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Abstract
Naïve computations with real numbers on computers may cause serious errors. In tradi-

tional numerical computation these errors are often neglected or, more seriously, not identified.
Two approaches attack this problem and investigate its background, Reliable Computing and
Computable Analysis.

Methods in Reliable Computing are essentially mathematical theorems, the assumptions of
which are verified on the computer. This verification is performed using the very efficient floating
point arithmetic. If the verification succeeds, the assertions are true and correct error bounds
have been computed; if not, a corresponding message is given. Thus the results are always
mathematically correct. A specific advantage of Reliable Computing is that imprecise data are
accepted; the challenge is to develop mathematical theorems the assumptions of which can be
verified effectively in floating-point and to produce narrow bounds for the solution.

Computable Analysis extends the traditional theory of computability on countable sets to
the real numbers and more general spaces by refining continuity to computability. Numerous
even basic and simple problems are not computable since they cannot be solved continuously.
In many cases computability can be refined to computational complexity which is the time or
space a Turing machine needs to compute a result with given precision. By treating precision as
a parameter, this goes far beyond the restrictions of double precision arithmetic used in Reliable
computing. For practical purposes, however, the asymptotic results from complexity theory must
be refined. Software libraries provide efficient implementations for exact real computations.

Both approaches are established theories with numerous important results. However, despite
of their obvious close relations these two areas are developing almost independently. For exploring
possibilities of closer contact we have invited experts from both areas to this seminar. For
improving the mutual understanding some tutorial-like talks have been included in the program.
As a result of the seminar it can be stated that interesting joint research is possible.
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1 Executive Summary

Norbert T. Müller
Siegfried M. Rump
Klaus Weihrauch
Martin Ziegler
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The seminar was a meeting between two groups of researchers working in the related areas
of reliable computing and of computational complexity on real numbers. While the first area
originates in numerical analysis, the second area goes back to the roots of computer science
and and computability.

Reliable computations aims to produce correct answers to numerical problems with
mathematical rigor. This includes to prove that the problem is solvable and to compute
mathematically correct error bounds for the solution. Reliable numerical computations solely
use floating-point arithmetic to take advantage of the tremendous speed. Naturally that poses
limits on the problems which can be solved, in particular the condition number. However,
in contrast to purely numerical methods, no false answers are possible: Either a true error
bound is computed or, a corresponding error message is given. There is a history of reliable
numerical computations. In the early days, interval arithmetic was often used in a rather
naive way. Still the computed results were correct, however, often wide or no bounds at all
were computed. Meanwhile it is well understood how to derive effective methods for reliable
numerical computations, avoiding wide bounds and pushing the set of solved problems to the
limit of that of purely numerical algorithms. A number of interesting and hard mathematical
problems have been solved using reliable numerical computations. This includes the famous
Kepler conjecture, the existence of mutually distinct solutions to certain partial differential
equations, and more. Needless to say that solving a mathematical problem requires rigorous
solutions of all particular problems.

Computable analysis is a branch of computability theory studying those functions on
the real numbers and related structures which can be computed by machines such as digital
computers. The increasing demand for reliable software in scientific computation and en-
gineering requires a sound and broad foundation not only of the analytical/ numerical but
also of the computational aspects of real number computation. The branch of computable
analysis based on the definition by Grzegorczyk and Lacombe of computable real functions
(TTE, “Type 2 Theory of Effectivity”) has turned out to be particularly useful for investig-
ating computability on uncountable sets. As a central concept computability appears as a
specialization of continuity. Meanwhile computability of numerous analytic problems has
been investigated (from basic analysis, functional analysis, ordinary and partial differential
equations, analytic functions, measure theory, dynamical systems etc.). All these examples
demonstrate the usefulness of the concept.

Once a problem has been shown computable, a natural next question asks for the
computational efficiency of such a solution. This is where real analysis meets (discrete)
complexity theory with notions of runtime and memory/space: asymptotically with respect
to n → ∞ for approximating the output up to absolute error 2−n. The famous Bailey-
Borwein-Plouffe method for instance permits to compute billions of digits of transcendental
within minutes; while Bloch’s constant, although proven computable, is still not known up to
error 2−5. In fact the distinction between polynomial and exponential time, in the discrete
realm gauged for instance by complexity classes P, NP, #P, and PSPACE, re-emerges in
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the real case: The bit-cost of computing the maximum of an arbitrary fixed smooth (i.e.
infinitely often differentiable) polynomial-time computable f : [0; 1]→ [0; 1] has been shown
to correspond to P-vs-NP; that of Riemann integration to #P; and that of solving an ordinary
differential equation to PSPACE. On analytic functions on the other hand these operations
map polynomial-time computable instances back to polynomial-time computable results.

For practical purposes and in the spirit of “algorithm engineering”, the asymptotic
results from complexity theory have to be refined by considering the efficiency of actual
implementations. Corresponding software libraries are usually called “exact real arithmetic”
(ERA) and implement real numbers in the sense of TTE. ERA implementations exist in
many languages, like C, C++ JAVA, Haskell or OCaml. Internally, ERA has to perform
operations on infinite data like {0, 1}ω. The user interface, however, hides the details and
offers operations and functions on “exact” real numbers. In consequence, users do not need
to care about aspects like rounding or truncation errors or the specification of precisions.
Instead, they can concentrate on the mathematical part of the problem under consideration.
As computable real functions have to be continuous, it is impossible to implement some
widely used real functions (like testing on equality). In consequence, ERA cannot simply
copy the double precision interface one-to-one, but needs to go its own ways. Additionally,
for the reason of efficiency the representations used in TTE have to be carefully revised. The
resulting speed is comparable to the use of multiple precision floating point numbers, but
now without any need for manual precision control.
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3 Overview of Talks

3.1 Reliable Visual Analytics within a Verification and Validation
Management

Ekaterina Auer and Wolfram Luther

License Creative Commons BY 3.0 Unported license
© Ekaterina Auer and Wolfram Luther

A recently described four tier verification and validation management (VVM) defines re-
quirements for categorization and classification of processes as a result of precise assessment
procedures and addresses recommending techniques, user interaction and collaboration via
adequate human machine interfaces. Huge data and program code require new visual analysis
methods. Reliable visual analytics is paired with an assessment of (meta)data and code
quality, adequate data types and methods to propagate and bound uncertainty. In our
talk, we present an ontology-based architecture with a query engine and modern human
machine interaction and requirements from the VVM for various use cases: GPS sensing and
localization, spatial decision making, risk communication and perception, analysis of steel
samples using SILENOS©, virtual museums and labs toolbox ViMEDEAS, biomechanics:
e.g., femur prosthesis (PROREOP) as well as modeling and implementation of a microscopic
traffic simulation (OLSIMv4).

References
1 E. Auer, W. Luther, Numerical Verification Assessment in Computational Biomechanics in:

Proc. of Dagstuhl Seminar 08021: Numerical Validation in Current Hardware Architectures,
Lecture Notes in Computer Science 5492. Springer (2009) 145–160

2 B. Weyers, W. Luther, Risk Communication and Perception in Low- and High-Immersion
Virtual Environments, APSSRA6, 28-30 May 2016, Shanghai, China, H.W. Huang, J. Li,
J. Zhang & J.B. Chen (editors) (2016)

3 G. Rebner, D. Sacher, B. Weyers, W. Luther, Verified stochastic methods in geographic
information system applications with uncertainty, Structural Safety 52 (2015) 244–259

4 D. Sacher: A generative approach to virtual museums using a new metadata format. A
curators’, visitors’ and software engineers’ perspective. Logos, Berlin (2017) ISBN 978-3-
8325-4627-4, 288p.

5 M. Thurau, Chr. Buck, and W. Luther, IPFViewer: Incremental, approximate analysis
of steel samples, in Proceedings of SIGRAD 2014, Linköping University Electronic Press
(2014) 1–8

6 Publications and projects SCG: http://www.scg.inf.uni-due.de/

3.2 Orbital stability investigations for travelling waves in a nonlinearly
supported beam

M. Plum, B. Breuer, J. Horak, K. Nagatou, and P. J. McKenna
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For a nonlinear beam equation on the whole real line with exponential nonlinearity, we prove
existence of at least 36 travelling wave solutions for the specific wave speed c=1.3. Our
proof makes heavy use of computer assistance: starting from numerical approximations, we
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use a fixed point argument to prove existence of solutions “close to” the approximate ones.
Moreover we investigate the orbital stability of these solutions via computation of their Morse
indices, using classical theoretical results by Grillakis, Shatah, and Strauss. Also for these
stability investigations we make use of both analytical and computer-assisted techniques.

3.3 Command-like Expressions for Real Infinite-precision Calculations
Andrej Bauer (University of Ljubljana, SI), Sewon Park (KAIST – Daejeon, KR), and
Simpson, Alex (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Andrej Bauer, Sewon Park, and Simpson, Alex (University of Ljubljana, SI)

We present an idealized programming language, Clerical, for exact real-number computation.
Clerical is an imperative language with conditional statements, while loops and local
mutable variables. Its primitive datatypes are the Booleans, the integers and the reals.
Basic arithmetical operations and comparison tests are provided. As is usual and necessary,
comparison operators on reals may be non-terminating.

Clerical supports Dijkstra’s guarded non-deterministic choice

case b1 ⇒ c1 | b2 ⇒ c2 end

The intended meaning is that c1 may execute if b1 is true, and c2 may execute if b2 is true,
and one of the branches will execute as long as b1 or b2 is true. When b1 and b2 hold, either
branch may execute, which leads to multivalued computations that may return one of several
possible results. The case construct is used to circumvent non-decidability of < on the reals.
In a typical application we perform an approximate test x < y with precision ε by running

case x < y + ε⇒ c1 | y < x+ ε⇒ c2 end.

One of the tests will always succeed and the corresponding branch will be executed. When
both tests succeed, Clerical may choose either branch.

In Clerical real numbers are constructed with a limit constructor

lim(n : int, e(n))

where e(n) is real-valued.
The result is defined to be the limit of the sequence e(0), e(1), e(2), . . ., assuming the sequence
converges with a required rate of convergence for all possible values of the terms e(n). For
the limit operator to be useful, we must allow e(n) to be arbitrarily complex code. However,
in order to make sense of the convergence of the sequence, e(n) should be free of side-effects.
We are led to the idea of a command-like expression, a value-returning command that may
modify only its own local state.

The value of a Clerical program is a non-empty set of possible values, including non-
termination ⊥. Each datatype is interpreted naively: the booleans take values from the set
{false, true}, the integers from Z, and the reals from R. In particular, we need no domain
theory or space representations, a familiar set-theoretic model does the job. In a related talk
we present Hoare-style proof rules for deriving correctness of Clerical programs. The rules
are sound with respect to the set-theoretic semantics.

We will showcase an implementation of Clerical that executes programs in the style
of Norbert Müller’s iRRAM. It approximates real numbers with intervals, using interval
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arithmetic. When the intervals get too inaccurate for the comparison tests to succeed, the
entire computation is aborted and restarted anew with better initial precision. Such an
execution strategy is correct with respect to the semantics of programs in the sense that is
always computes one of the possible values of the program.

3.4 Bounds for eigenvalues of an eigenvalue problem with non-smooth
coefficients

Henning Behnke (TU Clausthal, DE)

License Creative Commons BY 3.0 Unported license
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In the design of integrated optical chips an eigenvalue problem with piecewise continuous
functions arises. Typical features of the technological problem are the possible occurence
of eigenvalue clusters and the necessity of quite stringent relative error tolerances for the
eigenvalues. For the computation of bounds we use finite elements based on the Rayleigh-Ritz
and Temple-Lehmann-Goerisch methods for upper and lower eigenvalue bounds, respectively.
Rounding errors are controlled with interval arithmetic.

3.5 Computing positive invariant sets with intervals
Benoît Zerr, Luc Jaulin, and Thomas Le Mézo

License Creative Commons BY 3.0 Unported license
© Benoît Zerr, Luc Jaulin, and Thomas Le Mézo

Main reference Thomas Le Mezo, Luc Jaulin, Benoît Zerr: “An Interval Approach to Compute Invariant Sets”,
IEEE Trans. Automat. Contr., Vol. 62(8), pp. 4236–4242, 2017.

URL http://dx.doi.org/10.1109/TAC.2017.2685241

Given a set X, and a dynamical deterministic system S, the largest invariant set inside
X is the set of all x0 such that all trajectories going through x0 stay inside S for all time
instant t. In this presentation, I will show how interval methods can be used to compute
an inner and an outer characterization of an invariant set. The procedure that will be
presented is fast, guaranteed and does not require any interval integration of the dynamics.
The main idea is to use the new notion of maze, which is a composition of graphs, pavings of
boxes and polygons. The set of mazes forms a lattice with respect to the inclusion so that
contractor-based methods could be used.

3.6 On the Taylor model approach for solving ODEs
Florian Bünger (TU Hamburg-Harburg, DE)

License Creative Commons BY 3.0 Unported license
© Florian Bünger

Taylor models have been used successfully to calculate verified inclusions of the solutions of
initial value problems for ordinary differential equations (ODEs).

Especially Berz, Makino, and their group focused on that and invented several accompa-
nying methods like “shrink wrapping”, “blunting”, and “preconditioning”.
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We give a short description of Taylor models, their arithmetic, the algorithm for solving
ODEs and the aforementioned accompanying methods.

3.7 Uncertainty Quantification: Probabilistic Forecasts of Energy
Demand

George F. Corliss (Marquette University – Milwaukee, US)

License Creative Commons BY 3.0 Unported license
© George F. Corliss

Joint work of Mohammad Saber and Richard Povinelli
Main reference Mohammad Saber: “Quantifying Forecast Uncertainty in the Energy Domain”, Ph.D. Dissertation,

Department of Electrical and Computer Engineering, Marquette University, Milwaukee, Wisc.,
2017.

URL http://epublications.marquette.edu/dissertations_mu/746/

We forecast daily natural gas demand for utilities at time horizons up to a week. Intervals
could capture 100% confidence intervals, but our customers prefer a cumulative density
distribution (CDF) to capture a richer expression of uncertainty. The CDF f(x) expresses the
probability that the actual demand d will be less than or equal to amount x. Our preferred
probabilistic forecasting engine uses historical point-valued forecasts from a linear regression
or artificial neural network model and bins empirical residuals, e.g., by temperature. In each
bin, a Johnson transformation maps the empirical residuals to a (nearly) normal distribution.
To generate a probabilistic forecast, we generate a point forecast, which we use to mean-shift
the normal distribution appropriate to the forecast temperature. We assess the quality of
our forecasts using Saber’s Graphical Calibration Measure: If we make probabilistic forecasts
for a year, we have 365 forecasts P (d <= xp) = p, for example, p = 0.95. If our forecasting
engine is good, we should be right 95% of the time and wrong 5% of the time.

3.8 Nonlinear Symbolic Transformations for Simplifying Functions –
Applied for Interval Based Global Optimization

Tibor Csendes (University of Szeged, HU) and Elvira Dobjánné Antal

License Creative Commons BY 3.0 Unported license
© Tibor Csendes and Elvira Dobjánné Antal

Main reference Elvira Antal, Tibor Csendes: “Nonlinear Symbolic Transformations for Simplifying Optimization
Problems”, Acta Cybern., Vol. 22(4), pp. 715–733, 2016.

URL http://dx.doi.org/10.14232/actacyb.22.4.2016.1

For interval arithmetic based reliable computation the expression of the function to be
optimized can be critical. We have an automatic algorithm based on symbolic calculation to
simplify nonlinear functions. The talk will give detailed results on the effect of this presolving
technique on the efficiency of an interval arithmetic based branch-and-bound algorithm.
Although we still have a long way to go, the first numbers are encouraging [1].

References
1 Tibor Csendes and Elvira Dobjánné Antal: Nemlineáris szimbolikus transzformációk optim-

alizálási feladatokra (In Hungarian: Nonlinear symbolic transformations for optimization
problems). Szigma 48(2017) 33-46

17481

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://epublications.marquette.edu/dissertations_mu/746/
http://epublications.marquette.edu/dissertations_mu/746/
http://epublications.marquette.edu/dissertations_mu/746/
http://epublications.marquette.edu/dissertations_mu/746/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.14232/actacyb.22.4.2016.1
http://dx.doi.org/10.14232/actacyb.22.4.2016.1
http://dx.doi.org/10.14232/actacyb.22.4.2016.1


152 17481 – Reliable Computation and Complexity on the Reals

3.9 Daisy – a framework for sound accuracy analysis and optimization
of finite-precision programs

Eva Darulova (MPI-SWS – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Main reference Daisy – Framework for Analysis and Optimization of Numerical Programs (Tool Paper), TACAS
2018 (to appear)

Floating-point or fixed-point computations are an integral part of many embedded and
scientific computing applications, as are the roundoff errors they introduce. They expose
an interesting tradeoff between efficiency and accuracy: the more precision we choose, the
closer the results will be to the ideal real arithmetic, but the more costly the computation
becomes. Unfortunately, the unintuitive and complex nature of finite-precision arithmetic
makes manual op- timization infeasible such that automated tool support is indispensable.
This talk presents an overview of Daisy, a framework for sound accuracy analysis and
optimization of finite-precision programs. We will provide a high-level view of its main
features: roundoff error analysis as well as rewriting and mixed-precision optimization.

3.10 Computability of geometric Lorenz attractors
Daniel Graça (University of Algarve, PT)

License Creative Commons BY 3.0 Unported license
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Joint work of Graça, Daniel; Rojas, Cristobal; Zhong, Ning
Main reference D. S. Graça, C. Rojas, and N. Zhong: “Computing geometric Lorenz attractors with arbitrary

precision”, Trans. Amer. Math. Soc. 370, pp. 2955–2970, 2018.
URL https://doi.org/10.1090/tran/7228

In many applications, ranging from biology to physics, one is interested in knowing about
the long term behavior of a given system. However, many of those systems have complex
dynamics, making their analysis quite difficult through the exclusive use of analytical methods.
With the introduction of high speed and affordable computers, a common approach is to use
numerical simulations to obtain new information about a system under study. This numerical
approach led to new important insights. For example, evidence that “strange attractors”
like the Lorenz attractor can occur came from numerical experiments. However, it is also
commonplace to use floating point arithmetic in those simulations, where real numbers are
substituted by approximations having fixed finite precision. This is a source of rounding and
truncation errors which, especially in the case of chaotic systems like the Lorenz attractor,
can be greatly amplified along time. Therefore the accuracy of the results obtained in this
manner can be put into question. In response to one of the 18 unsolved problems that the
Fields medalist S. Smale suggested for the 21st century, W. Tucker proved that the Lorenz
attractor exists, using a combination of normal form theory and rigorous numerics. To reach
that conclusion, it is shown that the Lorenz system behaves like a geometric Lorenz model.
In this talk we will digress over these results and also show that geometric Lorenz attractors
are computable.
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3.11 Interval computations with compensated algorithms
Stef Graillat (UPMC – Paris, FR)

License Creative Commons BY 3.0 Unported license
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In this talk, we will present some resultats on interval computations with compensated
algorithms. Compensated algorithms consist in computing the rounding errors of individual
operations and then adding them later on to the computed result. This makes it possible to
increase the accuracy of the computed result efficiently. Computing the rounding error of
an individual operation is possible through the use of a so-called error-free transformation
(EFT). The EFT need a rounding to the nearest to be exact. In this talk, we will show
that EFT are still robust with directed rounding and and that they can be used to perform
interval computations. This is a joint work with Fabienne Jézéquel.

3.12 On the Computational Complexity of the Range Computation
Problem

Peter Hertling (Universität der Bundeswehr – München, DE)

License Creative Commons BY 3.0 Unported license
© Peter Hertling

The following problem is one of the basic problems of interval computations: given a function
f(x1, ..., xn) of n real variables, given n intervals, and given some desired output precision,
compute the range of f over the box of these intervals at least with the desired precision.
Gaganov (1981, 1985) considered the case where the input function f is a polynomial given
by its coefficients and showed that this problem is at least as hard as any NP-problem.
Kreinovich, Lakeyev, Rohn, and Kahl (1998) analysed the computational complexity of
many further variants of this problem. First we show that the general problem is not harder
than NP-problems. Then we consider some variants where a sequence of polynomials and a
sequence of interval boxes are fixed and show that their complexity is closely connected to
some other well-known open questions from structural complexity theory.

3.13 Formal Verification of a Rigorous ODE Solver
Fabian Immler (TU München, DE)

License Creative Commons BY 3.0 Unported license
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Main reference Fabian Immler: “A verified ODE solver and the Lorenz attractor”, Journal of Automated
Reasoning, Springer, 2018.

URL https://doi.org/10.1007/s10817-017-9448-y

This presents a formalization of ordinary differential equations (ODEs) and the verification
of rigorous (with guaranteed error bounds) numerical algorithms in the interactive theorem
prover Isabelle/HOL. The formalization comprises flow and Poincare map of dynamical
systems. The verified algorithms are based on Runge-Kutta methods and affine arithmetic.
They certify numerical bounds for the Lorenz attractor and thereby lift the numerical part
of Tucker’s proof of Smale’s 14th problem onto a formal foundation.
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3.14 Towards certified exact real computation
Sunyoung Kim (Ewha Womans University, KR)

License Creative Commons BY 3.0 Unported license
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When we use computers to do computing with real numbers, it is likely that we cannot
guarantee the correctness of the results. In this talk, we give an overview of our recent
project about certified exact real arithmetic. The main goal of our project is to develop and
extend verified libraries for exact real arithmetic.

3.15 Functional exact real computation, towards verification of total
correctness

Michal Konecny (Aston University – Birmingham, GB)

License Creative Commons BY 3.0 Unported license
© Michal Konecny

I have reported on the status of my attempts to develop formally verified numerical programs,
taking advantage of the (relative) simplicity of the semantics of exact real computation and
functional programming. In my implementation, I use a cut-down version of a functional
version of the CIDR language which is currently being developed jointly with Brausse, Collins,
Mueller, Neumann, Park and Ziegler in the CID project which is also similar to the Clerical
language being developed by Bauer, Park and Simpson and the ERA language used in (Lee
et al 2017). The programming language is deeply embedded in Isabelle and is given formal
operational and non-deterministic denotations semantics. As the semantics works with a
given resource limit, it is possible to formally specify program termination. The approach has
been validated by formally verifying in Isabelle the functional correctness and termination of
a program that computes the square root by Newton iteration.
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3.16 Computable Numbers, Computable Sets, and Computable
Functions and How It Is All Related to Interval Computations

Vladik Kreinovich (University of Texas – El Paso, US)

License Creative Commons BY 3.0 Unported license
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From the physical viewpoint, real numbers x describe values of different quantities. We
get values of real numbers by measurements. Measurements are never 100% accurate, so
after a measurement, we get an approximate value rk of x. In principle, we can measure x
with higher and higher accuracy. So, from the computational viewpoint, a real number is a
sequence of rational numbers rk for which, e.g., |x− rk| ≤ 2−k. By an algorithm processing
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real numbers, we mean an algorithm using rk as an “oracle” (subroutine). This is how
computations with real numbers are defined in computable analysis.

Once we know the measurement result x̃ and the upper bound ∆ on the measurement error
∆x def= x̃− x, we can conclude that the actual value x belongs to the interval [x̃−∆, x̃+ ∆].
In interval analysis, this is all we know: we performed measurements (or estimates), we get
intervals, and we want to extract as much information as possible from these results. In
particular, we want to know what can we conclude about y = f(x1, . . . , xn), where f is a
known algorithm.

In computable (constructive) analysis, we take into account that eventually, we will be
able to measure each xi with higher and higher accuracy. In other words, for each quantity,
instead of a single interval, we have a sequence of narrower and narrower intervals, a sequence
that eventually converging to the actual value. From this viewpoint, Interval analysis is
applied constructive analysis (Yuri Matiyasevich, of 10th Hilbert problem fame).

In this talk, we describe, from this viewpoint, what is a computable set, what is a
computable function, and give examples of interval-related positive and negative results of
computable analysis.

3.17 Need to Combine Interval and Probabilistic Uncertainty: What
Needs to Be Computed, What Can Be Computed, What Can Be
Feasibly Computed, and How Physics Can Help

Vladik Kreinovich (University of Texas – El Paso, US)

License Creative Commons BY 3.0 Unported license
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Need to Combine Interval and Probabilistic Uncertainty: What Needs to Be Computed,
What Can Be Computed, What Can Be Feasibly Computed, and How Physics Can Help

In many practical situations, the quantity of interest y is difficult to measure directly. In
such situations, to estimate y, we measure easier-to-measure quantities x1, . . . , xn which are
related to y by a known relation y = f(x1, . . . , xn), and we use the results X1, . . . , Xn of
these measurement to estimatey as Y = f(X1, . . . , Xn). How accurate is this estimate?

Traditional engineering approach assumes that we know the probability distributions of
measurement errors Xi − xi, however, in practice, we often only have partial information
about these distributions. In some cases, we only know the upper bounds Di; in such cases,
the only thing we know about the actual value xi is that it is somewhere in the interval
[Xi −Di, Xi +Di]. Interval computation estimates the range of possible values of y under
such interval uncertainty.

In other situations, in addition to the intervals, we also have partial information about
the probabilities. In this talk, we describe how to solve this problem in the linearized case,
what is computable and what is feasibly computable in the general case, and, somewhat
surprisingly, how physics ideas – that initial conditions are not abnormal, that every theory
is only approximate – can help with the corresponding computations.
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3.18 An Approach to Programming Configurable Computers for
Numeric Applications

Fritz Mayer-Lindenberg (TU Hamburg-Harburg, DE)
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While conventional programming languages deal with a few types of numbers only, typ-
ically the ones implemented on their standard target processors, configurable computers,
in particular FPGA based ones, can implement a large variety of number codes to make
resource-aware application specific selections of the types to be used, and add an additional
layer of programming this way. This motivated the design of a new programming language,
besides the general need for simple programming tools for FPGA based systems. First, the
required circuit design for the processors to be configured and for an infrastructure linking
them to each other and to the memory resources is taken out of the task of programming nu-
meric algorithms by building on a library of precompiled configurations. For the algorithmic
programming, dealing with the various number codes as separate predefined types would
result in a reduced level of abstraction. Instead, a single, abstract type of number is used as
proposed in [1], at the same time rising abstraction to the level of mathematical algorithms
on real numbers and clearly distinguishing numbers from their codes. The various number
codes are represented by individual operations only, namely the corresponding roundings.
By predefining tuples of numbers and operations on them, non-standard tuple codes such
as block floating point codes can be supported as well to further reduce circuit complexity
and memory requirements [2]. The language then proceeds to structures for the required
control of parallel processing on heterogeneous sets of rather simple compute nodes for the
different number codes [3]. In particular, it includes statements to identify the processor
networks configured in an FPGA with sufficient detail to support native code generation for
each individual processor, to select library components, and to simulate the operation of an
entire parallel target.
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3.19 On implementing TTE
Norbert T. Müller (Universität Trier, DE)
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Type-2-Theory of Effectivity (TTE) is the accepted model for computability and compu-
tational complexity on real numbers. One of its many advantages is that there do exist
implementations being consistent with this theory.

The talk presents main common aspects of these implementations with several examples
(like dynamical systems and ODE solving) and an outlook on future directions.
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3.20 On the numerical norm estimation of the inverse operator in
Hilbert space

Mitsuhiro T. Nakao (Waseda University – Tokyo, JP)
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Joint work of Mitsuhiro T. Nakao, Yoshitaka Watanabe, Takehiko Kinoshita

We present some relations between the exact norm for the inverse operator in Hilbert space
and its numerical estimation by some approximate methods. In order to verify numerically
an exact solution of the nonlinear operator equations, particularly for partial differential
equations, around some neighborhood of the approximate solution, it is important to calculate
some approximate norm for an inverse of linearized operators. In this talk we clarify the
conditions so that such approximate estimates by the finite element methods converge to
the exact norm. This result enables us the appropriateness of the estimation by concerned
numerical methods.

References
1 Y. Watanabe, T. Kinoshita, M.T. Nakao, A posteriori estimates of inverse operators for

boundary value problems in linear elliptic partial differential equations, Mathematics of
Computation, 82 (2013), 1543-1557. DOI:10.1090/S0025-5718-2013-02676-2

2 T. Kinoshita, Y. Watanabe, M.T. Nakao, Some remarks on the rigorous estimation of
inverse linear elliptic operators, SCAN 2014, LNCS 9553, the proceedings of the confer-
ence ’16th GAMM-IMACS International Symposium on Scientifc Computing, Computer
Arithmetic and Validated Numerics’ (2016), 225-235. DOI: 10.1007/978-3-319-31769-4-18

3.21 Parametrised complexity for the naive Cauchy representation
Eike Neumann (Aston University – Birmingham, GB) and Florian Steinberg (TU Darmstadt,
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The aim of this work is to provide a rigorous complexity framework for “non-rigorous”
numerical algorithms, which come without explicit error bounds or convergence rates.

The standard representation of real numbers used in computable analysis, where a real
number is encoded by a fast converging Cauchy sequence of dyadic rational numbers, leads
to a very robust and realistic notion of computability and complexity on the reals which is
closely related to rigorous numerical analysis.

In order to model non-rigorous computation one could attempt to simply drop the
requirement of fast convergence. The resulting representation - the so-called naive Cauchy
representation - is however well-known to be very ill-behaved computationally.

We show that the space of naive Cauchy reals can be enriched with a natural parameter,
which essentially encodes a rate of convergence, to obtain a reasonable computability and
complexity structure.

Although the resulting parametrised space of naive Cauchy reals is not even topologically
equivalent to the space of real numbers with the standard representation, it has the same
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(polytime) computable points. Moreover, a real function is (polytime) computable with
respect to the parametrised naive Cauchy representation if and only if it is (polytime)
computable in the usual sense.

We further show that the space of continuous real functions on the compact unit interval
admits a minimal parametrised representation such that the evaluation functional

eval : C([0, 1])× [0, 1]→ R

becomes polytime computable when [0, 1] and R are given the parametrised naive Cauchy
representation.

3.22 Test Matrices for Numerical Linear Algebra
Katsuhisa Ozaki (Shibaura Institute of Technology – Saitama, JP)
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Main reference Katsuhisa Ozaki, Takeshi Ogita: “Generation of Linear Systems with Specified Solutions for
Numerical Experiments”, Reliable Computing, Vol. 25, pp. 148–167, 2017.

This talk concerns test matrices for numerical linear algebra, especially, linear systems and
eigenvalue problems. If exact solution is known in advance, it is very useful for checking the
accuracy and stability of numerical algorithms. Residual is often used for the check of the
accuracy of numerical results. However, numerical solutions with small residual and big error
can be obtained. We propose methods that produce problems with the exact solution based
on error-free transformation of floating-point arithmetic. For linear systems, our methods
generate a matrix, a solution and a right-hand side vector whose all elements are representable
in floating-point numbers. We showed the exact stepwise errors for the BiCGSTAB method
for several sparse matrices. For eigenvalue problems, our methods produce a matrix and its
specified eigenvalues using the Hadamard matrix.

3.23 A tutorial on reliable numerical computation
Paul Zimmermann

License Creative Commons BY 3.0 Unported license
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This tutorial presents different software tools to perform reliable numerical computations:
machine double precision using the IEEE 754 standard, fixed-precision interval arithmetic,
arbitrary precision floating-point or interval arithmetic using MPFR, MPFI, or the Arb
library. All these kinds of arithmetic can be used within the SageMath computer algebra
system.
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3.24 Computational complexity of solving polynomial differential
equations over unbounded domains

Amaury Pouly (MPI-SWS – Saarbrücken, DE) and Daniel Graça (University of Algarve,
PT)
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In this abstract we present a rigorous numerical algorithm which solves initial-value problems
defined with polynomial differential equations (i.e. initial-value problems of the type y′ =
p(t, y), y(t0) = y0, where p is a vector of polynomials) for any value of t. The inputs of the
algorithm are the data defining the initial-value problem, the time T at which we want to
compute the solution of the IVP, and the maximum allowable error epsilon>0. Using these
inputs, the algorithm will output a value ỹT such that |ỹT − y(T )|.

3.25 Numerical (arte-)facts and reliable computing
Siegfried M. Rump (TU Hamburg-Harburg, DE)
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We show examples of linear systems where the computed approximation has no correct digit,
but nevertheless the residual (computed in floating-point) is exactly equal to zero. Similarly,
the true inverse A−1 rounded to the nearest floating-point matrix R := fl(A−1) may produce
a residual I −RA of norm larger than 1, but an approximate inverse R̃ = inv(A) computed
by Matlab satisfies ‖I − R̃A‖ < 1. Despite, the entries of R̃ are wrong by more than a
factor 2.

A remedy to incorrect approximations are verification methods. If the precision is not
sufficient to compute correct error bounds for a solution, a corresponding message is given.
Wrong results are not possible.

The power of verification methods is demonstrated by problems from quantum chemistry.
Here floating-point algorithms fail completely, where verification methods provide tight
inclusions of the solution. This is for problem sizes up to 30 million unknowns with tens of
thousands of constraints.

3.26 Co-Polish spaces in Complexity Theory
Matthias Schröder (Universität der Bundeswehr – München, DE)
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Co-Polish spaces play an important role in Type Two Complexity Theory. A Co-Polish space
is defined to be a sequential topological space that is regular and for which the compact-open
topology on the function space C(X, IR) has a countable base. Co-Polish spaces turn out to
be exactly those Hausdorff qcb-spaces X that admit a Simple Complexity Theory. Simple
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Complexity Theory means that time complexity for functions on X can be measured in the
desired output precision plus a *discrete* parameter on the input. For general spaces X, for
example for non-locally-compact metric spaces X, an indiscrete parameter on the input is
necessary.

3.27 Bit complexity of Computing Solutions for Symmetric Hyperbolic
Systems of PDEs with Guaranteed Precision

Svetlana Selivanova
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The algorithms used in mathematics-oriented software can be divided into two big classes:
symbolic algorithms which aim to find precise solutions, and approximate algorithms which
aim to find “good enough” approximations to precise solutions. The symbolic algorithms are
implemented e.g. in computer algebra systems while the approximate algorithms — in nu-
merical mathematics packages. The both classes of algorithms are widely used in applications
and in mathematical research. The symbolic algorithms correspond well to computations
on discrete structures (with mathematical foundations in the classical computability and
complexity theory) while the approximate algorithms — to computations on continuous
structures (with mathematical foundations in the field of computability and complexity in
analysis evolving under the slogan “Exact real computation”).

An important idea relating the both classes of algorithms is to look for approximate
solutions to a numerical problem with “guaranteed precision”. The bit complexity of an
algorithm is fundamental because it estimates the amount of computational resources needed
to implement the algorithm on a computing device. Here we investigate the bit complexity of
finding guaranteed precision solutions for Cauchy and boundary-value problems for symmetric
hyperbolic systems of PDEs (see e.g. [1]) Such systems can be used to describe a wide
variety of physical processes like those considered in the theories of elasticity, acoustics,
electromagnetism etc. Accordingly, many people from theoretical and numerical mathematics
worked on the existence and uniqueness theorems as well as on numerical methods of
computing solution operators for problems related to such systems (the explicit solution
formulas exist only in some simplest particular cases).

In [2] we developed an approach to the study of computability of the Cauchy and dissipative
boundary-value problems for such systems based on finite-dimensional approximations (the so
called difference schemes widely used in numerical analysis) and established the computability
of solution operators in the rigorous sense of the TTE approach to computable analysis [3].
The main obstacle in proving the computable dependence of solutions on the input matrices
is the fact that all known stable difference schemes for finding the approximate solutions
use eigenvectors of some matrices and matrix pencils but these eigenvectors are known to
be non-computable [4]. To overcome the obstacle, we considered in [2] restrictions of the
solution operators to computably presentable real closed number fields and have shown that
such restricted solution operators are computable. This fact together with close relationships
of such fields to the field of computable reals (also established in [2]) imply that the solution
operators are computable for any fixed computable input matrices.

We develop the approach from [2] to establish some reasonable upper bounds for some
guaranteed-precision problems related to symmetric hyperbolic systems. A version of such a
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problem asks, given a fixed number of space variables, given algebraic real input matrices,
rational polynomials as initial-value functions, and a precision p, to find an algebraic grid
function such that the difference between the poly-linear interpolation of grid function and
the precise solution is at most p. We establish the EXPTIME upper complexity bound
for such problems and show that the estimate becomes polynomial under some additional
restrictions often used in the practice of numerical methods. To our knowledge, these are the
first such bounds in the literature.

Our approach makes a heavy use of some known and our own algorithms of com-
puter algebra (exact computations with integers, rationals, algebraic reals and polynomials,
polynomial-time computability of spectral decomposition of symmetric matrices and matrix
pencils in the field of algebraic reals), together with some algorithms from numerical mathem-
atics and computable analysis used in [2]. Altogether, our proofs demonstrate a fruitful mix
of methods from symbolic and numerical computation. Although our methods do not seem
to yield practically feasible algorithms for guaranteed precision, we hope that investigations
in this direction are fruitful for both theoretical research and applications. In particular, on
the implementation level it seems useful and rewarding to enhance the existing systems of
“exact real computations” (like iRRAM) by packages based of highly developed algorithms of
computer algebra. We are not aware of the existence of such “hybrid” systems built under
the slogan of “guaranteed precision numerical computations”.
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1 Godunov S.K., ed.: Numerical Solution of Higher-dimensional Problems of Gas Dynamics

(in Russian). Nauka, Moscow, 1976.
2 Selivanova S., Selivanov V.: Computing Solution Operators of Boundary-value Problems

for Some Linear Hyperbolic Systems of PDEs. Logical Methods in Computer Science, 13
(4:13) 2017, pp. 1–31. Earlier version on arXiv:1305.2494 (2013).

3 Weihrauch K.: Computable Analysis. Berlin, Springer, 2000.
4 Ziegler M., Brattka V.: A computable spectral theorem. Proc. CCA-2001, Lecture Notes
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3.28 Parametrised second-order complexity theory with applications to
the study of interval computation

Florian Steinberg (TU Darmstadt, DE) and Eike Neumann (Aston University – Birmingham,
GB)
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Main reference Eike Neumann, Florian Steinberg: “Parametrised second-order complexity theory with applications
to the study of interval computation”, CoRR, Vol. abs/1711.10530, 2017.

URL http://arxiv.org/abs/1711.10530

We extend the framework for complexity of operators in analysis devised by Kawamura and
Cook (2012) to allow for the treatment of a wider class of representations. The main novelty
is to endow represented spaces of interest with an additional function on names, called a
parameter, which measures the complexity of a given name. This parameter generalises
the size function which is usually used in second-order complexity theory and therefore
also central to the framework of Kawamura and Cook. The complexity of an algorithm
is measured in terms of its running time as a second-order function in the parameter, as
well as in terms of how much it increases the complexity of a given name, as measured
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by the parameters on the input and output side. As an application we develop a rigorous
computational complexity theory for interval computation. In the framework of Kawamura
and Cook the representation of real numbers based on nested interval enclosures does not
yield a reasonable complexity theory. In our new framework this representation is polytime
equivalent to the usual Cauchy representation based on dyadic rational approximation. By
contrast, the representation of continuous real functions based on interval enclosures is
strictly smaller in the polytime reducibility lattice than the usual representation, which
encodes a modulus of continuity. Furthermore, the function space representation based on
interval enclosures is optimal in the sense that it contains the minimal amount of information
amongst those representations which render evaluation polytime computable.

This talk was based on the arXiv paper https://arxiv.org/abs/1711.10530 and a followup
talk was given by Eike Neumann.

3.29 Verified computations for solutions to 1-dimensional advection
equations with variable coefficients

Akitoshi Takayasu (University of Tsukuba, JP)

License Creative Commons BY 3.0 Unported license
© Akitoshi Takayasu

In this talk, we provide a methodology of verified numerical computations for solutions to
1-dimensional advection equations with variable coefficients. The advection equation is typical
partial differential equations (PDE) of hyperbolic type. There are few results for verified
computations to initial-boundary value problem of hyperbolic PDEs. Our methodology is
based on the spectral method and semigroup theory. Numerical examples show that the
rigorous error estimate showing the well-posedness of the exact solution is given with high
accuracy and high speed.

3.30 Average case complexity for Hamiltonian dynamical systems
Holger Thies (University of Tokyo, JP), Akitoshi Kawamura (Kyushu University, JP), and
Martin Ziegler (KAIST – Daejeon, KR)

License Creative Commons BY 3.0 Unported license
© Holger Thies, Akitoshi Kawamura, and Martin Ziegler

Average case complexity in analysis was recently introduced by Schröder, Steinberg and
Ziegler. We study the complexity of Hamiltonian systems like the famous n-body problem
in this context. We use a simple parameterized worst-case complexity result for initial
value problems with analytic right-hand side and the fact that Hamiltonian systems are
volume preserving to relate the complexity of a system to the volume of singularities in phase
space. As an application we show that the planar circular restricted three-body problem is
computable in polynomial-time on average.
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3.31 Small divisors and normal forms
Warwick Tucker (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
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Joint work of Warwick Tucker, Zbigniew Galias

In this talk, we will discuss the computational challenges of computing trajectories of a
non-linear ODE in a region close to a fixed-point. By introducing a carefully selected close to
identity change of variables, we can bring the non-linear ODE into an “almost” linear system.
Determining the domain of existence for such a change of variables poses some interesting
computational challenges.

3.32 Soft Foundations for Geometric Computation
Chee K. Yap (New York University, US)

License Creative Commons BY 3.0 Unported license
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Joint work of 1. Roots (V. Sharma, A. Eigenwillig, M. Sagraloff, R. Becker, J. Xu) 2. Surfaces (M. Burr, S. Choi,
L. Lin, V. Sharma, G. Vegter) 3. Motion Planning (Y.-J. Chiang, C. Wang, J.-M. Lien, Z. Luo,
C.-H. Hsu) 4. Voronoi Diagrams (E. Papadopoulou, H. Bennett, V. Sharma, J.-M

URL http://cs.nyu.edu/ exact/

For over two decades, Exact Geometric Computation (EGC) has provided a paradigm in
Computational Geometry for the correct implementation of geometric algorithms. It is the
most successful approach to numerical nonrobustness issues, leading to software libraries and
practical algorithms. We review some reasons to extend this paradigm:

EGC algorithms may not be Turing computable (e.g., transcendental functions)
EGC may be too inefficient (e.g., shortest path problems)
EGC entails numerous/difficult algebraic analysis (e.g., Vor diagram of polyhedra)
Exact computation is inappropriate for the physical world (e.g., robot motion planning)

This talk describes a program to develop “soft” approaches for addressing these issues.
“Soft” refers to numerical, certified approaches that nevertheless provide some modified
notions of “hard” (topological/combinatorial) guarantees in the output. We illustrate these
ideas by work in four areas:

root isolation and clustering (ISSAC’09,’11,’12,’16, SNC’11, CiE’13, JSC’17)
isotopic approximation of curves and surfaces (ISSAC’08, SoCG’09, SPM’12, ICMS’14)
Voronoi diagrams (ISVD’13, SGP’16)
robot motion planning (SoCG’13, WAFR’14, FAW’15, WAFR’16)

Common themes in this list include: we replace the Real RAM model by one based on
numerical iteration on interval approximations. Algorithms are framed in the algorithmic
paradigm of subdivision. We introduce an input resolution parameter (epsilon) but use it in
novel “soft” ways. We design soft versions of classical hard geometric predicates in order to
construct effective and practical algorithms. Some consequences of such a computational
paradigm are:

scope of computational geometry is vastly broadened to non-linear non-algebraic problems.
unsolvable/hard problems in the Real RAM model becomes feasible
soft algorithms are implementable and practical
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One challenge is to revisit other classical problems of computational geometry with this view
point. Another is to produce complexity analysis of such algorithms. Successes in complexity
analysis for roots suggest that similar sharp “amortized” results can be obtained in higher
dimensions.
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3.33 On Formal Verification in Imperative Multivalued Programming
over Continuous Data Types

Martin Ziegler (KAIST – Daejeon, KR), Gyesik Lee, Norbert T. Müller (Universität Trier,
DE), Eike Neumann (Aston University – Birmingham, GB), Sewon Park (KAIST – Daejeon,
KR), and Norbert Preining

License Creative Commons BY 3.0 Unported license
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Main reference Norbert Th. Müller, Sewon Park, Norbert Preining, Martin Ziegler: “On Formal Verification in
Imperative Multivalued Programming over Continuous Data Types”, CoRR, Vol. abs/1608.05787,
2016.

URL http://arxiv.org/abs/1608.05787v2

Inspired and guided by the iRRAM C++ library (Müller 2001), we formally specify a
programming language for the paradigm of Exact Real Computation (ERC): reliably operating
on encapsulated continuous data types such as (not necessarily algebraic) real numbers -
imperatively and exactly (no rounding errors) with primitives computable in the sense of
Recursive Analysis including a necessarily modified multivalued (=non-functional) semantics
of tests. Three simple numerical problems demonstrate the elegance and convenience of
writing programs handling real (and not just, say rational or algebraic) numbers: integer
rounding, solving systems of linear equations, and continuous root finding. We establish
Turing-completeness over the reals: a partial function is computable (in the sense of Recursive
Analysis) iff it can be expressed in ERC. For rigorously specifying and arguing about such
computations in Mathematical Logic, we then propose a decidable first-order theory over two
sorts, integers and real numbers. We extend the rules of Hoare Logic to support the formal
derivation of correctness proofs in ERC; and we have them, including their real quantification,
verified in the Coq Proof Assistant.
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3.34 Tutorial on Computational Complexity in Analysis
Martin Ziegler (KAIST – Daejeon, KR) and Akitoshi Kawamura (Kyushu University, JP)

License Creative Commons BY 3.0 Unported license
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URL http://theoryofcomputation.asia/survey3.pdf

Computability Theory in Analysis explores the ultimate capabilities and limitations of
computing with real numbers, functions, and subsets. Complexity Theory in Analysis refines
these investigations with respect to efficiency. It complements the classical Complexity
Theory over discrete structures and adapts its generic goal to continuous data, based on
two pillars: (i) Design and rigorous analysis of algorithms for approximating the solution
up to guaranteed absolute error 1/2−n. The computational resources (runtime, memory)
thus incurred constitute upper bounds on the computational complexity inherent to the
problem; and (ii) establishing – preferably tight – lower bounds, that is, prove any algorithmic
solution to require that many resources: This exhibits the algorithm from (i) as optimal,
possibly subject to standard hypotheses such as P<>NP<>PSPACE<>EXP or by adapting
adversary arguments from Information-Based Complexity to the bit-cost model.
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