
Report from Dagstuhl Seminar 17502

Testing and Verification of Compilers
Edited by
Junjie Chen1, Alastair F. Donaldson2, Andreas Zeller3, and
Hongyu Zhang4

1 Peking University, CN, chenjunjie@pku.edu.cn
2 Imperial College London, GB, alastair.donaldson@imperial.ac.uk
3 Universität des Saarlandes, DE, zeller@cs.uni-saarland.de
4 University of Newcastle, AU, hongyujohn@gmail.com

Abstract
This report documents the Dagstuhl Seminar 17502 “Testing and Verification of Compilers” that
took place during December 10 to 13, 2017, which we provide as a resource for researchers who
are interested in understanding the state of the art and open problems in this field, and applying
them to this and other areas.

Seminar December 10–13, 2017 – http://www.dagstuhl.de/17502
1998 ACM Subject Classification D.2.4 Software/Program Verification, D.2.5 Testing and De-

bugging, D.3.4 Processors
Keywords and phrases code generation, compiler testing, compiler verification, program analysis,

program optimization
Digital Object Identifier 10.4230/DagRep.7.12.50
Edited in cooperation with Hugues Evrard and David R. MacIver

1 Executive Summary

David R. MacIver (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© David R. MacIver

This report documents the Dagstuhl Seminar 17502 “Testing and Verification of Compilers”.
Compilers underpin all software development, but bugs in them can be particularly hard

to notice if they result in “silent failure”, where a program appears to work but is subtly
miscompiled. Thus a compiled program may behave erroneously even when the source form
of it appears entirely correct.

Despite the common wisdom that “it is never the compiler’s fault”, bugs in compilers are
in fact relatively common, and finding them is a challenging and active area of research.

This seminar brought together researchers in that area with a broader group of researchers
and practitioners in software testing and verification, and in compiler development itself, to
share their experiences and discuss the open questions and challenges that the field presents.
The goal was to brainstorm new ideas for how to approach these challenges, and to help
foster longer-term collaborations between the participants.

The seminar involved a number of talks from participants about their particular areas
of work and research, followed by working groups where various specific challenges were
discussed. It then concluded with an open panel session on the challenges and concepts of
compiler testing and verification.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Testing and Verification of Compilers, Dagstuhl Reports, Vol. 7, Issue 12, pp. 50–65
Editors: Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17502
http://dx.doi.org/10.4230/DagRep.7.12.50
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang 51

This report presents the collection of abstracts associated with the participant presenta-
tions, followed by notes summarising each discussion session and the concluding panel, which
we provide as a resource for researchers who are interested in understanding the state of the
art and open problems in this field.

17502

52 17502 – Testing and Verification of Compilers

2 Table of Contents

Executive Summary
David R. MacIver . 50

Overview of Talks
How Google Tests Compilers
Edward E. Aftandilian . 54

Compiler testing for safety-critical applications
Marcel Beemster . 54

Learning to accelerate compiler testing
Junjie Chen . 54

A Generator of Highly Effective Fuzz Testers
Eric Eide . 55

Automated Testing of Graphics Shader Compilers
Hugues Evrard . 55

Introduction to Coccinelle
Julia Lawall . 56

Differential Testing of Interactive Debuggers
Daniel Lehmann . 56

CUDA Compiler Verification
Thibaut Lutz . 57

An Introduction to Software Verification with Whiley
David J. Pearce . 57

TreeFuzz: Learning Probabilistic Models of Input Data for Fuzz Testing
Michael Pradel . 58

A Few Stories about Compiler Bugs
John Regehr . 58

Automatic non-Functional Testing of Configurable Generators
Gerson Sunyé . 59

Learning to Synthesize Programs
Yingfei Xiong . 59

Debugging Debug Information
Francesco Zappa Nardelli . 60

Tutorial: Compiler Optimisations and Shared Memory Concurrency
Francesco Zappa Nardelli . 60

Fuzzing with Inferred Grammars
Andreas Zeller . 61

Working groups
Benchmarking Compiler Testing
Junjie Chen . 61

Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang 53

Beyond Compiler Testing
Michael Pradel . 61

Test-Case Reduction
David R. MacIver . 62

Program Generation
David R. MacIver . 63

Panel discussions
Challenges and Concepts of Compiler Testing and Verification
Yingfei Xiong . 63

Participants . 65

17502

54 17502 – Testing and Verification of Compilers

3 Overview of Talks

3.1 How Google Tests Compilers
Edward E. Aftandilian (Google Research - Mountain View, US)

License Creative Commons BY 3.0 Unported license
© Edward E. Aftandilian

Google has several compiler teams that are responsible for shipping new and updated
compilers to the rest of Google on a regular basis.

In this talk, I will discuss how Google’s compiler teams validate new and updated
compilers, what works well in this process, and where it could be improved.

3.2 Compiler testing for safety-critical applications
Marcel Beemster (Solid Sands - Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Marcel Beemster

Now that so much software is used to control our cars, we have to consider the “safety” of
the compilers that are used to generate the machine code from the sources. Processes exist
to ascertain so called “Functional Safety”. These are based on empirical findings over the
past 150 years.

With our SuperTest test suite for C and C++, we can make these processes work for
compilers as well, as we can demonstrate the connection between the language specification
and the test suite.

We also demonstrate a run-time failure of the formally proven CompCert compiler, thus
showing the need for testing alongside prove-techniques. As Knuth already wrote: “Beware
of bugs in the above code; I have only proved it correct, not tried it.”

3.3 Learning to accelerate compiler testing
Junjie Chen (Peking University, CN)

License Creative Commons BY 3.0 Unported license
© Junjie Chen

Main reference Junjie Chen, “Learning to Accelerate Compiler Testing”, in Proc. of the 40th Int’l Conf. on
Software Engineering (ICSE 2018), to appear.

It is well known that compilers are one of the most important software infrastructures.
Compiler testing is an effective and widely-used way to assure the quality of compilers.

While many compiler testing techniques have been proposed to effectively detect compiler
bugs, these techniques still suffer from the serious efficiency problem. This is because these
compiler testing techniques need to run a large number of randomly generated test programs
on the fly through automated test-generation tools (e.g., Csmith).

To accelerate compiler testing, it is desirable to schedule the execution order of the
generated test programs so that the test programs that are more likely to trigger compiler
bugs are executed earlier. Since different test programs tend to trigger the same compiler
bug, the ideal goal of accelerating compiler testing is to execute the test programs triggering

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Junjie Chen, ``Learning to Accelerate Compiler Testing'', in Proc. of the 40th Int'l Conf. on Software Engineering (ICSE 2018), to appear.
Junjie Chen, ``Learning to Accelerate Compiler Testing'', in Proc. of the 40th Int'l Conf. on Software Engineering (ICSE 2018), to appear.

Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang 55

different compiler bugs in the beginning. However, such perfect goal is hard to achieve, and
thus in this work, we design two steps to approach the ideal goal through learning, in order
to largely accelerate compiler testing.

References
1 Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie. Learning

to Prioritize Test Programs for Compiler Testing. In: Proceedings of the 39th International
Conference on Software Engineering (ICSE 2017), pages 700–711

2 Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, Bing Xie.
An Empirical Comparison of Compiler Testing Techniques. In: Proceedings of the 38th
International Conference on Software Engineering (ICSE 2016), pages 180–190

3 Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, Bing Xie.
Test Case Prioritization for Compilers: A Text-Vector based Approach. In: Proceedings of
the 9th International Conference on Software Testing, Verification and Validation (ICST
2016), pages 266–277

3.4 A Generator of Highly Effective Fuzz Testers
Eric Eide (University of Utah - Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Eric Eide

A fuzz tester, or “fuzzer,” is effective if it can continually create test cases that reveal defects
throughout the system under test. It is difficult to create effective fuzzers for programming
language compilers and interpreters because these systems have highly structured inputs.
Our goal is to reduce the time and human effort needed to implement effective fuzzers for
programming language implementations, and to this end, we are creating Xsmith, a new
generator of fuzz testers. Xsmith will generate language fuzzers from specifications, and
more importantly, it will inject sophisticated program-generation techniques into the fuzzers
it creates. In this talk I will summarize the current status of the Xsmith project. Ultimately,
Xsmith will be successful if it permits highly effective fuzz testers to be constructed with
significantly less ad hoc code, and thus significantly less effort, than if they had been
constructed from scratch.

3.5 Automated Testing of Graphics Shader Compilers
Hugues Evrard (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Hugues Evrard

We present an automated technique for finding defects in compilers for graphics shading
languages. A key challenge in compiler testing is the lack of an oracle that classifies an
output as correct or incorrect; this is particularly pertinent in graphics shader compilers
where the output is a rendered image that is typically under-specified. Our method builds
on recent successful techniques for compiler validation based on metamorphic testing, and
leverages existing high-value graphics shaders to create sets of transformed shaders that
should be semantically equivalent. Rendering mismatches are then indicative of shader

17502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56 17502 – Testing and Verification of Compilers

compilation bugs. Deviant shaders are automatically minimized to identify, in each case, a
minimal change to an original high-value shader that induces a shader compiler bug. We
have implemented the approach as a tool, GLFuzz, targeting the OpenGL shading language,
GLSL. Our experiments over a set of 17 GPU and driver configurations, spanning the main
7 GPU designers, have led to us finding and reporting more than 60 distinct bugs, covering
all tested configurations. As well as defective rendering, these issues identify security-critical
vulnerabilities that affect WebGL, including a significant remote information leak security
bug where a malicious web page can capture the contents of other browser tabs, and a bug
whereby visiting a malicious web page can lead to a “blue screen of death” under Windows
10. Our findings show that shader compiler defects are prevalent, and that metamorphic
testing provides an effective means for detecting them automatically.

3.6 Introduction to Coccinelle
Julia Lawall (INRIA - Paris, FR)

License Creative Commons BY 3.0 Unported license
© Julia Lawall

Main reference Yoann Padioleau, Julia L. Lawall, René Rydhof Hansen, Gilles Muller: “Documenting and
automating collateral evolutions in linux device drivers”, in Proc. of the 2008 EuroSys Conference,
Glasgow, Scotland, UK, April 1-4, 2008, pp. 247–260, ACM, 2008.

URL http://dx.doi.org/10.1145/1352592.1352618

Coccinelle is a program matching and transformation tool for C code. The guiding principle
behind Coccinelle is the use of a patch-like notation, ie fragments of source code annotation
with - to indicate code removal and + to indicate code addition, in order to express
transformation rules. Coccinelle was originally developed to automate evolutions in Linux
kernel code, and today has been used in over 6000 commits to the Linux kernel, by both the
Coccinelle research group and a wide range of Linux kernel developers. Coccinelle is also
used on other software, such as wine, qemu, and systemd. This talk gives an overview of
Coccinelle and its potential applicability to the maintenance of compiler code.

3.7 Differential Testing of Interactive Debuggers
Daniel Lehmann (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Daniel Lehmann

To understand, localize, and fix programming errors, developers often rely on interactive
debuggers. However, as debuggers are software, they may themselves have bugs, which can
make debugging unnecessarily hard or even cause developers to reason about bugs that
do not actually exist in their code. The problem of analyzing debuggers is fundamentally
different from the well-studied problem of testing compilers because debuggers are interactive
and because they lack a specification of expected behavior.

In this talk, we present an automated analysis technique for interactive debuggers. Our
approach, called DBDB, generates debugger actions to exercise the debugger and records
traces that summarize the debugger’s behavior. By comparing traces of multiple debuggers
with each other, we find diverging behavior that points to bugs and other noteworthy
differences.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/1352592.1352618
http://dx.doi.org/10.1145/1352592.1352618
http://dx.doi.org/10.1145/1352592.1352618
http://dx.doi.org/10.1145/1352592.1352618
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang 57

We evaluate DBDB on the JavaScript debuggers of Firefox and Chromium, finding 19
previously unreported bugs, six of which are already confirmed and fixed. Beyond finding
bugs, our work is a first step toward agreeing on and specifying the expected behavior of
interactive debuggers.

3.8 CUDA Compiler Verification
Thibaut Lutz (NVIDIA - Redmond, US)

License Creative Commons BY 3.0 Unported license
© Thibaut Lutz

CUDA is a widely used programming language for general purpose computation on GPUs.
The implementation of the CUDA compiler involves many intermediate stages and components
which can each potentially introduce a bug. The programming model of CUDA, which
involves parallelism and distributed memory, also makes it more difficult to implement
efficient testing.

In this talk, we examine the challenges faced when testing this complex compilation
pipeline. An overview of the testing strategies and tools is then presented. Finally, we discuss
the lessons learnt from our testing and future directions to improve coverage and find more
intricate bugs.

3.9 An Introduction to Software Verification with Whiley
David J. Pearce (Victoria University - Wellington, NZ)

License Creative Commons BY 3.0 Unported license
© David J. Pearce

Main reference David J. Pearce, Lindsay Groves: “Designing a verifying compiler: Lessons learned from developing
Whiley”, Sci. Comput. Program., Vol. 113, pp. 191–220, 2015.

URL http://dx.doi.org/10.1016/j.scico.2015.09.006

In this talk, I’ll employ live coding to demonstrate the Whiley programming language
and its accompanying “verifying compiler”. The language is focused on ensuring programs
meet their specifications. Whiley programs can be verified at compile time, and doing this
prevents a range of common errors impossible (e.g. divide-by-zero, array out-of-bounds, etc).
Sophisticated specifications can be written using a quantifiers and other apparatus from
first-order logic. Programming in Whiley feels surprisingly natural and the goal is to make
it comparable to interacting with a type checker. The language has been used for the last
three years to teach a large undergraduate class about program specification, and we have
benefited considerably from this experience.

17502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.scico.2015.09.006
http://dx.doi.org/10.1016/j.scico.2015.09.006
http://dx.doi.org/10.1016/j.scico.2015.09.006

58 17502 – Testing and Verification of Compilers

3.10 TreeFuzz: Learning Probabilistic Models of Input Data for Fuzz
Testing

Michael Pradel (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Michael Pradel

Joint work of JIbesh Patra, Michael Pradel

Fuzzing is a popular technique to create test inputs for software that processes structured
data. It has been successfully applied in various domains, ranging from compilers and
interpreters over program analyses to rendering engines, image manipulation tools, and word
processors. Existing fuzz testers are either tailored to a specific data format, rely on whitebox
analysis of the software under test, or infer a context-free grammar of the input format.
This talk presents TreeFuzz, an approach to learn probabilistic models of input data from a
corpus of examples and to fuzz-generate new data from the inferred models. The approach
supports any data format that can be represented as a tree and learns models without any
human intervention. To support a wide range of different properties of input data, TreeFuzz
is designed as a framework with an extensible set of generative models. The learned models
are more expressive than context-free grammars, producing test inputs that reach deep
into the software under test. Our evaluation applies TreeFuzz to a programming language,
JavaScript, and a markup language, HTML. The results show that the approach creates
mostly correct data: 96.3% of the generated JavaScript programs are syntactically valid and
there are only 2.06 validation errors per kilobyte of generated HTML. Furthermore, we show
that the performance of both learning and generation scales linearly with respect to the size
of the corpus, making it easily applicable to tens of thousands of examples. Finally, we show
that the fuzz-generated data are useful for testing: Using TreeFuzz-generated JavaScript
programs for differential testing of JavaScript engines exposes various inconsistencies among
browsers, including browser bugs and unimplemented language features.

3.11 A Few Stories about Compiler Bugs
John Regehr (University of Utah - Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© John Regehr

Main reference Nuno P. Lopes, David Menendez, Santosh Nagarakatte, John Regehr: “Provably correct peephole
optimizations with alive”, in Proc. of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, pp. 22–32, ACM,
2015.

URL http://dx.doi.org/10.1145/2737924.2737965

Engineering a successful compiler is difficult because the major goals for a compiler – fast
compile times, few compiler bugs, and high-quality generated code – are individually difficult
and also conflict with each other. Formal methods can help solve all of these problems, but
the formal methods must be developed in such a way that they are maintainable over a
long time period and are usable and understandable by compiler developers. One promising
approach is translation validation, because it runs to the side of a compiler, requiring few if
any modifications to the tool.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2737924.2737965
http://dx.doi.org/10.1145/2737924.2737965
http://dx.doi.org/10.1145/2737924.2737965
http://dx.doi.org/10.1145/2737924.2737965
http://dx.doi.org/10.1145/2737924.2737965

Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang 59

3.12 Automatic non-Functional Testing of Configurable Generators
Gerson Sunyé (University of Nantes, FR)

License Creative Commons BY 3.0 Unported license
© Gerson Sunyé

Generative software development has paved the way for the creation of multiple code
generators and compilers that serve as a basis for automatically generating code to a broad
range of software and hardware platforms. With full automatic code generation, the user
is able to easily and rapidly synthesize software artifacts for various software platforms. In
addition, modern generators (i.e., C compilers) become highly configurable, offering numerous
configuration options that the user can use to easily customize the generated code for the
target hardware platform.

In this context, it is crucial to verify the correct behavior of code generators. Numerous
approaches have been proposed to verify the functional outcome of generated code but few
of them evaluate the non-functional properties of automatically generated code, namely the
performance and resource usage properties.

In this presentation, I address two problems:
1. Non-functional testing of code generators: We benefit from the existence of multiple

generators with comparable functionality (i.e., code generator families) to automatically
test the generated code. We leverage the metamorphic testing to detect inconsistencies
in code generators families by defining metamorphic relations as test oracles. We define
the metamorphic relation as a comparison between the variations of performance and
resource usage of code, generated from the same code generator family.

2. Handling the diversity of software and hardware platforms in software testing: Running
tests and evaluating the resource usage in heterogeneous environments is tedious. To
handle this problem, we benefit from the recent advances in lightweight system virtualiz-
ation, in particular container-based virtualization, in order to offer effective support for
automatically deploying, executing, and monitoring code in heterogeneous environment,
and collect non-functional metrics (e.g., memory and CPU consumptions).

We evaluate our approach by analyzing the performance of Haxe, a popular code generator
family. Experimental results show that our approach is able to automatically detect several
inconsistencies that reveal real issues in this family of code generators.

3.13 Learning to Synthesize Programs
Yingfei Xiong (Peking University, CN)

License Creative Commons BY 3.0 Unported license
© Yingfei Xiong

In many scenarios including testing we need to find the most likely program under a local
context,where the local context can be the program under test, an incomplete program,
a partial specification, natural language description, etc. We call such problem program
estimation. In this paper we propose an abstract framework, learning to synthesis, or L2S in
short, to address this problem. L2S combines four tools to achieve this: syntax is used to
define the search space and search steps, constraints are used to prune off invalid candidates
at each search step, machine-learned models are used to estimate conditional probabilities for
the candidates at each search step, and search algorithms are used to find the best possible

17502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

60 17502 – Testing and Verification of Compilers

solution. The main goal of L2S is to lay out the design space to motivate the research on
program estimation.

We have performed a preliminary evaluation by instantiating this framework for synthes-
izing conditions. On 4 projects from Defects4J, we can successfully synthesize the correct
conditions at top 10 in 64.7%-85.7% of the cases by training only on the source code of the
project, and the precision is related to the size of the projects.

3.14 Debugging Debug Information
Francesco Zappa Nardelli (INRIA - Paris, FR)

License Creative Commons BY 3.0 Unported license
© Francesco Zappa Nardelli

Hidden, obscure, and badly specified components lurk at the very heart of our computing
infrastructure. Consider debugging informations. Debugging informations are obviously
relied upon by debuggers and play a key role in the implementation of program analysis
tools, but, more surprisingly, debugging informations can be relied upon by the runtime of
high-level programming languages (e.g. to unwind the stack and implement C++ exceptions).
Unfortunately debugging informations themselves can be pervaded by subtle, undebuggable,
bugs. We will describe how to perform validation and synthesis of the DWARF stack
unwinding debug tables, and we will report on ambitious plans we might build on reliable
debug information.

3.15 Tutorial: Compiler Optimisations and Shared Memory
Concurrency

Francesco Zappa Nardelli (INRIA - Paris, FR)

License Creative Commons BY 3.0 Unported license
© Francesco Zappa Nardelli

Main reference Robin Morisset, Pankaj Pawan, Francesco Zappa Nardelli: “Compiler testing via a theory of sound
optimisations in the C11/C++11 memory model”, in Proc. of the 34th ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI 2013), pp. 187–196, ACM, 2013.

URL https://doi.org/10.1145/2499370.2491967

Compiler optimisations introduce unexpected behaviours in shared memory concurrent
programs; programming languages thus define memory models to specify precisely which
behaviours can be observed and, indirectly, which optimisations a compiler can apply. Taking
the C11/C++11 standard as running example, we will investigate how to reason about the
correctness of compiler optimisations (or lack thereof), and how to build a tool to fuzzy test
mainstream compilers against the memory model. Au passage, we will describe our failure
to specify a reasonable memory model for general purpose programming languages, and
how this failure paved the way for exciting research on validation and implementation of
compilers.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1145/2499370.2491967
https://doi.org/10.1145/2499370.2491967
https://doi.org/10.1145/2499370.2491967
https://doi.org/10.1145/2499370.2491967

Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang 61

3.16 Fuzzing with Inferred Grammars
Andreas Zeller (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Zeller

Fuzzing a program is greatly simplified if one has a grammar that describes the lexical and
syntactical (possibly even semantical) properties of the input. I show how grammar and code
coverage can successfully guide test generation, and how tracking how a program processes
input characters can produce grammars that again can be fed into test generation.

4 Working groups

4.1 Benchmarking Compiler Testing
Junjie Chen (Peking University, CN)

License Creative Commons BY 3.0 Unported license
© Junjie Chen

This group discussed the creation of benchmarks for compiler testing.
These benchmarks would take known buggy versions of a compiler and curate a set of

bugs, along with test cases triggering them, a bug fix, and information about the bug (e.g.
location of it, conditions required to trigger it).

The working group concluded that such benchmarks would be worthwhile, as they would
significantly speed the development of new compiler testing techniques by evaluating their
effectiveness in finding a known set of bugs.

4.2 Beyond Compiler Testing
Michael Pradel (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Michael Pradel

A working group chaired by Michael Pradel discussed how to adapt ideas from compiler
testing beyond compilers.

The group went through a set of developer tools that also take source code as their input,
such as lint-like bug finding tools, debuggers, code search, static analyses, and symbolic
execution engines. For each tool, a set of challenges were identified

One recurring challenge is that some tools require further inputs in addition to program
source code, e.g., user interactions for debuggers or search queries for code search engines.

Another recurring challenge is that the desired behavior of several tools is only informally
specified. For example, testing whether a bug finding tool works as expected requires
knowledge about which code the tool is supposed to (not) flag as buggy.

The working group concludes that
1. Testing other development tools than compilers is an exciting research direction.
2. Existing work on generating test programs could be reused
3. There remain additional challenges to be addressed in future work.

17502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

62 17502 – Testing and Verification of Compilers

4.3 Test-Case Reduction
David R. MacIver (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© David R. MacIver

This working group discussed common issues and themes of test-case reduction, and open
questions for future work in the area.

The two issues common to test case reduction identified were:
It is very difficult to write good predicates for test-case reduction—the most common
issue users of C-Reduce face is when they have written a predicate for their test case that
is “too broad” and the bug slips off the originally identified bug into a less interesting one.
It is also very difficult to write test-case reducers.

The group proposed that the solution to the latter was to make it easier to extend
existing test-case reducers (C-Reduce and StructureShrink were both mentioned) to add new
“reduction passes”.

It is unclear that there is a well defined notion of what test-case reduction does. Existing
literature has focused a great deal on size, but often the smallest example is not the clearest,
and often even among the smallest size examples more reduction can be performed to
improve readability. For example, C-Reduce always inlines functions even if this makes the
test-case larger. Work such as [2, 3] on combining test-case reduction with generalisation
was highlighted as a potential solution to this problem.

We also observed that there are common idioms in test-case reduction that are currently
under-documented–e.g. when to be greedy vs non-greedy, trying large reductions first and
then backing off, combining multiple shrinks together when single ones fail.

Open questions we considered interesting for further research were:
How best can we present “readable” examples to end users, and what role does pure
test-case reduction have in that?
In light of that how can we best determine when one test-case is “better” than another?
How can we cope with situations where shrinks must be chained together given that it is
potentially very expensive to identify such chains?

References
1 John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. “ Test-

Case Reduction for C Compiler Bugs”. In Proceedings of 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2012), Beijing, China, June
2012.

2 Groce, Alex, Josie Holmes, and Kevin Kellar. “One test to rule them all.” Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2017.

3 Braquehais, Rudy, and Colin Runciman. “Extrapolate: generalizing counter-examples of
functional test properties.” (2017).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang 63

4.4 Program Generation
David R. MacIver (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© David R. MacIver

This was a working group about the problem of generating programs to test compilers.
The group identified two key properties which are in tension with each other. These were

summarised as “Semantic Validity” and “Completeness” (or “Coverage”).
Semantic validity is the property of making sure you only generate “good” inputs–for

example, ensuring that a C program is free of undefined behaviour.
Completeness on the other hand is the property of reaching into the dark corners of the

compiler to find interesting behaviour rather than just shallowly testing the surface–finding
interesting programs that trigger unusal behaviours.

These are in tension because a generator of valid programs must necessarily be somewhat
conservative in what it emits. However, they can also mutually support each other, as
program generator that generates too many invalid programs will tend to to succeed only in
generating trivial valid programs.

It was felt that most interesting open questions were about how to that improve com-
pleteness while preserving semantic validity.

The two main approaches suggested for pursuing this were to provide better tooling
for describing language to attempt to use machine learning to discover the range of valid
programs from the behaviour of the compiler.

The group also identified the problem of generating idiomatic programs–a common
problem is that generated test cases are ignored by compiler developers because they look
unnatural, and the group believed that generating test cases that look like normal code
would help with this.

5 Panel discussions

5.1 Challenges and Concepts of Compiler Testing and Verification
Yingfei Xiong (Peking University, CN)

License Creative Commons BY 3.0 Unported license
© Yingfei Xiong

In the discussion session three topics were discussed.
First, all participants brainstormed the current open challenges in compiler testing and

verification.
Second, the name of the field was discussed. The participants agreed that there is no

universal good name to the field. For example, “compiler” captures most of the work in
this field and is easy to explain to outsiders, but has problem of omitting some subjects
such as debuggers. As a result, we do not try to name the field for now, and keep the name
“compiler testing and verification” for future editions of the seminar. Here “compiler” is
broadly defined to include software tools that take programs as input.

Third, some confusing terms were discussed. For example, program could refer to the
input program to the compiler and the compiler itself. Tests could refer to the tests of the

17502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

64 17502 – Testing and Verification of Compilers

compiler or the tests in the compiled program. However, no good solution came out from
the discussion and each paper should clearly define the terms before use.

The panel identified the following challenges:
1. Input program generation

a. For advanced type systems
b. Testing subtyping and other complex relations
c. Generating valid programs
d. Generating invalid yet effective test programs
e. Covering new language features
f. Dealing with undefined behavior

2. Finding effective test oracles
3. Efficient testing
4. Undefined semantics
5. Reproducibility of the test cases
6. Dealing with concurrency and nondeterminism
7. Readability of test cases
8. Generalization of test cases
9. Finding important bugs.

a. What is importance?
b. How can we communicate it?

10. Verifying compiler optimizations
11. Using translation validation for better testing.
12. Providing efficient and easy-to-use tool implementations

Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang 65

Participants

Edward E. Aftandilian
Google Research –
Mountain View, US

Marcel Beemster
Solid Sands – Amsterdam, NL

Junjie Chen
Peking University, CN

Nathan Chong
ARM Ltd. – Cambridge, GB

Eric Eide
University of Utah –
Salt Lake City, US

Hugues Evrard
Imperial College London, GB

Dan Hao
Peking University, CN

John Hughes
Chalmers University of
Technology – Göteborg, SE

Dan Iorga
Imperial College London, GB

Julia Lawall
INRIA – Paris, FR

Daniel Lehmann
TU Darmstadt, DE

Thibaut Lutz
NVIDIA – Redmond, US

David MacIver
Imperial College London, GB

Jessica Paquette
Apple Computer Inc. –
Cupertino, US

David J. Pearce
Victoria University –
Wellington, NZ

Michael Pradel
TU Darmstadt, DE

John Regehr
University of Utah –
Salt Lake City, US

Raimondas Sasnauskas
SES Engineering –
Luxembourg, LU

Marija Selakovic
TU Darmstadt, DE

Gerson Sunyé
University of Nantes, FR

Nikolai Tillmann
Facebook – Seattle, US

Yingfei Xiong
Peking University, CN

Francesco Zappa Nardelli
INRIA – Paris, FR

Andreas Zeller
Universität des Saarlandes, DE

Hongyu Zhang
University of Newcastle, AU

17502

	Executive Summary David R. MacIver
	Table of Contents
	Overview of Talks
	How Google Tests Compilers Edward E. Aftandilian
	Compiler testing for safety-critical applications Marcel Beemster
	Learning to accelerate compiler testing Junjie Chen
	A Generator of Highly Effective Fuzz Testers Eric Eide
	Automated Testing of Graphics Shader Compilers Hugues Evrard
	Introduction to Coccinelle Julia Lawall
	Differential Testing of Interactive Debuggers Daniel Lehmann
	CUDA Compiler Verification Thibaut Lutz
	An Introduction to Software Verification with Whiley David J. Pearce
	TreeFuzz: Learning Probabilistic Models of Input Data for Fuzz Testing Michael Pradel
	A Few Stories about Compiler Bugs John Regehr
	Automatic non-Functional Testing of Configurable Generators Gerson Sunyé
	Learning to Synthesize Programs Yingfei Xiong
	Debugging Debug Information Francesco Zappa Nardelli
	Tutorial: Compiler Optimisations and Shared Memory Concurrency Francesco Zappa Nardelli
	Fuzzing with Inferred Grammars Andreas Zeller

	Working groups
	Benchmarking Compiler Testing Junjie Chen
	Beyond Compiler Testing Michael Pradel
	Test-Case Reduction David R. MacIver
	Program Generation David R. MacIver

	Panel discussions
	Challenges and Concepts of Compiler Testing and Verification Yingfei Xiong

	Participants

