simple computation, which is close to
an imperative language. However, one can also see an event processing specification as a
set of equations defining relationships between input and output streams; this is especially
apparent in the input languages of ARTiMon, LOLA and TeSSLa. It can be argued that
these equations define constraints on the inputs and the outputs that must be satisfied, but
do not explicitly describe how to compute a satisfying output for a given input (or if such an
output even exists). These traits would classify event stream specifications as declarative.

4.5.3 Relative Expressiveness

Although ESP tools share many similarities (the possibility to compute aggregation functions
over time windows, for example), their expressiveness is not identical. One particular point
where they differ is in their interpretation of time. Some systems assume synchronous streams
where computation occurs in discrete steps, while others accept input streams that produce
events at their own rate. Again, the particular implementation of time in each tool has been
motivated by concrete use cases that the system had to handle.

4.5.4 Should there be fewer tools?

Another question that was discussed is whether it would be desirable to have fewer stream
languages. The general consensus among panel members was that, since their expressiveness
is not identical (see above), each tool fulfills a different need. Moreover, having multiple
tools maintains a healthy level of competition and drives innovation.

It was also observed that, in the past fifteen years, we have witnessed the introduction of
a large number of new programming languages. In many cases, new languages have been
invented, because “starting from scratch” was easier than adapting an existing (and only
partially appropriate) solution; a similar argument can be made about stream languages. To
sum it up, if the existence of multiple programming languages is generally accepted and is
not seen as abnormal, why would that be different for specification languages?

4.5.5 The future

As a next step for the short- and medium-term, it was suggested that authors of ESP tools
should give themselves a standardized vocabulary to define the features of each specification
language and each system. This vocabulary, in turn, would make it possible to compare the
various solutions.

References
1 B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H.B. Sipma,

S. Mehrotra, Z. Manna. (2005). LOLA: Runtime Monitoring of Synchronous Systems. In
12th International Symposium on Temporal Representation and Reasoning, TIME 2005,
IEEE Computer Society, 166–174.

2 Y. Kesten, A. Pnueli, and L. Raviv. (1998). Algorithmic verification of linear temporal
logic specifications. In Proc. 25th Int. Colloq. Aut. Lang. Prog.. Springer: Lecture Notes in
Computer Science, vol. 1443, 1–16.

17462

80 17462 – A Shared Challenge in Behavioural Specification

3 M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, A. Schramm. (2018). TeSSLa: Runtime
Verification of Non-synchronized Real-Time Streams. To appear on ACM Symposium on
Applied Computing, SAC 2018.

4 S. Hallé. (2016). When RV Meets CEP. In Y. Falcone, C. Sánchez (eds), Runtime Verific-
ation, RV 2016. Springer: Lecture Notes in Computer Science, vol. 10012, 68–91.

5 N. Rapin. (2016) Reactive Property Monitoring of Hybrid Systems with Aggregation. In
Y. Falcone, C. Sánchez (eds), Runtime Verification, RV 2016. Springer: Lecture Notes in
Computer Science, vol. 10012, 447–453.

4.6 A shared challenge – NASA’s Core Flight System
Volker Stolz (West. Norway Univ. of Applied Sciences – Bergen, NO), Borzoo Bonakdarpour
(McMaster University – Hamilton, CA), Martin Leucker (Universität Lübeck, DE), Nicolas
Rapin (CEA – Gif sur Yvette, FR), Kristin Yvonne Rozier (Iowa State University, US),
Julien Signoles (CEA LIST – Gif-sur-Yvette, FR), Hazem Torfah (Universität des Saarlandes,
DE), and Nobuko Yoshida (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Volker Stolz, Borzoo Bonakdarpour, Martin Leucker, Nicolas Rapin, Kristin Yvonne Rozier,
Julien Signoles, Hazem Torfah, and Nobuko Yoshida

4.6.1 Introduction

This working group focused on identifying a single, unified challenge which could be used
by the RV community to show-case their tools and methods. In other communities, there
have been case studies that are still around and referred to frequently, such as the Steam
Boiler Control [3], the Mondex case study grand challenge [4], and the Common Component
Modelling Example CoCoME [5]. We intend to kick-start a similar “future-proof” arena
for joint activity through further discussion among the seminar participants. The following
summarises the discussion within the working group.

In particular, we were interested in a topic that not only serves those goals (and has
possibilities for most community members to contribute), but also is current and and engaging.
Unmanned (aerial) vehicles (UAVs/drones) seem to fit this purpose very well: it is a topic
that easily engages students, has many “moveable parts” that make it easy and interesting to
instrument (sensor readings and engine data), and as a platform UAVs are easily extensible
with additional sensors to tailor them to particular projects.

Although consumer-grade products usually come with their own control software, operat-
ing systems are easily interchangeable, and are frequently Android-based. To fulfil the require-
ment of a single unified system, NASA’s Core Flight System (CFS, https://cfs.gsfc.nasa.gov/),
can serve as a middleware tying together the various functionalities. Furthermore, prominent
members of the community are, or have been, affiliated with NASA which developed and
maintains the stack, and can thus serve as contact point for others seeking help or guidance
with the system. In the following, we discuss some of the possibilities and challenges that
those devices together with the CFS present as a platform for a shared RV challenge.

4.6.2 NASA’s Core Flight System

The system covers the full range of a cyber-physical system: on top of a Linux kernel, a
modular architecture provides a middleware for communication using publish/subscribe
between the different components. Specific applications sit on top of this middleware. The

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://cfs.gsfc.nasa.gov/

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 81

entire system is open-source and available from NASA’s open-source repositories. It also
includes a simulator. The Linux-based open-source architecture should make it easy to
interface with additional tools, such as the instrumentations required for applied runtime
verification.

A wide range of hardware is already supported, and the software has already been used
on off-the-shelf UAVs. For new hardware, some configuration may be required, and contacts
with NASA confirm that they are willing to provide some remote support, and have already
made steps to incorporate the latest updates into the publicly available repositories.

Even within constrained budgets, consumer-grade drones or a computationally more
powerful octocopter can be purchased for below a 1000 USD, allowing even smaller groups
to participate after a small up-front investment. Within this budget, a subgroup of the
community could also create a reference architecture with a well-defined set of sensors and
motors. For the lower-end hardware, CFS does not directly run on the hardware itself, but
on a separate computer that uses a communications link (e.g. wifi) to remote-control the
vehicle.

4.6.3 Requirements from the RV Perspective

For the RV community, it is important that as many of the diverse approaches can be served
by this platform. Most importantly, this includes the division between online- and offline
processing, runtime reflection, and solutions requiring specific software. In general, we remark
that the open-source nature of the entire platform gives ample opportunity to customize it.

For online runtime verification, the publish/subscribe communications-style of the mid-
dleware makes it easy to receive events from subsystems. Runtime reflection, where the
behaviour of the system is actively influenced, can be equally easily achieved if the component
to be influenced reacts to messages on the middleware bus, but otherwise may of course
require some modification, or the design of new components.

Offline runtime verification, where event data is analysed through RV techniques (eval-
uating for example temporal logic properties), can be easily achieved by recording event
data from the system, e.g. by logging messages from the middleware. Even if no hardware
is available, trace data can be obtained from the simulator. Even if a community member
lacks the technical expertise to run the system themselves, traces can be generated and
published (e.g. in the upcoming trace data repository of the EU COST Action IC1402 “ARVI
– Runtime Verification Beyond Monitoring”, see [1]) by other members.

Several seminar participants work with particular implementations of runtime verification
technology, e.g. those that are implemented on top of the Java Virtual Machine. Naturally,
those approaches do not easily carry over into the world of embedded systems, where often
specific operating systems requirements do not allow running full user-land applications, or
memory or CPU are too constrained to enable such approaches. The suggested platform in
principle offers a full operating system, and is only constrained by the underlying hardware.
This allows groups with higher computational requirements to move to more powerful
hardware, or use the simulator.

4.6.4 Relevant Properties

This working group also took a precursory look at relevant runtime verification-related
properties that may be investigated on such a system. In particular, the general nature of the
middleware should offer plenty of opportunity to look for relevant events. Although of course
one could potentially devise application specific properties, and existing set of specifications

17462

82 17462 – A Shared Challenge in Behavioural Specification

for the platform would be an interesting possibility of directly applying RV techniques in
this domain.

We easily found existing specifications in particular for the LADEE mission such as “while
in a flight mode, with active control disabled, a particular parameter shall also be disabled”
(Karen Gundy-Burlet, SPIN 2014 keynote). The same mission has also already been utilised
by Havelund as an application scenario for TraceContract [2].

Furthermore, we also found MatLab/Simulink models in the repositories which are of
direct interest to runtime verification.

4.6.5 Conclusion

In conclusion, we are confident that such a system gives ample opportunity to either find,
or come up with our own, properties that our current tools can then monitor, and that the
majority of the community members hopefully have the resources and expertise to participate.

References
1 COEMS – Open traces from industry. S. Jaksic, M. Leucker, D. Li, and V. Stolz. In: RV-

CuBES workshop, Kalpa, 2017.
2 Checking Flight Rules with TraceContract: Application of a Scala DSL for Trace Analysis.

H. Barringer, K. Havelund, E. Kurklu, and R. Morris. In: Scala Days 2011
3 Formal Methods for Industrial Applications: Specifying and Programming the Steam Boiler

Control. J.-R. Abrial, E. Börger, and H. Langmaack. In: LNCS 1165, Springer, 1996.
4 First steps in the verified software grand challenge. J. Woodcock. In: Computer,

39(10):57–64, October 2006.
5 The Common Component Modeling Example: Comparing Software Component Models. A.

Rausch, R. H. Reussner, R. Mirandola, F. Plasil (eds.). In: LNCS 5153, Springer, 2008

4.7 Data Quantification in Temporal Specification Languages
Dmitriy Traytel (ETH Zürich, CH), Domenico Bianculli (University of Luxembourg, LU),
and Giles Reger (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
© Dmitriy Traytel, Domenico Bianculli, and Giles Reger

In this working group, we tried to collect and characterize the different kinds of quantification
or parametrization that can be encountered in temporal specification languages used in the
runtime verification community. Our selection, albeit far from being comprehensive, shows
that the main semantic difference is the domain of quantification. We have identified five
different groups.

4.7.1 Standard First-Order Quantification

An early approach taken by Emerson’s first-order linear temporal logic (FOLTL) [13] is
to add standard first-order logic quantifiers to LTL. Thereby, the quantifiers range over
a fixed domain, which is independent of the trace (sequence of structures). Chomicki’s
real-time extension of FOLTL, called metric first-order temporal logic (MFOTL) [9] follows
this approach. The MonPoly monitoring tool [4] demonstrates how such quantifiers can be
handled algorithmically. The new Dejavu tool [16] (and logic) quantifies over fixed (infinite)
domains.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 83

4.7.2 Quantification over the Active Domain

A different approach, inspired by the database community, is to quantify over the active
domain, i.e., values that occur in the trace, rather than a fixed, separately given domain. For
certain classes of properties, e.g., where all quantifiers are bounded by atomic propositions
as in ∀x.p(x) → φ or ∃x.p(x) ∧ φ, active domain quantification coincides with the standard
first-order quantification.

Several specification languages favor the active domain quantification, as it appears to be
algorithmically more tractable. They differ in their definition of what the active domain in
a trace is. The traditional database definition as all values contained in the trace, used in
LTL-FO [12], is hard to realize in the online setting, where the trace is an infinite stream of
events. An adaptation of the active domain to all previously seen values would fit this setting
better. However, the most widespread interpretation is to restrict the quantification to values
seen at the current time-point. For example, the languages LTLFO [7], LTL-FO+ [15], and
Parametrized LTL [20] use this semantics. Additionally, DejaVu [16] in its current form can
quantify over “seen” values in the past. There are in fact two sets of quantifiers: forall
and exists for quantifying over seen values, and Forall and Exists for quantifying over
all values in the fixed (possibly infinite) domain.

4.7.3 Freeze Quantification

Freeze quantification is a further refinement of the quantification over the current time-point
approach. The usage of registers restricts the quantification to be a singleton: the only
value that populates the register at a given time-point. Timed propositional temporal logic
(TPTL) [1] uses such quantifiers to extend LTL with real-time constraints. Here, we are
interested in quantification over the data dimension rather than the time dimension, as used in
Freeze LTL [11] and its extensions [10]. A recent extension of MTL with freeze quantification
over data MTL↓ [5] was used as the specification language when online monitoring our-of-order
traces.

4.7.4 Templates and Parametric Trace Slicing

Some approaches avoid explicit quantification in their formalisms. Yet, they allow parametric
specifications, which are handled by decomposing traces containing data into propositional
ones. This approach is known as parametric trace slicing [8, 19, 21], which is at the core of
the JavaMOP system [18] and in quantified event automata QEA [2].

More recently, the stream-based specification language LOLA [14] introduced paramet-
rization in terms of template specifications. Semantically, templates behave similarly to
parametric trace slicing, but the precise connections are yet to be explored.

4.7.5 Quantitative Quantifiers

Finally, some data quantifiers in addition to binding a variable also perform an arithmetic
operation (be it filtering, grouping, or aggregation) on the quantified values (be them data
or the number of satisfied instances). Example languages in this space are LTLFO extended
with counting quantifiers [6], LTL4-C [17] with its probabilistic quantifiers, and the extension
of MFOTL with aggregations [3].

References
1 R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204, 1994.

17462

84 17462 – A Shared Challenge in Behavioural Specification

2 H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quantified event
automata: Towards expressive and efficient runtime monitors. In D. Giannakopoulou and
D. Méry, editors, FM 2012, volume 7436 of LNCS, pages 68–84. Springer, 2012.

3 D. A. Basin, F. Klaedtke, S. Marinovic, and E. Zalinescu. Monitoring of temporal first-order
properties with aggregations. Formal Methods in System Design, 46(3):262–285, 2015.

4 D. A. Basin, F. Klaedtke, S. Müller, and E. Zalinescu. Monitoring metric first-order tem-
poral properties. J. ACM, 62(2):15:1–15:45, 2015.

5 D. A. Basin, F. Klaedtke, and E. Zalinescu. Runtime verification of temporal properties
over out-of-order data streams. In R. Majumdar and V. Kuncak, editors, CAV 2017, volume
10426 of LNCS, pages 356–376. Springer, 2017.

6 A. Bauer, R. Goré, and A. Tiu. A first-order policy language for history-based transaction
monitoring. In M. Leucker and C. Morgan, editors, ICTAC 2009, volume 5684 of LNCS,
pages 96–111. Springer, 2009.

7 A. Bauer, J. Küster, and G. Vegliach. The ins and outs of first-order runtime verification.
Formal Methods in System Design, 46(3):286–316, 2015.

8 F. Chen and G. Rosu. Parametric trace slicing and monitoring. In S. Kowalewski and
A. Philippou, editors, TACAS 2009, volume 5505 of LNCS, pages 246–261. Springer, 2009.

9 J. Chomicki. Efficient checking of temporal integrity constraints using bounded history
encoding. ACM Trans. Database Syst., 20(2):149–186, 1995.

10 N. Decker and D. Thoma. On freeze LTL with ordered attributes. In B. Jacobs and
C. Löding, editors, FoSSaCS 2016, volume 9634 of LNCS, pages 269–284. Springer, 2016.

11 S. Demri, R. Lazic, and D. Nowak. On the freeze quantifier in constraint LTL: decidability
and complexity. Inf. Comput., 205(1):2–24, 2007.

12 A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicating data-driven web
services. In S. Vansummeren, editor, PODS 2006, pages 90–99. ACM, 2006.

13 E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pages 995–1072. 1990.

14 P. Faymonville, B. Finkbeiner, S. Schirmer, and H. Torfah. A stream-based specification
language for network monitoring. In Y. Falcone and C. Sánchez, editors, RV 2016, volume
10012 of LNCS, pages 152–168. Springer, 2016.

15 S. Hallé and R. Villemaire. Runtime monitoring of message-based workflows with data. In
EDOC 2008, pages 63–72. IEEE Computer Society, 2008.

16 First Order Temporal Logic Monitoring with BDDs. K. Havelund, D. Peled, and D. Ulus
17th Conference on Formal Methods in Computer-Aided Design (FMCAD 2017), 2-6 Oc-
tober, 2017, Vienna, Austria. IEEE.

17 R. Medhat, B. Bonakdarpour, S. Fischmeister, and Y. Joshi. Accelerated runtime verifica-
tion of LTL specifications with counting semantics. In Y. Falcone and C. Sánchez, editors,
RV 2016, volume 10012 of LNCS, pages 251–267. Springer, 2016.

18 P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu. An overview of the MOP
runtime verification framework. STTT, 14(3):249–289, 2012.

19 G. Reger and D. E. Rydeheard. From first-order temporal logic to parametric trace slicing.
In E. Bartocci and R. Majumdar, editors, RV 2015, volume 9333 of LNCS, pages 216–232.
Springer, 2015.

20 V. Stolz. Temporal assertions with parametrized propositions. J. Log. Comput., 20(3):743–
757, 2010.

21 K. Havelund and G. Reger and E. Zalinescu and D. Thoma Monitoring Events that Carry
Data, In E. Bartocci and Y. Falcone, editors, Lectures on Runtime Verification – Intro-
ductory and Advanced Topics, volume 10457 of LNCS, pages 60–97, Springer, 2018

Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz 85

Participants

Wolfgang Ahrendt
Chalmers University of
Technology – Göteborg, SE

Cyrille Artho
KTH Royal Institute of
Technology – Stockholm, SE

Domenico Bianculli
University of Luxembourg, LU

Borzoo Bonakdarpour
McMaster University –
Hamilton, CA

Stijn de Gouw
Open University – Heerlen, NL

Cindy Eisner
IBM – Haifa, IL

Bernd Finkbeiner
Universität des Saarlandes, DE

Adrian Francalanza
University of Malta – Msida, MT

Sylvain Hallé
University of Quebec at
Chicoutimi, CA

Martin Leucker
Universität Lübeck, DE

Zhiming Liu
Southwest University –
Chongqing, CN

Keiko Nakata
SAP Innovation Center –
Potsdam, DE

Dejan Nickovic
AIT Austrian Institute of
Technology – Wien, AT

Gordon Pace
University of Malta – Msida, MT

Nicolas Rapin
CEA – Gif sur Yvette, FR

Giles Reger
University of Manchester, GB

Kristin Yvonne Rozier
Iowa State University, US

César Sánchez
IMDEA Software – Madrid, ES

Torben Scheffel
Universität Lübeck, DE

Gerardo Schneider
Chalmers University of
Technology – Göteborg, SE

Julien Signoles
CEA LIST – Gif-sur-Yvette, FR

Volker Stolz
West. Norway Univ. of Applied
Sciences – Bergen, NO

Hazem Torfah
Universität des Saarlandes, DE

Dmitriy Traytel
ETH Zürich, CH

Nobuko Yoshida
Imperial College London, GB

17462

	Executive Summary Giles Reger, Klaus Havelund, Martin Leucker, and Volker Stolz
	Table of Contents
	Overview of Talks
	Trace Focussed and Data Focussed Specification: Complementary, Competing, Combined? Wolfgang Ahrendt
	Domain-Specific Languages with Scala, and model-based testing as an example Cyrille Artho
	The Tale of Dr Jekyll and Mr Hyde in Pattern-based Specification Languages Domenico Bianculli
	Asynchronous HyperLTL Borzoo Bonakdarpour
	PSL: The good, the bad and the ugly Cindy Eisner
	Two to Tango: A pair of specification languages for runtime monitoring Adrian Francalanza
	A ``Do-It-Yourself'' Specification Language With BeepBeep 3 Sylvain Hallé
	Linking Heterogeneous Models for Intelligent-Cyber-Physical Systems Zhiming Liu
	Specification Languages for CPS Dejan Nickovic
	Automaton-Based Formalisms for Runtime Verification Gordon Pace
	What is parametric trace slicing good for? Giles Reger
	Specification: The Biggest Bottleneck in Formal Methods and Autonomy Kristin Yvonne Rozier
	TeSSLa: A Real-Time Specification Language for Runtime Verification of Non-synchronized Streams Torben Scheffel
	E-ACSL, an Executable Behavioural Interface Specification Language for C Programs Julien Signoles
	LOLA Hazem Torfah
	Metric First-Order Dynamic Logic and Beyond Dmitriy Traytel
	Behavioural Type-Based Static Verification Framework for Go Nobuko Yoshida

	Working groups
	How do we integrate trace behaviour with state properties Wolfgang Ahrendt, Stijn de Gouw, Adrian Francalanza, Zhiming Liu, and Julien Signoles
	Specifications that are like implementations Cyrille Artho, Cindy Eisner, Keiko Nakata, Dejan Nickovic, and Volker Stolz
	Property Specification Patterns for Runtime Verification Domenico Bianculli, Borzoo Bonakdarpour, Bernd Finkbeiner, Gordon Pace, Giles Reger, Kristin Yvonne Rozier, Gerardo Schneider, Dmitriy Traytel, and Nobuko Yoshida
	Exploring the tradeoffs between Declarative and Operational Specification Adrian Francalanza, Wolfgang Ahrendt, Cindy Eisner, Zhiming Liu, and Gordon Pace
	Event Stream Processing Sylvain Hallé, Martin Leucker, Nicolas Rapin, César Sánchez, Torben Scheffel, and Hazem Torfah
	A shared challenge – NASA's Core Flight System Volker Stolz, Borzoo Bonakdarpour, Martin Leucker, Nicolas Rapin, Kristin Yvonne Rozier, Julien Signoles, Hazem Torfah, and Nobuko Yoshida
	Data Quantification in Temporal Specification Languages Dmitriy Traytel, Domenico Bianculli, and Giles Reger

	Participants

