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Abstract
The study of proof complexity was initiated in [Cook and Reckhow 1979] as a way to attack the
P vs. NP problem, and in the ensuing decades many powerful techniques have been discovered for
analyzing different proof systems. Proof complexity also gives a way of studying subsystems of
Peano Arithmetic where the power of mathematical reasoning is restricted, and to quantify how
complex different mathematical theorems are measured in terms of the strength of the methods
of reasoning required to establish their validity. Moreover, it allows to analyse the power and
limitations of satisfiability algorithms (SAT solvers) used in industrial applications with formulas
containing up to millions of variables.

During the last 10–15 years the area of proof complexity has seen a revival with many exciting
results, and new connections have also been revealed with other areas such as, e.g., cryptography,
algebraic complexity theory, communication complexity, and combinatorial optimization. While
many longstanding open problems from the 1980s and 1990s still remain unsolved, recent progress
gives hope that the area may be ripe for decisive breakthroughs. This workshop, gathering
researchers from different strands of the proof complexity community, gave opportunities to take
stock of where we stand and discuss the way ahead.
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This workshop brought together the whole proof complexity community spanning from Frege
proof systems and circuit-inspired lower bounds via geometric and algebraic proof systems
all the way to bounded arithmetic. In this executive summary, we first give an overview of
proof complexity, and then describe the goals of the seminar week. Finally, we discuss the
relation to previous workshops and conferences.
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Topic of the Seminar
Ever since the groundbreaking NP-completeness paper of Cook [18], the problem of deciding
whether a given propositional logic formula is satisfiable or not has been on centre stage
in theoretical computer science. During the last two decades, Satisfiability has also
developed from a problem of mainly theoretical interest into a practical approach for solving
applied problems. Although all known Boolean satisfiability solvers (SAT solvers) have
exponential running time in the worst case, enormous progress in performance has led to
satisfiability algorithms becoming a standard tool for solving large-scale problems in, for
example, hardware and software verification, artificial intelligence, bioinformatics, operations
research, and sometimes even pure mathematics.

The study of proof complexity originated with the seminal paper of Cook and Reckhow [19].
In its most general form, a proof system for a formal language L is a predicate P (x, π),
computable in time polynomial in the sizes |x| and |π| of the input, and having the property
that for all x ∈ L there exists a string π (a proof ) for which P (x, π) evaluates to true, whereas
for anyx 6∈ L it should hold for all strings π that P (x, π) evaluates to false. A proof system is
said to be polynomially bounded if for every x ∈ L there exists a proof πx for x that has size
at most polynomial in |x|. A propositional proof system is a proof system for the language of
tautologies in propositional logic, i.e., for formulas that always evaluate to true no matter
how the values true and false are assigned to variables in the formula.

From a theoretical point of view, one important motivation for proof complexity is the
intimate connection with the fundamental problem of P versus NP. Since NP is exactly
the set of languages with polynomially bounded proof systems, and since Tautology can
be seen to be the dual problem of Satisfiability, we have the famous theorem of [19]
that NP = coNP if and only if there exists a polynomially bounded propositional proof
system. Thus, if it could be shown that there are no polynomially bounded proof systems
for tautologies, P 6= NP would follow as a corollary since P is closed under complement. One
way of approaching this problem is to study stronger and stronger proof systems and try to
prove superpolynomial lower bounds on proof size. However, although great progress has
been made in the last couple of decades for a variety of proof systems, this goal still appears
very distant.

A second theoretical motivation is that simple propositional proof systems provide
analogues of subsystems of Peano Arithmetic where the power of mathematical reasoning
is restricted. Of particular interest here are various bounded arithmetic systems, which
in some sense are intended to capture feasible/polynomial-time reasoning. Proving strong
lower bounds on propositional logic encodings of some combinatorial principle, say, in a
propositional proof system can in this way show that establishing the validity of this principle
requires more powerful mathematics than what is provided by the corresponding subsystem
of Peano Arithmetic. One can thus quantify how “deep” different mathematical truths are,
as well as shed light on the limits of our (human, rather than automated) proof techniques.
At the same time, since it is an empirically verified fact that low-complexity proofs generalize
better and are often more constructive, classifying which truths have feasible proofs is also a
way to approach the classification of algorithmic problems by their computational complexity.
The precise sense in which this can be formalized into a tool for the complexity theorist is
one of the goals of bounded arithmetic.

A third prominent motivation for the study of proof complexity is also algorithmic but of
a more practical nature. As was mentioned above, designing efficient algorithms for proving
tautologies–or, equivalently, testing satisfiability–is a very important problem not only in the
theory of computation but also in applied research and industry. All SAT solvers, regardless
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of whether they produce a written proof or not, explicitly or implicitly define a system in
which proofs are searched for and rules which determine what proofs in this system look
like. Proof complexity analyses what it takes to simply write down and verify the proofs
that such a solver might find, ignoring the computational effort needed to actually find
them. Thus, a lower bound for a proof system tells us that any algorithm, even an optimal
(non-deterministic) one magically making all the right choices, must necessarily use at least
the amount of a certain resource specified by this bound. In the other direction, theoretical
upper bounds on some proof complexity measure give us hope of finding good proof search
algorithms with respect to this measure, provided that we can design algorithms that search
for proofs in the system in an efficient manner.

The field of proof complexity also has rich connections to algorithmic analysis, combinat-
orial optimization, cryptography, artificial intelligence, and mathematical logic. A few good
sourcesproviding more details are [6, 17, 47].

A Very Selective Survey of Proof Complexity

Any propositional logic formula can be converted to a formula in conjunctive normal form
(CNF) that is only linearly larger and is unsatisfiable if and only if the original formula is a
tautology. Therefore, any sound and complete system that certifies the unsatisfiability of
CNF formulas can be considered as a general propositional proof system.

The extensively studied resolution proof system, which appeared in [9] and began to be
investigated in connection with automated theorem proving in the 1960s [21, 22, 48], is such
a system where one derives new disjunctive clauses from an unsatisfiable CNF formula until
an explicit contradiction is reached. Despite the apparent simplicity of resolution, the first
superpolynomial lower bounds on proof size were obtained only after decades of study in
1985 [33], after which truly exponential size lower bounds soon followed in [15, 52]. It was
shown in [8] that these lower bounds can be established by instead studying the width of
proofs, i.e., the maximal size of clauses in the proofs, and arguing that any resolution proof
for a certain formula must contain a large clause. It then follows by a generic argument
that any such proof must also consist of very many clauses. Later research has led to a
well-developed machinery for showing width lower bounds, and hence also size lower bounds,
for resolution.

The more general proof system polynomial calculus (PC), introduced in [1, 16],1 instead
uses algebraic geometry to reason about SAT. In polynomial calculus clauses are translated
to multilinear polynomials over some (fixed) field, and a CNF formula F is shown to be
unsatisfiable by proving that there is no common root for the polynomials corresponding to
all the clauses, or equivalently that the multiplicative identity 1 lies in the ideal generated by
these polynomials. Here the size of a proof is measured as the number of monomials in a
proof when all polynomials are expanded out as linear combinations of monomials, and the
width of a clause corresponds to the (total) degree of the polynomial representing the clause.
It can be shown that PC is at least as strong as resolution with respect to both size and
width/degree, and there are families of formulas for which PC is exponentially stronger.

In the work [36], which served, interestingly enough, as a precursor to [8], it was shown
that strong lower bounds on the degree of polynomial calculus proofs are sufficient to establish
strong size lower bounds. In contrast to the situation for resolution after [8], however, this

1 Expert readers will note that we do not distinguish between PC [16] and PCR [1] below due to space
constraints.
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has not been followed by a corresponding development of a generally applicable machinery
for proving degree lower bounds. For fields of characteristic distinct from 2 it is sometimes
possible to obtain lower bounds by doing an affine transformation from {0, 1} to the “Fourier
basis” {−1,+1}, an idea that seems to have appeared first in [13, 28]. For fields of arbitrary
characteristic a powerful technique for general systems of polynomial equations was developed
in [2], which when restricted to CNF formulas F yields that polynomial calculus proofs
require high degree if the corresponding clause-variable incidence graphs G(F ) are good
enough bipartite expander graphs. There are several provably hard formula families for
which this criterion fails to apply, however, and even more formulas that are believed to be
hard for both resolution and PC, but where lower bounds are only known for the former
proof system and not the latter.

Another proof system that has been the focus of much research is cutting planes (CP),
which was introduced in [20] as a way of formalizing the integer linear programming algorithm
in [14, 27]. Here the disjunctive clauses in a CNF formula are translated to linear inequalities,
and these linear inequalities are then manipulated to derive a contradiction. Thus, questions
about the satifiability of Boolean formulas are reduced to the geometry of polytopes over the
real numbers. Cutting planes is easily seen to be as least as strong as resolution, since a CP
proof can mimic any resolution proof line by line. An intriguing fact is that encodings of the
pigeonhole principle, which are known to be hard to prove for resolution [33] and many other
proof systems, are very easy to prove in cutting planes. It follows from this that not only is
cutting planes never worse than resolution, but it can be exponentially stronger.

Exponential lower bounds on proof length for cutting planes were first proven in [10] for
the restricted subsystem CP∗, where all coefficients in the linear inequalities can be at most
polynomial in the formula size, and were later extended to general CP in [34, 44]. The proof
technique in [44] is very specific, however, in that it works by interpolating monotone Boolean
circuits for certain problems from CP proofs of related formulas with a very particular
structure, and then appealing to lower bounds in circuit complexity. A longstanding open
problem is to develop techniques that would apply to other formula families. For example,
establishing that randomly sampled k-CNF formulas are hard to refute for CP, or that CP
cannot efficiently prove the fact that the sum of all vertex degrees in an undirected graph is
even (encoded in so-called Tseitin formulas), would constitute major breakthroughs.

We remark that there are also other proof systems inspired by linear and semidefinite
programming, e.g., in [38, 39, 50], which are somewhat similar to but incomparable with
cutting planes, and a deeper understanding of which appear even more challenging. Some
notable early papers in proof complexity investigating these so-called semialgebraic proof
systems were published around the turn of the millennium in [30, 31, 45], but then this area
of research seems to have gone dormant. In the last few years, these proof systems have made
an exciting reemergence in the context of hardness of approximation, revealing unexpected
and intriguing connections between approximation and proof complexity. A precursor to
this is the work by Schoenebeck [49], which gave strong integrality gaps in the so-called
Lasserre SDP hierarchy using results from proof complexity. These results were later realized
to be a rediscovery of results by Grigoriev [29] proving degree lower bounds for what he
called the Positivstellensatz Calculus [31]. More recently we have the work of Barak et al. [4],
which was the first to explicitly point out this intriguing connection between approximability
and proof complexity. Following this paper, several papers have appeared that continue the
fruitful exploration of the interplay between approximability and proof complexity. Results
from this area also appeared in the invited talk of Boaz Barak at the International Congress
of Mathematicians in 2014 (see [5]).
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The paper [19] initiated research in proof complexity focused on a more general and
powerful family of propositional proof systems called Frege systems. Such systems consist of
a finite implicationally complete set of axioms and inference rules (let us say over connectives
AND, OR, and NOT for concreteness), where new formulas are derived by substitution into
the axioms and inference rules. Various forms of Frege systems (also called Hilbert systems)
typically appear in logic textbooks, and typically the exact definitions vary. Such distinctions
do not matter for our purposes, however—it was shown in [19] that all such systems are
equivalent up to an at most polynomial blow-up in the proof size.

Frege systems are well beyond what we can prove nontrivial lower bounds for; the
situation is similar to the problem of proving lower bound on the size of Boolean circuits.
Therefore restricted versions of Frege systems have been studied. One natural restriction
is to allow unbounded fan-in AND-OR formulas (where negations appear only in front of
atomic variables) but to require that all formulas appearing in a proof have bounded depth
(i.e., a bounded number of alternations between AND and OR). Such a model is an analogue
of the bounded-depth circuits studied in circuit complexity, but first arose in the context
of bounded first-order arithmetic in logic [12, 41]. For such bounded-depth Frege systems
exponential lower bounds on proof size were obtained in [37, 42], but these lower bounds only
work for depth smaller than log logn. This depth lower bound was very recently improved
to
√

logn in [43], but in terms of the size lower bound this recent result is much weaker. By
comparison, for the corresponding class in circuit complexity strong size lower bounds are
known all the way up to depth logn/ log logn. Also, if one extends the set of connectives
with exclusive or (also called parity) to obtain bounded-depth Frege with parity gates, then
again no lower bounds are known, although strong lower bounds have been shown for the
analogous class in circuit complexity [46, 51].

The quest for lower bounds for bounded-depth Frege systems and beyond are mainly
motivated by the P vs. NP problem. Regarding connections to SAT solving, it is mostly
weaker proof systems such as resolution, polynomial calculus, and cutting planes that are of
interest, whereas the variants of Frege systems discussed above do not seem to be suitable
foundations for SAT solvers. The issue here is that not only do we want our proof system to
be as powerful as possible, i.e., having short proofs for the formulas under consideration, but
we also want to be able to find these proofs efficiently.

We quantify this theoretically by saying that a proof system is automatizable if there is
an algorithm that finds proofs in this system in time polynomial in the length of an optimal
proof. This seems to be the right notion: If there is no short proof of a formula in the system,
then we cannot expect any algorithm to find a proof quickly, but if there is a short proof
to be found we want an algorithm that is competitive with respect to the length of such a
proof. Unfortunately, there seems to be a trade-off here in the sense that if a proof system
is sufficiently powerful, then it is not automatizable. For instance, bounded-depth Frege
systems are not automatizable under plausible computational complexity assumptions [11].
However, analogous results have later been shown also for resolution [3], and yet proof search
is implemented successfully in this proof system in practice. This raises intriguing questions
that seem to merit further study.

Goals of the Seminar
There is a rich selection of open problems that could be discussed at a workshop focused on
proof complexity. Below we just give a few samples of such problems that came up during
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the workshop–it should be emphasized that this list is very far from exhaustive and is only
intended to serve as an illustration.

For starters, there are a number of NP-complete problems for which we would like to
understand the hardness with respect to polynomial calculus and other algebraic proof systems.
For the problem of cliques of constant size k in graphs, there is an obvious polynomial-time
algorithm (since only

(
n
k

)
≤ nk possible candidate cliques need to be checked). Whether this

brute-force algorithm is optimal or not is a deep question with connections to fixed-parameter
tractability and parameterized proof complexity. This is completely open for polynomial
calculus, and even for resolution. The ultimate goal here would be to prove average-case lower
bounds for k-clique formulas over Erdős–Rényi random graphs G(n, p) with edge probability
just below the threshold p = n−2/(k−1) for the appearance of k-cliques.

In contrast to the clique problem, graph colouring is NP-complete already for a constant
number 3 of colours. If we believe that P 6= NP, then, in particular, it seems reasonable
to expect that this problem should be hard for polynomial calculus. No such results
have been known, however. On the contrary, in the papers [23, 24, 25] recognized with
the INFORMS Computing Society Prize 2010, the authors report that they used algebraic
methods formalizable in polynomial calculus that “successfully solved graph problem instances
having thousands of nodes and tens of thousands of edges” and that they could not find hard
instances for these algorithms. This is very surprising. For resolution, it was shown in [7]
that random graphs with the right edge density are exponentially hard to deal with, and it
seems likely that the same should hold also for polynomial calculus. This appears to be a
very challenging problem, however, but we hope that techniques from [2, 40] can be brought
to bear on it.

For cutting planes, a longstanding open problem is to prove lower bounds for random
k-CNF formulas or Tseitin formulas over expander graphs. An interesting direction in the last
few years has been the development of new techniques for size-space trade-offs, showing that
if short cutting planes proofs do exist, such proofs must at least have high space complexity
in that they require a lot of memory to be verified. Such results were first obtained via
a somewhat unexpected connection to communication complexity in [35], and have more
recently been strengthened in [26, 32].

Admittedly, proving lower bounds for bounded-depth Frege systems and beyond is another
formidable challenge, and it only seems prudent to say that this is a high-risk proposal.
However, the very recent, and exciting, progress in [43] give hope that new techniques might
be developed to attack also this problem.

Relation to Previous Dagstuhl Seminars
The area of proof complexity has a large intersection with computational complexity theory,
and are two recurring workshops at Dagstuhl dedicated to complexity theory broadly
construed, namely Computational Complexity of Discrete Problems and Algebraic Methods
in Computational Complexity. However, these two workshops have had very limited coverage
of topics related to proof complexity in the past.

On the more applied side, there have been two workshops SAT and Interactions and Theory
and Practice of SAT Solving that have explored the connections between computational
complexity and more applied satisfiability algorithms as used in industry (so-called SAT
solvers). These workshops have focused on very weak proof systems, however, which are the
ones that are of interest in connection to SAT solving, but have not made any connections
to stronger proof systems or to bounded arithmetic.
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Although proof complexity has turned out to have deep connections to both complexity
theory and SAT solving, proof complexity is an interesting and vibrant enough area to merit
a seminar week in its own right. This workshop at Dagstuhl provided a unique opportunity
for the community to meet during a full week focusing on the latest news in various subareas
and major challenges going forward.
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3 Overview of Presentations Given During the Seminar Week

In this section we list the talks given during the seminar week. As can be seen from a
comparison with Section 1, a number of presentations could report progress on long-standing
open problems.

In addition to the list of “official” presentations below, there were also a number of more
informal presentations and discussions on various topics (including, but not limited to, the
open problems mentioned in Section 4).

3.1 Some Classic SOS Gems with Proofs
Albert Atserias (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Albert Atserias

This will be a blackboard lecture-like talk in which I will define the version of Sums-of-Squares
(SOS) proof that I want to discuss, and cover the proofs of two beautiful results about it in
(an usual amount of?) detail. The first gem is a surprising new result of Berkholz [1], with
an equally surprising simple proof, that shows that SOS simulates Polynomial Calculus over
the reals with Boolean-valued variables. The second gem is the beautiful construction of
Grigoriev [2], as rediscovered by Schoenebeck [3], for showing that systems of parity equations
that are hard for resolution are also hard for SOS.

References
1 Christoph Berkholz: The Relation between Polynomial Calculus, Sherali-Adams, and Sum-

of-Squares Proofs. STACS 2018: 11:1–11:14
2 Dima Grigoriev: Tseitin’s Tautologies and Lower Bounds for Nullstellensatz Proofs. FOCS

1998: 648–652
3 Grant Schoenebeck: Linear Level Lasserre Lower Bounds for Certain k-CSPs. FOCS 2008:

593–602

3.2 Hard Principles from Bounded Arithmetic
Arnold Beckmann (Swansea University, GB)

License Creative Commons BY 3.0 Unported license
© Arnold Beckmann

This talk is intended as a second tutorial on Bounded Arithmetic following that of Neil
Thapen. It will focus on how Bounded Arithmetic is useful for obtaining hard principles for
propositional proof systems. We will touch on reflection principles and related techniques,
and demonstrate their usefulness with a few examples. The main part of the tutorial will
concentrate on total NP search problems and their relation to Bounded Arithmetic. We will
review recent characterisations of classes of total NP search problems whose totality can
be proven in certain Bounded Arithmetic theories, and demonstrate through examples how
complete problems for such classes lead to hard problems for propositional proof systems
corresponding to Bounded Arithmetic theories.
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3.3 What’s Different in QBF from Propositional Proof Complexity?
Olaf Beyersdorff (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Olaf Beyersdorff

Main reference Olaf Beyersdorff, Joshua Blinkhorn: “Genuine Lower Bounds for QBF Expansion”, in Proc. of the
35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March
3, 2018, Caen, France, LIPIcs, Vol. 96, pp. 12:1–12:15, Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2018.12

The aim of the talk is to discuss QBF proof complexity in comparison to propositional proof
complexity. In particular, I will talk about different ideas for QBF resolution systems, the hard
formulas we currently have, what is a genuine QBF lower bound and what techniques we have
to show them. As an example of a genuine lower bound I will explain the size-cost-capacity
technique [1].

References
1 Olaf Beyersdorff, Joshua Blinkhorn, Luke Hinde: Size, Cost and Capacity: A Semantic

Technique for Hard Random QBFs. ITCS 2018: 9:1–9:18

3.4 Clique Is Hard on Average for Regular Resolution
Ilario Bonacina (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Ilario Bonacina

Joint work of Albert Atserias, Ilario Bonacina, Susanna de Rezende, Massimo Lauria, Jakob Nordström,
Alexander Razborov

Main reference Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob Nordström,
Alexander A. Razborov: “Clique is hard on average for regular resolution”, in Proc. of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pp. 866–877, ACM, 2018.

URL http://dx.doi.org/10.1145/3188745.3188856

Deciding whether a graph G with n vertices has a k-clique is one of the most basic com-
putational problems on graphs. In this work we show that certifying k-clique-freeness of
Erdős–Rényi random graphs is hard for regular resolution. More precisely we show that for
k �

√
n regular resolution asymptotically almost surely requires length nΩ(k) to establish

that an Erdős–Rényi random graph (with appropriate edge density) does not contain a
k-clique. This asymptotically optimal result implies unconditional lower bounds on the
running time of several state-of-the-art algorithms used in practice.
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3.5 Proof Complexity Lower Bounds from Algebraic Circuit Complexity
Michael A. Forbes (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
© Michael A. Forbes

Joint work of Michael A. Forbes, Amir Shpilka, Iddo Tzameret, Avi Wigderson
Main reference Michael A. Forbes, Amir Shpilka, Iddo Tzameret, Avi Wigderson: “Proof Complexity Lower

Bounds from Algebraic Circuit Complexity”, in Proc. of the 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, LIPIcs, Vol. 50, pp. 32:1–32:17,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.CCC.2016.32

We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS),
the algebraic proof system recently proposed by Grochow and Pitassi [1], where the circuits
comprising the proof come from various restricted algebraic circuit classes. This mimics
an established research direction in the boolean setting for subsystems of Extended Frege
proofs, where proof-lines are circuits from restricted boolean circuit classes. Except one,
all of the subsystems considered in this paper can simulate the well-studied Nullstellensatz
proof system, and prior to this work there were no known lower bounds when measuring
proof size by the algebraic complexity of the polynomials (except with respect to degree, or
to sparsity).

We give two general methods of converting certain algebraic lower bounds into proof
complexity ones. Our methods require stronger notions of lower bounds, which lower bound
a polynomial as well as an entire family of polynomials it defines. Our techniques are
reminiscent of existing methods for converting boolean circuit lower bounds into related
proof complexity results, such as feasible interpolation. We obtain the relevant types of lower
bounds for a variety of classes (sparse polynomials, depth-3 powering formulas, read-once
oblivious algebraic branching programs, and multilinear formulas), and infer the relevant
proof complexity results. We complement our lower bounds by giving short refutations of the
previously-studied subset-sum axiom using IPS subsystems, allowing us to conclude strict
separations between some of these subsystems.

References
1 Joshua A. Grochow, Toniann Pitassi: Circuit Complexity, Proof Complexity, and Polyno-

mial Identity Testing. FOCS 2014: 110–119

3.6 On Small-Depth Frege Proofs for Tseitin for Grids
Johan Hastad (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Johan Hastad

Main reference Johan Håstad: “On Small-Depth Frege Proofs for Tseitin for Grids”, in Proc. of the 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pp. 97–108, IEEE Computer Society, 2017.

URL http://dx.doi.org/10.1109/FOCS.2017.18

We prove a lower bound on the size of a small depth Frege refutation of the Tseitin contra-
diction on the grid. We conclude that polynomial size such refutations must use formulas of
almost logarithmic depth.
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3.7 Introduction to Semialgebraic Proof Systems
Edward A. Hirsch (Steklov Institute – St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
© Edward A. Hirsch

In this tutorial, I will define semialgebraic proof systems, explain how they work, and survey
main results in the area.

3.8 Random Formulas and Interpolation in Cutting Planes
Pavel Hrubes (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Pavel Hrubes

Joint work of Pavel Hrubes, Pavel Pudlák
Main reference Pavel Hrubes, Pavel Pudlák: “Random Formulas, Monotone Circuits, and Interpolation”, in Proc.

of the 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pp. 121–131, IEEE Computer Society, 2017.

URL https://doi.org/10.1109/FOCS.2017.20

I will discuss the interpolation technique and how it can be adapted to prove new lower
bounds for the Cutting Planes proof system. This includes the weak Bit Pigeon Hole Principle
and random logn-CNFs.

3.9 Parameter-free Bounded Induction
Emil Jerabek (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Emil Jerabek

We will have a look at some fragments of bounded arithmetic axiomatized by induction and
polynomial induction schemata without parameters.

3.10 Bounded-depth Frege with Parity Gates and Subsystems Thereof
Leszek Kolodziejczyk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Leszek Kolodziejczyk

Proving superpolynomial lower bounds for bounded-depth systems with a parity connective
is one of the most famous long-standing open problems in proof complexity. I will review
some known results about bounded-depth Frege with parity and its subsystems. In the
process, I will try to motivate a few open problems in the area.
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3.11 Automatizability
Massimo Lauria (Sapienza University of Rome, IT)

License Creative Commons BY 3.0 Unported license
© Massimo Lauria

We give a tutorial on the concept of automatizability of proof systems, i.e. the possibility
of finding relatively short proof efficiently. We survey known results and sketch the proof
that resolution is not automatizable, by [1]. We conclude by surveying the results about
the closely related concept of weak automatizability, and by discussing its connections with
interpolation.

References
1 Michael Alekhnovich, Alexander A. Razborov Resolution is Not Automatizable Unless

W [P ] is Tractable FOCS 2001: 210–219

3.12 Are Short Proofs Narrow? QBF Resolution Is Not so Simple
Meena Mahajan (Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY 3.0 Unported license
© Meena Mahajan

Joint work of Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla
Main reference Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla: “Are Short Proofs Narrow? QBF

Resolution Is Not So Simple”, ACM Trans. Comput. Log., Vol. 19(1), pp. 1:1–1:26, 2018.
URL http://dx.doi.org/10.1145/3157053

One of the main techniques for proving size and space lower bounds in classical resolution
proceeds via width: the results of Ben-Sasson and Wigderson [1] and of Atserias and
Dalmau [2] show that lower bounds on width imply lower bounds on size and space respectively.
We assess the effectiveness of such a technique for the QBF system QRes (used to prove QBFs
false). Along the way, we show that the QBF proof systems Forall-Expansion+Resolution
and IR-calc, provably separated in general, have the same power in their tree-like versions.

References
1 Eli Ben-Sasson, Avi Wigderson: Short proofs are narrow – resolution made simple. J. ACM

48(2): 149–169 (2001)
2 Albert Atserias, Víctor Dalmau: A combinatorial characterization of resolution width. J.

Comput. Syst. Sci. 74(3): 323–334 (2008)

3.13 Partially Definable Forcing
Moritz Müller (Universität Wien, AT)

License Creative Commons BY 3.0 Unported license
© Moritz Müller

The talk explains a general method of forcing to construct models of weak arithmetics relevant
for propositional proof complexity. Proofs of independence results of Paris-Wilkie, Riis and
Ajtai are naturally embedded in this framework.
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3.14 Lower Bound Techniques for Nullstellensatz and Polynomial
Calculus

Jakob Nordström (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Jakob Nordström

This talk is intended to give a high-level survey of techniques for proving lower bounds
for Nullstellensatz and polynomial calculus. In particular, we will focus on the method
in [1] for obtaining degree lower bounds in polynomial calculus using pseudo-ideals and
pseudo-reductions, and on some further extensions presented in [2].

References
1 Michael Alekhnovich, Alexander Razborov: Lower Bounds for Polynomial Calculus: Non-

Binomial Case. Proceedings of the Steklov Institute of Mathematics 242: 18-35 (2003)
2 Mladen Miksa, Jakob Nordström: A Generalized Method for Proving Polynomial Calculus

Degree Lower Bounds. Conference on Computational Complexity 2015: 467-487

3.15 Supercritical Space-Width Trade-offs for Resolution
Jakob Nordström (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Jakob Nordström

Joint work of Christoph Berkholz, Jakob Nordström
Main reference Christoph Berkholz, Jakob Nordström: “Supercritical Space-Width Trade-Offs for Resolution”, in

Proc. of the 43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, LIPIcs, Vol. 55, pp. 57:1–57:14, Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2016.

URL https://doi.org/10.4230/LIPIcs.ICALP.2016.57

We show that there are CNF formulas which can be refuted in resolution in both small space
and small width, but for which any small-width resolution proof must have space exceeding
by far the linear worst-case upper bound. This significantly strengthens the space-width
trade-offs in [1], and provides one more example of trade-offs in the "supercritical" regime
above worst case recently identified by [2]. We obtain our results by using Razborov’s new
hardness condensation technique and combining it with the space lower bounds in [3].

(This talk should have been given by Christoph Berkholz, who unfortunately had to
cancel his participation on short notice.)

References
1 Eli Ben-Sasson: Size space tradeoffs for resolution. SIAM Journal on Computing 28(6):

2511–2525 (2009)
2 Alexander A. Razborov: A New Kind of Tradeoffs in Propositional Proof Complexity. J.

ACM 63(2): 16:1–16:14 (2016)
3 Eli Ben-Sasson, Jakob Nordström: Short Proofs May Be Spacious: An Optimal Separation

of Space and Length in Resolution. FOCS 2008: 709–718
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3.16 Sum-of-Squares, Counting Logics and Graph Isomorphism
Joanna Ochremiak (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
© Joanna Ochremiak

Joint work of Albert Atserias, Joanna Ochremiak
Main reference Albert Atserias, Joanna Ochremiak: “Definable Ellipsoid Method, Sums-of-Squares Proofs, and the

Isomorphism Problem”, CoRR, Vol. abs/1802.02388, 2018.
URL http://arxiv.org/abs/1802.02388

I will discuss recent joint work with Albert Atserias on connections between equivalence in
finite variable logics with counting and semidefinite relaxations of the graph isomorphism
problem.

3.17 Provability of Weak Circuit Lower Bounds
Jan Pich (Universität Wien, AT)

License Creative Commons BY 3.0 Unported license
© Jan Pich

Joint work of Moritz Müller, Jan Pich
Main reference Moritz Müller, Ján Pich: “Feasibly constructive proofs of succinct weak circuit lower bounds”,

Electronic Colloquium on Computational Complexity (ECCC), Vol. 24, p. 144, 2017.
URL https://eccc.weizmann.ac.il/report/2017/144

The existing circuit lower bounds for explicit Boolean functions are very constructive, as
captured in the notion of natural proofs. Following initial work of Razborov and Krajíček [1,
2], we investigate the constructive aspects of circuit lower bounds from the perspective
of mathematical logic and show that AC0, AC0[p] and monotone circuit lower bounds
expressed by ∀Σb1 formulas are provable in Jerabek’s theory of approximate counting APC1.
Consequently, we obtain short proofs of poly(n)-size tautologies expressing these circuit lower
bounds, where n is the number of inputs of the circuit. These proofs take place in a slight
extension of Extended Frege system. In case of Razborov-Smolensky’s lower bound, we give a
succinct version of natural proofs against AC0[p] with proofs in a propositional proof system
known as WF.

References
1 Alexander Razborov: Bounded arithmetic and lower bounds in Boolean complexity. Feas-

ible Mathematics II, 344–386 (1995)
2 Jan Krajíček: Bounded arithmetic, propositional logic, and complexity theory. Cambridge

University Press, 1995.

3.18 Sum of Squares Lower Bounds from Symmetry and a Good Story
Aaron Potechin (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Aaron Potechin

Main reference Aaron Potechin: “Sum of squares lower bounds from symmetry and a good story”, CoRR,
Vol. abs/1711.11469, 2017.

URL http://arxiv.org/abs/1711.11469

The sum of squares hierarchy is a hierarchy of semidefinite programs which has the three
advantages of being broadly applicable (it can be applied whenever the problem can be
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phrased in terms of polynomial equations over R), powerful (it captures the best known
algorithms for several problems including max cut, sparsest cut, and unique games), and in
some sense, simple (all it is really using is the fact that squares are non-negative over R).
The sum of squares hierarchy can also be viewed as the Positivstellensatz proof system.

3.19 Lifting Nullstellensatz Degree to Monotone Span Program Size
Robert Robere (University of Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Robert Robere

Joint work of Toniann Pitassi, Robert Robere
Main reference Toniann Pitassi, Robert Robere: “Lifting nullstellensatz to monotone span programs over any

field”, in Proc. of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pp. 1207–1219, ACM, 2018.

URL http://dx.doi.org/10.1145/3188745.3188914

Karchmer and Wigderson introduced an elegant model of computation, called span programs,
which capture the complexity of computing with linear algebra over a field F. In this talk,
we discuss some recent work in which we characterize the monotone span program size of
certain “structured” boolean functions in terms of Nullstellensatz degree over any field. This
characterization leads to the resolution of a number of open problems on the complexity of
span programs, including

A superpolynomial separation between non-monotone span programs and span programs
over characteristic 2,
An exponential separation between monotone span programs over any field and monotone
circuits, and
A strongly exponential separation between monotone span programs over fields with
different characteristic.

3.20 Monotone Circuit Lower Bounds from Resolution
Dmitry Sokolov (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Dmitry Sokolov

Joint work of Ankit Garg, Mika Göös, Pritish Kamath, Dmitry Sokolov
Main reference Ankit Garg, Mika Göös, Pritish Kamath, Dmitry Sokolov: “Monotone circuit lower bounds from

resolution”, in Proc. of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pp. 902–911, ACM, 2018.

URL http://dx.doi.org/10.1145/3188745.3188838

For any unsatisfiable CNF formula F that is hard to refute in the resolution proof system,
we show that a gadget-composed version of F is hard to refute in any proof system whose
lines are computed by efficient communication protocols (in particular, as in cutting planes)—
or, equivalently, that a monotone function associated with F has large monotone circuit
complexity.

This result is essentially a lifting theorem for “decision dags” and “dag communication
protocols.”
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3.21 Bounded Arithmetic and Propositional Upper Bounds
Neil Thapen (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Neil Thapen

I will talk about how bounded arithmetic can be used to prove, and understand, propositional
upper bounds. I will briefly survey some results of this kind, and then talk in some detail
about an example, a simple first-order theory that captures the kind of reasoning you can do
in resolution. In particular, if you can prove something in the theory, then you get polynomial
size resolution refutations. The other direction also holds, modulo some issues of uniformity,
and the construction generalizes to other fragments of AC0-Frege.

3.22 Bounded Arithmetic Does Not Collapse to Approximate Counting
Neil Thapen (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Neil Thapen

Joint work of Leszek Kolodziejczyk; Neil Thapen

We adapt the “fixing lemma”, a simple switching lemma used recently to show lower bounds
for random resolution, to show that Jerabek’s theory of approximate counting does not
prove the CPLS principle (coloured polynomial local search). This settles an open problem
by showing that bounded arithmetic is strictly stronger than approximate counting, if we
compare the strength of theories by looking at their ∀Σb1 consequences.

3.23 Cops-Robber games and the resolution of Tseitin formulas
Jacobo Torán (Universität Ulm, DE)

License Creative Commons BY 3.0 Unported license
© Jacobo Torán

Joint work of Nicola Galesi, Navid Talebanfard, Jacobo Torán
Main reference Nicola Galesi, Navid Talebanfard, Jacobo Torán: “Cops-Robber Games and the Resolution of

Tseitin Formulas”, in Proc. of the Theory and Applications of Satisfiability Testing – SAT 2018 –
21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings, Lecture Notes in Computer Science, Vol. 10929,
pp. 311–326, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-319-94144-8_19

We characterize several complexity measures for the resolution of Tseitin formulas in terms
of a two person cop-robber game. Our game is a slight variation of the the one Seymour
and Thomas used in order to characterize the tree-width parameter. For any undirected
graph, by counting the number of cops needed in our game in order to catch a robber in
it, we are able to exactly characterize the width, variable space and depth measures for the
resolution of the Tseitin formula corresponding to that graph. We also give an exact game
characterization of resolution variable space for any formula.

We show that our game can be played in a monotonous way. This implies that the cor-
responding resolution measures on Tseitin formulas correspond to those under the restriction
of regular resolution.
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Using our characterizations we improve the existing complexity bounds for Tseitin formulas
showing that resolution width, depth and variable space coincide up to a logarithmic factor,
and that variable space is bounded by the clause space times a logarithmic factor.

3.24 Nullstellensatz is Polynomially Equivalent to Sum-of-Squares over
Algebraic Circuits

Iddo Tzameret (Royal Holloway, University of London, GB)

License Creative Commons BY 3.0 Unported license
© Iddo Tzameret

Joint work of Edward Hirsch, Iddo Tzameret

We consider the relative strength of algebraic and semi-algebraic proof systems when the
complexity of proofs is measured by algebraic circuit size (in contrast to degree). We show
that under this measure, Nullstellensatz simulates Sum-of-Squares proofs and Sherali-Adams.
This contrasts known separations between the Nullstellensatz and Sum-of-Squares in the
degree regime.

3.25 Proof Systems for Pseudo-Boolean SAT Solving
Marc Vinyals (TIFR Mumbai, IN)

License Creative Commons BY 3.0 Unported license
© Marc Vinyals

Joint work of Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, Jakob Nordström
Main reference Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, Jakob Nordström: “In Between

Resolution and Cutting Planes: A Study of Proof Systems for Pseudo-Boolean SAT Solving”, in
Proc. of the Theory and Applications of Satisfiability Testing – SAT 2018 – 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 9-12, 2018, Proceedings, Lecture Notes in Computer Science, Vol. 10929, pp. 292–310,
Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-319-94144-8_18

Current SAT solvers reason within the resolution proof system, and that gives them a big
advantage with respect to DPLL solvers, which are limited to tree-like resolution. Pseudo-
Boolean solvers can reason within cutting planes, hence they are potentially more powerful,
but implementation constraints dictate that they are limited to a subset of inference rules. A
natural question, then, is whether these rules are enough to exploit the full power of cutting
planes.

In this talk we identify subsystems of cutting planes that arise from these limited rules and
we classify them, showing in particular that pseudo-Boolean solvers are limited to resolution
if their input is encoded adversarially. Additionally we craft formulas that we conjecture
able to separate these proof systems at a more fundamental level.
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4 A List of Some Open Problems

Below follows a (non-exhaustive) list of open research problems discussed during the seminar
week. We have collected them in this report in the hope that this can serve as a convenient
point of reference for the community, and in the longer term perhaps inspire the collection of
open problems in proof complexity in a community research wiki or similar.

4.1 Simulation/Separation of Semi-algebraic Proof Systems
Paul Beame (University of Washington – Seattle, WA, beame@cs.washington.edu)

License Creative Commons BY 3.0 Unported license
© Paul Beame

4.1.1 Preliminaries

I will assume familiarity with semi-algebraic proof systems: Cutting Planes, LS, LS+,
Sherali-Adams, and SOS proof systems, as well as Tseitin tautologies.

4.1.2 Problems

With the exception of recent work on extension complexity lower bounds, much of the
discussion of semi-algebraic proof systems is focused on rank (or degree) and not on proof
size.

I Open Problem 1. Can LS, LS+, or SOS proofs p-simulate Cutting Planes proofs for
translations of Boolean formulas?

Buss and Clote [1] showed that Cutting Planes proofs are polynomially equivalent to a
restricted form of such proofs in which the division rule is only applied with divisor 2. One
natural family of Boolean formulas that use this inference consists of the Tseitin formulas
on bounded-degree graphs. Another particularly natural graph property to consider is the
matching principle on K2n+1 which is known as the Parity Principle: "There is no perfect
matching on K2n+1". This is expressed as the following system of inequalities which is a
direct translation of the clausal forms:∑

i∈e
xe ≥ 1 1 ≤ i ≤ 2n+ 1, e ∈

(
[2n+ 1]

2

)
xe + xf ≤ 1 e, f ∈

(
[2n+ 1]

2

)
, e ∩ f 6= ∅

xe ≥ 0 e ∈
(

[2n+ 1]
2

)
xe ≤ 1 e ∈

(
[2n+ 1]

2

)
It is easy for all of the semi-algebraic proof systems above to derive∑

i∈e
xe ≤ 1 1 ≤ i ≤ 2n+ 1, e ∈

(
[2n+ 1]

2

)
in small size. Then by adding these inequalities one obtains:

2
∑

e∈([2n+1]
2 )

xe ≤ 2n+ 1
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In Cutting Planes with divisor 2 one can now round this to obtain:∑
e∈([2n+1]

2 )
xe ≤ n

and using this one easily obtains a contradiction in any of the systems. The only hard part
is the division rule. Therefore it is natural to ask:

I Open Problem 2. Are there polynomial-size LS, LS+, or SOS proofs of the Parity
Principle?

This was essentially asked by Lovasz at the 1996 Oberwolfach complexity theory workshop
for the case of LS, LS+ by asking about proofs of stable set size bounds for a particular
family of graphs, the line graphs of K2n+1, which is an equivalent question to the one for
the Parity Principle. It seems reasonable to conjecture that the answer to both of the above
open problems is no.

Since the only hard part of this inference is the one line of division by 2, Open Problem 1
could be resolved depending on the outcome of the following:

I Open Problem 3. For what values of m and n do LS, LS+, or SOS proofs have polynomial-
size proofs of the following of inference?

Given

2
n∑
i=1

xi ≤ 2m+ 1,

xi ≥ 0 1 ≤ i ≤ n
xi ≤ 1 1 ≤ i ≤ n

infer

n∑
i=1

xi ≤ m

Note that Grigoriev’s work [2] on Postivstellensatz (SOS) proofs of the above constraints,
which he calls the knapsack inequalities, yields large rank lower bounds for the case that m
is near n/2 (within roughly ±

√
n). By the extension complexity results of Lee, Raghavendra,

and Steurer [3] this implies exponential size lower bounds in this case. In the case of the
Parity Principle, m is Θ(

√
n) so it is not covered by that bound.

References
1 Samuel R. Buss and Peter Clote. Cutting planes, connectivity, and threshold logic. Arch.

Math. Log., 35(1):33–62, 1996.
2 Dima Grigoriev. Complexity of positivstellensatz proofs for the knapsack. Computational

Complexity, 10(2):139–154, 2001
3 James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of

semidefinite programming relaxations. In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 567–576, 2015.
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4.2 Geometric Lower Bounds for Cutting Planes
Yuval Filmus (Technion – Haifa, IL, yuvalfi@cs.technion.ac.il)

License Creative Commons BY 3.0 Unported license
© Yuval Filmus

Come up with a lower bound technique for cutting planes that, as opposed to the interpolation
method or DAG-like communication, does not a reduction to circuit complexity. For example,
a geometric method based on properties of polytopes, like algebraic decision tree lower
bounds.

4.3 The Effect of Arity on the Power of Semantic Cutting Planes
Yuval Filmus (Technion – Haifa, IL, yuvalfi@cs.technion.ac.il)

License Creative Commons BY 3.0 Unported license
© Yuval Filmus

4.3.1 Preliminaries

Cutting planes is usually defined with the syntactic rules addition and division. The first rule
allows deducing from

∑
i a
′
ixi ≥ b′ and

∑
i a
′′
i xi ≥ b′′ the line

∑
i(c′a′i + c′′a′′i )xi ≥ c′b′+ c′′b′′

for all integers c′, c′′ ≥ 0, and the second rule allows deducing from
∑
i caixi ≥ b the line∑

i aixi ≥ db/ce for all c ≥ 1.
One can augment these rules with semantic rules. The proof system k-ary semantic

cutting planes allows deducing a line L from lines L1, . . . , Lk as long as every 0, 1-assignment
which satisfies L1, . . . , Lk also satisfies L. Note that when k = 2, the syntactic rules are no
longer necessary, and that when k = 1, we only need the syntactic rule of addition.

Filmus, Hrubeš and Lauria [1] showed that unary semantic cutting planes cannot be
p-simulated by syntactic cutting planes, and proved exponential lower bounds on nε-ary
semantic cutting planes.

4.3.2 Problem

I Open Problem 4. Let 1 ≤ k1 < k2 be constants. Does k1-ary semantic cutting planes
p-simulate k2-ary semantic cutting planes?

Hrubeš and Pudlák [2] gave an affirmative answer for the analogous question on monotone
real circuits.

References
1 Yuval Filmus, Pavel Hrubeš, Massimo Lauria: Semantic versus Syntactic Cutting Planes.

STACS 2016: 35:1–35:13
2 Pavel Hrubeš, Pavel Pudlák A note on monotone circuits. Inf. Process. Lett. 131: 15–19

(2018)
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4.4 Questions on Ideal Proof Systems
Joshua A. Grochow (University of Colorado – Boulder, USA, jgrochow@colorado.edu)

License Creative Commons BY 3.0 Unported license
© Joshua A. Grochow

4.4.1 Preliminaries

I Definition 1 (Ideal Proof System [4, Def. 1.9] (cf. [5, 6])). An IPS certificate that a
polynomial G(~x) ∈ F[~x] is in the ideal [respectively, radical of the ideal] generated by
F1(~x), . . . , Fm(~x) is a polynomial C(~x, ~y) such that
1. C(~x,~0) = 0, and
2. C(~x, F1(~x), . . . , Fm(~x)) = G(~x) [respectively, G(~x)k for any k > 0].
An IPS derivation of G [resp. Gk] from F1, . . . , Fm is a circuit computing some IPS certificate
that G ∈ 〈F1, . . . , Fm〉 [resp., G ∈

√
〈F1, . . . , Fm〉].

When applied as a proof system of unsatisfiability of Boolean formulas, we translate a
CNF ϕ into a system of equations as follows, and an IPS proof is a derivation that 1 is
in the ideal generated by the following polynomials. We translate a clause κ of ϕ into a
single algebraic equation F (~x) as follows: x 7→ 1− x, x ∨ y 7→ xy. This translation has the
property that a {0, 1} assignment satisfies κ if and only if it satisfies the equation F = 0. Let
κ1, . . . , κm denote all the clauses of ϕ, and let Fi be the corresponding polynomials. Then
the system of equations we consider is F1(~x) = · · · = Fm(~x) = x2

1 − x1 = · · · = x2
n − xn = 0.

The latter equations force any solution to this system of equations to be {0, 1}-valued. (Note
that, in principle, Boolean tautologies can be refuted without the Boolean axioms x2

i − xi,
but we do not know how this affects the complexity of the proofs in general.)

To motivate the following variant of IPS, we may consider

F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)

as a polynomial map F = (F1, . . . , Fm) : Fn → Fm. Then this system of polynomials has a
common zero if and only if ~0 is the image of F . In fact, Grochow and Pitassi [4, Appendix B]
show that for any system of equations coming from an unsatisfiable Boolean CNF, the system
of polynomials has a common zero if and only if ~0 is in the closure of the image of F . This
holds regardless of whether the equations include x2

i − xi = 0, x2
i − 1 = 0, or neither of these,

though at the moment the proof only works over algebraically closed fields and over dense
subfields of C (such as Q(i)).

I Definition 2 (The Geometric Ideal Proof System [4, App. B]). A geometric IPS certificate
that a system of F-polynomial equations F1(~x) = · · · = Fm(~x) = 0 is unsatisfiable over F is a
polynomial C ∈ F[y1, . . . , ym] such that
1. C(0, 0, . . . , 0) = 1, and
2. C(F1(~x), . . . , Fm(~x)) = 0. In other words, C is a polynomial relation amongst the Fi.
A geometric IPS proof of the unsatisfiability of F1 = · · · = Fm = 0, or a geometric IPS
refutation of F1 = · · · = Fm = 0, is an F-algebraic circuit on inputs y1, . . . , ym computing
some geometric certificate of unsatisfiability.

If C is a geometric certificate, then 1− C is an IPS certificate that involves only the yi.
Hence the smallest circuit size of any geometric certificate is at least the smallest circuit
size of any algebraic certificate. We do not know, however, if these complexity measures are
polynomially related, as highlighted in a question below.
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We call a system of equations “standard Boolean” if it includes x2
i = xi for all i, and

“multiplicative Boolean” if it includes x2
i = 1 for all i; by “Boolean system of equations” we

mean either of these.

4.4.2 Problems

I Open Problem 5 (Hrubeš [7]). Find a polynomial f that vanishes on {0, 1}n such that
any IPS certificate showing that f ∈ 〈x2

i − xi|x ∈ [n]〉 requires super-polynomial algebraic
circuit size.

Of course, if the f is the translation of an unsatisfiable Boolean CNF, then its existence
would imply VP 6= VNP, and moreover such a CNF-translation f must exist assuming
NP 6⊆ coAM. A conditional result would also be interesting here, so long as the condition is
weaker than NP 6⊆ coAM; perhaps the most interesting would be finding such an f assuming
only VP 6= VNP.

I Open Problem 6 ([4, Open Question 8.2]). Let β /∈ {0, . . . , 2n}, and let F be a field of
characteristic at least 2n+ 1. Prove lower bounds on restricted versions of IPS certificates
(as in, e. g., [1]) for the unsatisfiable system of equations

x1 + · · ·+ xn − x = xn+1 + · · ·+ x2n − x′ = x+ x′ − β = x2
1 − x1 = · · · = x2

n − xn = 0.

I Open Problem 7 ([4, Open Question A.12]). Does every IPS certificate for the n × n
Inversion Principle XY = I ⇒ Y X = I require computing a determinant? That is, is it
the case that for every IPS certificate C, some determinant of size nΩ(1) reduces to C by a
O(logn)-depth circuit reduction?

A positive answer here would show that, indeed, the Inversion Principle does not have an
IPS proof of logarithmic depth unless the determinant has polynomial-size algebraic formulas.

I Open Problem 8 ([4, Open Question B.4]). For Boolean systems of equations, is Geometric
IPS polynomially equivalent to IPS? That is, is there always a geometric certificate whose
circuit size is at most a polynomial in the circuit size of the smallest algebraic certificate?

For radical membership, an exponential degree upper bound is known (often called
Effective Nullstellensatz), and known to be tight, but we could ask about strengthening
such bounds to circuit size. For ideal membership, we observed that a subexponential IPS
size upper bound would violate the Space Hierarchy Theorem because ideal membership in
general is EXPSPACE-complete. But for radical membership, we do not know how to rule
this out.

I Open Problem 9 ([4, Open Question 1.11]). For any

G(~x) ∈
√
〈F1(~x), . . . , Fm(~x)〉

is there always an IPS-certificate of subexponential size that G is in the radical of 〈F1, . . . , Fm〉?
Similarly, for G,F1, . . . , Fm ∈ Z[x1, . . . , xn], is there a constant-free IPSZ-certificate of subex-
ponential size that aG(~x) is in the radical of the ideal 〈F1, . . . , Fm〉 for some integer a?

I Open Problem 10 ([4, General Question 7.4]). Given a family of cosets of ideals f (0)
n +In (or

more generally modules) of polynomials, with In ⊆ R[x1, . . . , xpoly(n)], consider the function
families (fn) ∈ (f (0)

n + In) (meaning that fn ∈ f (0)
n + In for all n) under any computational

reducibility ≤ such as p-projections. What can the ≤ structure look like? For example:
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a. When, if ever, is there such a unique ≤-minimum (even a single nontrivial example would
be interesting)?

b. Can there be infinitely many incomparable ≤-minima?
c. Say a ≤-degree d is “saturated” in (f (0)

n + In) if every ≤-degree d′ ≥ d has some
representative in f (0) + I. Must saturated degrees always exist? We suspect yes, given
that one may multiply any element of I by arbitrarily complex polynomials.

d. What can the set of saturated degrees look like for a given (f (0)
n + In)?

e. Must every ≤-degree in f (0) + I be below some saturated degree?
f. What can the ≤-structure of f (0) + I look like below a saturated degree?
g. ...

Problem 10 is of interest even when f (0) = 0, that is, for ideals and modules of functions
rather than their nontrivial cosets. For ideals, these questions are also related to algebraic
natural proofs [2, 3].
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4.5 The Complexity of Linear Resolution
Jan Johannsen (Ludwig-Maximillians-Universität München, DE, jan.johannsen@ifi.lmu.de)
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4.5.1 Preliminaries

A linear resolution refutation of a CNF formula F is a sequence of clauses C1, . . . , Cm such
that

C1 is a clause from F ,
Cm is the empty clause, and
each clause Ci+ is obtained by resolution from Ci and either a clause D from F , or an
earlier clause Cj for j < i.

In other words, a resolution refutation is linear if in every resolution step, one of the used
clauses is the one derived in the immediately preceding step.

It is now known that linear resolution p-simulates tree-like resolution, but is not simulated
by regular resolution [1].
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4.5.2 Problem

The relationship between linear and full resolution with respect to p-simulation is a long-
standing open problem.

I Open Problem 11. Is there a super-polynomial or even exponential separation between lin-
ear and unrestricted resolution? Or does linear resolution p-simulate unrestricted resolution?
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4.6 New Hard Examples for Regular Resolution
Jan Johannsen (Ludwig-Maximillians-Universität München, DE, jan.johannsen@ifi.lmu.de)
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4.6.1 Preliminaries

A (dag-like) resolution refutation is regular if on every path through the proof dag every
variable is resolved on at most once. There are several examples that witness an exponential
separation of regular from unrestricted dag-like resolution [1, 4].

An ongoing direction of research tries to analyse the complexity of refinements of resolution
that correspond to contemporary SAT algorithms using conflict-driven clause learning. These
refinements are between regular and full dag-like resolution w.r.t. size complexity. There are
polynomial upper bounds in these systems for all the hard examples mentioned above [2, 3],
so they can have an exponential speed-up over regular resolution.

4.6.2 Problem

An open question is to give a super-polynomial or exponential separation between these
clause learning proof systems and full resolution. Any separating example needs to necessarily
also separate regular from full resolution. But for all such known exaples we have polynomial
upper bounds. So to attack this problem, we first need to solve the following:

I Open Problem 12. Find new examples of families of formulas that have polynomial size
resolution refutations, but require exponential size regular resolution refutations.
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4.7 R(Lin/F2) Lower Bounds via Randomised Feasible Interpolation
Igor C. Oliveira (University of Oxford, GB, igor.carboni.oliveira@cs.ox.ac.uk)
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4.7.1 Preliminaries

We are interested in the problem of establishing (dag-like) lower bounds for R(Lin/F2), a
proof system that corresponds to resolution extended with linear equations over the field F2.
For more details about this proof system, we refer to Itsykson and Sokolov [1], where tree-like
lower bounds are also described. (Note that the work of Buss, Kolodziejczyk, and Zdanowski
[2] shows a collapse of Fd[⊕]-Frege to depth three, which further motivates the study of
R(Lin/F2) and its extensions.)

More recently, Krajíček [4] proposed an extension of the feasible interpolation technique
that employs randomized communication complexity, and that allows one to reduce lower
bounds for R(Lin/F2) and other proof systems to the investigation of monotone circuits with
local oracles. This is an extension of monotone circuits that incorporates extra inputs (local
oracles) to help the computation. While super-polynomial lower bounds against monotone
circuits with local oracles for computational problems such as clique vs. colorings would
provide lower bounds for R(Lin/F2), currently only restricted lower bounds against such
circuits are known [3].

We refer to the last paper for a precise definition of this circuit model. Here we only
recall that a parameter µ measures the power of the local oracles. (It is connected to the
failure probability of certain randomised communication protocols derived from propositional
proofs.) This parameter appears in the statement of the problem, described next.

4.7.2 Problems

Let k ≥ 3 be a positive integer, Un,k be the set of n-vertex graphs corresponding to k-cliques,
and Vn,k be the set of complete (k − 1)-partite graphs over n vertices. Show that any
monotone circuit with local oracles and locality µ ≤ 1/100 that separates Un,k and Vn,k must
have super-polynomial size (say, for some super-constant function k(n) ≤ n).

We are also interested in non-trivial results for k = 3 (triangles vs. complete bipartite
graphs). While lower bounds in this regime will not have important consequences in proof
complexity, they might shed light into the power and limitations of this circuit model, and
further inform the randomised feasible interpolation program.
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4.8 Unprovability of Circuit Upper Bounds in Logical Theories
Igor C. Oliveira (University of Oxford, GB, igor.carboni.oliveira@cs.ox.ac.uk)
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4.8.1 Preliminaries

It is believed that NP * P/poly, but it is consistent with our knowledge that NTIME[2n] ⊆
SIZE[O(n)]. Given the lack of techniques for proving non-trivial lower bounds, we are
interested in the logical complexity/(un)provability aspects of circuit complexity theory. This
research program is a few decades old, but for brevity we restrict our discussion to a small
number of references more directly connected to our problem.

Cook’s theory PV [1] or its mild extensions seem to formalize a large fraction of con-
temporary complexity theory. (We refer to the recent work of Muller and Pich [2] for more
background on the formalization of circuit complexity in bounded arithmetic.) It is therefore
of interest to understand when a given conjecture is provable or at least consistent with PV.
We believe that NP requires large circuits, but since we don’t know how to establish this
result at this point, can we at least show that PV does not prove that NP ⊆ SIZE[100n]?

Cook and Krajíček [3] established conditional results of this form for PV and S1
2 . More

recently, Krajíček and Oliveira [4] unconditionally showed that PV does not prove that P
(polynomial time) is contained in SIZE[nk], when k is a fixed constant. In particular, there
is a model M of PV where a lot of complexity theory holds, and moreover in M there are
languages in P that cannot be computed by circuits of size n100.

We would like to extend this theorem to an unprovability result for stronger logical theories.
A natural candidate is the theory APC1 investigated by E. Jerabek and other authors. This
theory extends PV and allows the formalization of many probabilistic constructions and
randomised algorithms. Formally, APC1 adds to the axioms of PV a dual weak pigeonhole
principle for polynomial-time function symbols. With enough work, this can be used to
(approximately) formalize probabilities and events. We refer to Jerabek’s related work and
Muller and Pich [2] for further details.

4.8.2 Problem

Let UPk,c(f) be the upper bound sentence (in the language of PV) from Krajíček and Oliveira
[4] stating that the language encoded by the function symbol f can be computed by circuits
of size at most c · nk. Show that for each k ≥ 1 there is a function symbol g in the language
of PV such that for no constant c ≥ 1 APC1 proves the sentence UPk,c(g).

We believe that a solution to this problem will require interesting new ideas from logic
and complexity theory.
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4.9 Dag Communication Lower Bounds
Dmitry Sokolov (KTH Royal Institute of Technology – Stockholm, SE, sokolovd@kth.se)
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I Definition 1. Let U, V ∈ {0, 1}n be two sets. Let us consider a triple (H,A,B), where
H is a directed acyclic graph, A : H × U → N and B : H × V → N. We say that vertex
h ∈ H is valid for pair (x, y) ∈ U × V iff A(h, x) = B(h, y) = 1. We call this triple a EQ
dag protocol for the pair (U, V ) and some relation N : U × V → T , where T is a finite set of
“possible answers”, if the following holds:

H is an acyclic graph and the out-degree of all its vertices is at most 2;
the leaves of H are marked by element of T ;
there is a root s ∈ H with in-degree 0 and this vertex is valid for all pairs from U × V ;
if h ∈ H is valid for pair (x, y) and h is not a leaf then at least one child of h is valid for
(x, y);
if h ∈ H is valid for pair (x, y), h is a leaf and h is marked by t ∈ T then t ∈ N(x, y).

The size of the game is the size of the graph H.
We say that we have boolean dag protocol iff vertex is valid in case that A(h, x) =

B(h, y) = 1.

I Definition 2. Canonical search problem Searchϕ for an unsatisfiable formula ϕ(x, y) in
CNF: Alice receives values for the variables x, Bob receives values for the variables y, and
their goal is to find a clause of ϕ such that it is unsatisfied by this substitution.

We know that in case of boolean protocols an analog of Karchmer–Wigderson Theorem
holds for boolean protocols (for KW and KWm relations) and (monotone) circuits. If we
apply this protocols for canonical search problem this protocols capture the huge class of
proof systems. And we can prove lower bound for boolean protocols.

I Open Problem 13. Can one prove lower bounds on EQ dag protocols for Searchϕ or
KWm relations?

I Open Problem 14. In boolean case can we prove lower bound for three players in NOF
model for Searchϕ(x,y,z) relation (vertex is valid iff A(h, x, y) = B(h, y, z) = C(h, x, z) = 1)?

4.10 Game Characterization of Resolution Space
Jacobo Torán (University of Ulm, DE, jacobo.toran@uni-ulm.de)
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4.10.1 Preliminaries

Game characterizations of complexity measures in resolution have helped to better understand
these measures and the relations among them. Such game characterizations exist for width [1],
space in tree-like resolution [2], depth [3] and variable space [4].

4.10.2 Problem

Is there a characterization of resolution clause space in terms of a combinatorial game?
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4.11 Miters
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4.11.1 Preliminaries

A “miter” is a type of problem considered by hardware designers. Given a circuit C,
with inputs x1, . . . , xn, and gates g1, . . . , gm, construct an isomorphic circuit C ′ with gates
g′1, . . . , g

′
m. The miter M(C) is the CNF formula formalizing the statement “C and C ′ give

different outputs for the inputs x1, . . . , xn.”
Obviously, this statement is unsatisfiable, and what is more, it has a short, narrow

resolution refutation. However, CDCL solvers have a hard time with such statements.
Donald Knuth [1] describes this situation as “somewhat scandalous.”

4.11.2 Problem

The problem is simply to give a good theoretical explanation of what is going on here.
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5 Examples of Outcomes of the Workshop

It still a bit too early for any concrete publications to have resulted from the workshop, but
participants have reported that the the following papers, in different stages of preparation,
were significantly influenced by discussions during the workshop:
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5 Alasdair Urquhart: Switching lemmas and bounded depth Frege proofs. Manuscript in
preparation

Participants of the workshop have reported about other concrete research projects that
resulted to a large part from contacts during the week at Dagstuhl. Since many of these
projects are still in a start-up phase it would seem slightly premature to list concrete
participants, but it can be mentioned that these projects involve researchers from the
Academy of Sciences of the Czech Republic, KTH Royal Institute of Technology, Ludwig
Maximilians Universität München, Tata Institute of Fundamental Research, University of
Toronto, and University of Warsaw, in various constellations.

6 Evaluation by Participants

In addition to the traditional Dagstuhl evaluation after the workshop, the organizing commit-
tee also arranged for a separate evaluation which specific questions about different aspects of
the workshop. Below follows a summary of the answers.

The participants unanimously praise three elements of the workshop. One was good
talks, both in the selection of topics and in length–in particular, the survey talks were highly
appreciated. 78% of the respondents found the balance between longer and shorter talks
mostly right, and 61% approved of the choice to have 55-minutes survey talks rather than
80-minutes tutorials. Another good aspect was the focused topic of the workshop, which
made it easy to keep discussions relevant. Finally, the choice of participants was rated as
balanced and conducive to a good atmosphere.

There was a general feeling, however, that the workshop program was perhaps a bit on
the dense side, especially during the first one or two days.

When asked about topics that were felt to be missing, participants mostly cited neigh-
bouring areas such as SAT solving, switching lemmas, and computational complexity theory
in general, but some participants were also missing specific topics within proof complexity
such as upper bounds for the Frege proof system and lower bounds for space complexity. It
should be said, though, that the choice of topics for survey talks were based on an opinion
poll before the workshop, and all topics with strong support in this opinion poll were given a
survey talk slot (except when the organizing committee was unable to find a suitable speaker
willing to give a survey talk).

As for the opposite question, whether some topics were superfluous, there was no clear
consensus among the respondents, and the conclusion seems to be that for each topic a clear
majority of participants felt that this topic was an essential one for the workshop. We had a
combined panel discussion and open problems session, which 65% of the participants rated
positively.

Regarding the social aspects of the seminar, participants were disappointed that there
was not a hike, but felt it was a good decision to drop it because of bad weather. 89% of
respondents enjoyed the music evening that was organized on Thursday.

To sum up, feedback was overwhelmingly positive. 83% of participants said they would
definitely come again to a similar workshop, and 17% would probably come again.
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