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Abstract
Mathematical models for optimal decisions often require both nonlinear and discrete components.
These mixed-integer nonlinear programs (MINLP) may be used to optimize the energy use of
large industrial plants, integrate renewable sources into energy networks, design biological and
biomedical systems, and address numerous other applications of societal importance. The first
MINLP algorithms and software were designed by application engineers. While these efforts
initially proved useful, scientists, engineers, and practitioners have realized that a transforma-
tional shift in technology will be required for MINLP to achieve its full potential. MINLP has
transitioned to a forefront position in computer science, with researchers actively developing
MINLP theory, algorithms, and implementations. Even with their concerted effort, algorithms
and available software are often unable to solve practically-sized instances of these important
models. Current obstacles include characterizing the computability boundary, effectively exploit-
ing known optimization technologies for specialized classes of MINLP, and effectively using logical
formulas holistically throughout algorithms.
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1 Executive Summary

Pierre Bonami (IBM Spain – Madrid, ES)
Ambros M. Gleixner (Konrad-Zuse-Zentrum – Berlin, DE)
Jeff Linderoth (University of Wisconsin – Madison, US)
Ruth Misener (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Pierre Bonami, Ambros M. Gleixner, Jeff Linderoth and Ruth Misener

This workshop aimed to address this mismatch between natural optimization models for
important scientific problems and practical optimization solvers for their solution. By bringing
together experts in both theory and implementation, this workshop energized efforts making
MINLP as ubiquitous a paradigm for both modeling and solving important decision problems
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as mixed-integer linear programming (MIP) and nonlinear programming (NLP) have become
in recent years. In particular, we highlighted:

MINLP Solver Software Early in the workshop, the main developers of MINLP
software packages outlined the current state of their software. This served as a needs
analysis for the community to identify crucial areas for future development. We also
dedicated a break-out session discussing best practices for conducting scientifically-
meaningful computational experiments in MINLP.
Intersecting Mixed-Integer & Nonlinear Programming MINLP is a superset of
both mixed integer linear optimization and nonlinear optimization, so we leveraged the
best methods from both by incorporating both sets of experts.
Driving Applications Applications experts, e.g. in petrochemicals, manufacturing, and
gas networks, offered their perspectives on what practitioners need from MINLP solvers.
We dedicated an entire break-out session to energy applications and explored what are
the needs for MINLP within the energy domain. During the open problem session, several
other applications experts outlined other open problems in engineering.
Connections between MINLP and machine learning Many machine learning chal-
lenges can be formulated as MINLP. Also, machine learning can significantly improve
MINLP solver software. We explored these connections at length in a break-out session.

This seminar brought together an assortment of computer scientists with expertise in
mathematical optimization. Many of the presentations were more theoretical and suggested
new technologies that the solver software could incorporate. Other presentations were more
practical and discussed building solver software or applying that software to specific domain
applications.

As a result of this seminar, we are planning a special issue in the journal “Optimization
& Engineering”. We are also working to turn the notes from our open problem session into a
larger document that will start a conversation with the entire mathematical optimisation
community. Participants broadly expressed that this week at Dagstuhl helped them workshop
their papers, so several academic papers will explicitly mention the Dagstuhl seminar. Finally,
a new set of metrics for comparing MINLP solvers were developed at this meeting and will
greatly aid future solver testing.
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3 Overview of Talks

3.1 A deterministic global optimisation algorithm for mixed-integer
nonlinear bilevel programs

Claire Adjiman (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Claire Adjiman

Joint work of Claire Adjiman, Remigijus Paulavicius, Polyxenia-M. Kleniati
Main reference Polyxeni-Margarita Kleniati, Claire S. Adjiman: “A generalization of the Branch-and-Sandwich

algorithm: From continuous to mixed-integer nonlinear bilevel problems”, Computers & Chemical
Engineering, Vol. 72, pp. 373–386, 2015.

URL http://dx.doi.org/10.1016/j.compchemeng.2014.06.004

We present Branch-and-Sandwich, an algorithm for the global solution of mixed-integer
nonlinear bilevel programs, based on a branch-and-bound framework in which branching
is permitted on outer and inner variables. We discuss the tree management and bounding
strategies, present some examples and introduce ongoing implementation efforts and a test
library.

3.2 Strengthened Semidefinite Relaxations for Quadratic Optimization
with Switching Variables

Kurt M. Anstreicher (University of Iowa, US)

License Creative Commons BY 3.0 Unported license
© Kurt M. Anstreicher

We consider indefinite quadratic optimization problems that include continuous and discrete
variables of the form F = {(x, y) | 0 ≤ x ≤ y, y ∈ {0, 1}n}. The binary y variables are
often referred to as “switching” or “indicator” variables and occur frequently in applications.
Our focus is to represent, or approximate, the convex hull of {(x, xx′, y) | (x, y) ∈ F}
using constraints that include semidefiniteness conditions. We obtain an exact convex hull
representation for n = 2 that also provides valid constraints that can be used to tighten
semidefinite relaxations for higher n.

3.3 Online generation via offline selection of strong linear cuts from
QP SDP relaxation

Radu Baltean-Lugojan (Imperial College London, GB) and Ruth Misener (Imperial College
London, GB)

License Creative Commons BY 3.0 Unported license
© Radu Baltean-Lugojan and Ruth Misener

Joint work of Radu Baltean-Lugojan, Ruth Misener, Pierre Bonami, Andrea Tramontani

Convex and in particular semidefinite relaxations (SDP) for non-convex continuous quadratic
optimization can provide tighter bounds than traditional linear relaxations. However, using
SDP relaxations directly in Branch&Cut is impeded by lack of warm starting and inefficiency
when combined with other cut classes, i.e. the reformulation-linearization technique. We
present a general framework based on machine learning for a strong linear outer-approximation
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that can retain most tightness of such SDP relaxations, in the form of few strong low
dimensional linear cuts selected offline. The cut selection complexity is taken offline by using
a neural network estimator (trained before installing solver software) as a selection device
for the strongest cuts.

3.4 Finding feasible solutions in MINLP problems
Pietro Belotti (Fair Isaac, GB)

License Creative Commons BY 3.0 Unported license
© Pietro Belotti

Finding feasible solutions in MINLPs is helpful beyond providing a sensible result to the solve
process. In MINLP, especially the nonconvex variant, a good cutoff is of double usefulness in
finding a global optimum as it reduces the tree search but also, most importantly, reduces
variables bounds, which in turn results in a better linearization and hence a tighter lower
bound.

We present two heuristics for MINLP: one is an ancient MINLP heuristic implemented in
the very first version of Couenne, which is a probing-based rounding algorithm. The second
is a heuristic to find a solution to a NLP problem that is currently used in the Xpress-SLP
solver.

3.5 Incorporating Quadratic Approximations in the
Outer-Approximation Method for Convex MINLP

David Bernal Neira (Carnegie Mellon University – Pittsburgh, US) and Ignacio Grossmann
(Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© David Bernal Neira and Ignacio Grossmann

Joint work of David Bernal Neira, Ignacio E. Grossmann, Lijie Su, Lixin Tang, Jan Kronqvist
Main reference Lijie Su, Lixin Tang, David E. Bernal, Ignacio E. Grossmann: “Improved quadratic cuts for convex

mixed-integer nonlinear programs”, Computers & Chemical Engineering, Vol. 109, pp. 77–95, 2018.
URL http://dx.doi.org/10.1016/j.compchemeng.2017.10.011

We present two new methods for solving convex mixed-integer nonlinear programming
problems based on the outer approximation method. The first method is inspired by the
level method and uses a regularization technique to reduce the step size when choosing new
integer combinations. The second method combines ideas from both the level method and
the sequential quadratic programming technique and uses a second order approximation of
the Lagrangian when choosing the new integer combinations. The main idea behind the
methods is to choose the integer combination more carefully in each iteration, in order to
obtain the optimal solution in fewer iterations compared to the original outer-approximation
method. We prove rigorously that both methods will find and verify the optimal solution
in a finite number of iterations. Furthermore, we present a numerical comparison of the
methods based on 109 test problems, which illustrates the benefits of the proposed methods.
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3.6 Numerical Challenges in MINLP solvers
Timo Berthold (FICO – Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Timo Berthold

While numerics are already challenging us in MILP, it is my impression that in MINLP it is
even more demanding to build a robust model and to develop a numerically stable solver. In
MILP and MINLP solvers, reproducibility and reliability are key features to success. All
major MILP solvers are deterministic, even in parallel mode, numerical tolerances are carefully
chosen and various procedures and safety measures are implemented aiming for avoiding
numerical issues, e.g. in presolving or cutting plane generation. In LP and MILP, there are
approaches to solver problems to “true”, exact optimality. One possibility to extend those is
the use of hybrid approaches like iterative refinement for LP and QP ([1]) or a hierarchy of
dual bounding procedures for MILP ([2]). Then, in MILP models, challenges occur that are
not present in MILP, like super-linear error propagation, boundary conditions, and singular
points. Moreover, some of the most-used solution methods are particularly prone to getting
solutions which are “slightly off”. Take outer approximation as an example. Since we are
approximating from the outside by cutting, we typically stop when the approximate solution
is within the feasibility tolerances for the constraints, or differently speaking, violating them
by the maximal amount that we are willing to tolerate. Also, vanishing eigenvectors are a
problem in MINLP/OA which does not have a pendant in MILP.

I would like to kick off a discussion on:
How are MINLP models different from MILP models?
How can we measure the numerical conditioning of a MINLP model?
Why are some of our standard solution approaches asking for numerical troubles and how
can we address this?
What would be an “exact” standard to compare floating-point, numerical-tolerance solvers
against?
Is numerical robustness a blocker for MINLP becoming an out-of-the-box tool like MILP?

References
1 Gleixner, Ambros M., Daniel E. Steffy, and Kati Wolter. “Iterative refinement for linear

programming.” INFORMS Journal on Computing 28.3 (2016): 449–464.
2 Cook, William, et al. “A hybrid branch-and-bound approach for exact rational mixed-

integer programming.” Mathematical Programming Computation 5.3 (2013): 305–344.

3.7 Optimization using both models and input-output data
Fani Boukouvala (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Fani Boukouvala

Joint work of Fani Boukouvala, Jianyuan Zhai, Sun Hye Kim

In many engineering fields, there is a continuously increasing interest in coupling equation-
based first-principle modeling with information that comes in the form of input-output data,
in order to be able to optimize systems incorporating very detailed information regarding
the material, flow, geometry, physical properties and chemistry of the systems. This need
has given rise in developments of optimization methods that can optimize systems without
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equations or derivatives, but simply with the exchange of input-output data streams. The
typical applications of data-driven optimization, consider the system that needs to be
optimized entirely as a “black-box”, however, many applications exist (i.e., process synthesis
and design of modular manufacturing systems) which can be formulated as hybrid mixed
integer nonlinear optimization problems, comprised of both explicitly known equations and
black-box, or data-dependent equations. This talk highlights the need for MINLP solvers to
be able to incorporate black-box components, and proposes ways of enabling this capability.
Specifically, we propose several ideas for developing adaptive, flexible and tractable surrogate
parametric functions to represent the input-output data and show their effectiveness in
optimizing a library of benchmark problems, which are treated as black-box functions. In
order to develop efficient and useful surrogate models, we borrow ideas from machine learning
(i.e., feature selection), numerical integration (i.e., sparse grid sampling and polynomial
interpolation) and optimization under uncertainty.

3.8 SMT-based mixed non-linear optimization
Andrea Callia D’Iddio (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Andrea Callia D’Iddio

I would like to introduce ManyOpt, an optimization tool based on Satisfiability Modulo
Theories (SMT). SMT solving can provide methods for feasibility checking whose main
benefits are incrementality and deductive reasoning. Thanks to these benefits, it is possible
to have a “warm start” in which an initial optimization problem is solved, and to take
advantage of the learned information to solve extensions or modifications of that problem.
This would be especially useful for what-if scenarios and for an interactive use of the tool.
Experimental results with benchmarks from the MINLPLIB2 library show the effectiveness
of the approach.

3.9 On some hard quadratic unconstrained boolean optimization
problems

Sanjeeb Dash (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Sanjeeb Dash

In this talk we discuss the solution of hard quadratic unconstrained optimization problems
arising from Ising model problems defined on Chimera graphs.
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3.10 Subset selection with sparse matrices
Alberto Del Pia (University of Wisconsin – Madison, US), Santanu Dey (Georgia Institute
of Technology – Atlanta, US), and Robert Weismantel (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Alberto Del Pia, Santanu Dey, and Robert Weismantel

In subset selection we search for the best linear predictor that involves a small subset of
variables. Due to the vast applicability of this model, many approaches have been proposed
by different communities, including enumeration, greedy algorithms, branch and bound, and
convex relaxations. Our point of departure is to understand the problem from a computational
complexity viewpoint. Using mainly tools from discrete geometry, we show that the problem
can be solved in polynomial time if the associated data matrix is obtained by adding a fixed
number of columns to a block diagonal matrix. This is joint work with Santanu S. Dey and
Robert Weismantel.

3.11 Robust Treatment of Non-Convex Optimization Problems with
Application to Gas Networks

Denis Aßmann (FAU), Frauke Liers (FAU), Juan Vera (Tilburg), and Michael Stingl (FAU)

License Creative Commons BY 3.0 Unported license
© Denis Aßmann (FAU), Frauke Liers (FAU), Juan Vera (Tilburg), and Michael Stingl (FAU)

Main reference D. Aßmann, F. Liers, M. Stingl, J. Vera: “Deciding Robust Feasibility and Infeasibility Using a Set
Containment Approach: An Application to Stationary Passive Gas Network Operation”, 2017

URL https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/136
Main reference D. Aßmann, F. Liers, M. Stingl: “Decomposable Robust Two-Stage Optimization: An Application

to Gas Network Operations Under Uncertainty”, 2017
URL https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/209

In this talk, we will study uncertain stationary gas network problems. We will first explain
the concept that can also be applied in other contexts and will then make it concrete for the
application. For passive networks, the task of deciding robust feasibility of the corresponding
nonlinear two-stage fully adjustable problem is equivalent to deciding set containment of
a projection of the feasible region and the uncertainty set. For answering this question,
two polynomial optimization problems – one for showing feasibility and one for showing
infeasibility – are developed.

For the case of networks with active elements such as compressors, we reformulate the
robust two-stage problem and then apply a piecewise linear relaxation of the non-convex
functions. It is shown that comparably large realistic instances can be solved in practice,
with only a mild increase in conservatism due to the used piecewise linear relaxation.

This is joint work with Denis Aßmann, Michael Stingl (both FAU), and Juan Vera
(Tilburg).
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3.12 New SOCP relaxation and branching rule for bipartite bilinear
programs

Santanu Dey (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Santanu Dey

Joint work of Santanu Dey, Asteroide Santana, Yang Wang

A bipartite bilinear program (BBP) is a quadratically constrained quadratic optimization
problem where the variables can be partitioned into two sets such that fixing the variables
in any one of the sets results in a linear program. We propose a new second order cone
representable (SOCP) relaxation for BBP, which we show is stronger than the standard SDP
relaxation intersected with the boolean quadratic polytope. We then propose a new branching
rule inspired by the construction of the SOCP relaxation. We describe a new application of
BBP called as the finite element model updating problem, which is a fundamental problem in
structural engineering. Our computational experiments on this problem class show that the
new branching rule together with an polyhedral outer approximation of the SOCP relaxation
outperforms a state-of-the-art commercial global solver in obtaining dual bounds.

3.13 Deep Learning and Mixed Integer Optimization
Matteo Fischetti (University of Padova, IT)

License Creative Commons BY 3.0 Unported license
© Matteo Fischetti

Joint work of Matteo Fischetti, Jason Jo
Main reference Matteo Fischetti, Jason Jo: “Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A

Feasibility Study”, CoRR, Vol. abs/1712.06174, 2017.
URL http://arxiv.org/abs/1712.06174

Deep Neural Networks (DNNs) are very popular these days, and are the subject of a very
intense investigation. A DNN is made up of layers of internal units (or neurons), each
of which computes an affine combination of the output of the units in the previous layer,
applies a nonlinear operator, and outputs the corresponding value (also known as activation).
A commonly-used nonlinear operator is the so-called rectified linear unit (ReLU), whose
output is just the maximum between its input value and zero. In this (and other similar
cases like max pooling, where the max operation involves more than one input value),
for fixed parameters one can model the DNN as a 0-1 Mixed Integer Linear Program (0-1
MILP) where the continuous variables correspond to the output values of each unit, and a
binary variable is associated with each ReLU to model its yes/no nature. In this talk we
discuss the peculiarity of this kind of 0-1 MILP models, and describe an effective bound-
tightening technique intended to ease its solution. We also present possible applications of
the 0-1 MILP model arising in feature visualization and in the construction of adversarial
examples. Computational results are reported, aimed at investigating (on small DNNs) the
computational performance of a state-of-the-art MILP solver when applied to a known test
case, namely, hand-written digit recognition.
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3.14 Improved quadratic cuts for convex mixed-integer nonlinear
programs

Ignacio Grossmann (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Ignacio Grossmann, Lijie Su, Lixin Tang, David E. Bernal
Main reference Marco A. Duran, Ignacio E. Grossmann: “An outer-approximation algorithm for a class of

mixed-integer nonlinear programs”, Math. Program., Vol. 36(3), pp. 307–339, 1986.
URL http://dx.doi.org/10.1007/BF02592064

This presentation presents scaled quadratic cuts based on scaling second-order Taylor expan-
sion terms for decomposition methods, Outer Approximation (OA) and Partial Surrogate
Cuts (PSC) for convex Mixed Integer Nonlinear Programing (MINLP). The scaled quadratic
cut is proven to be a stricter and tighter underestimation for the convex nonlinear functions
than the classical supporting hyperplanes. The scaled quadratic cut can accelerate the
convergence of the MINLP methods. We integrate the presented strategies of the scaled
quadratic cuts, multi-generation cuts with OA and PSC, and develop six types of MINLP
solution methods with scaled quadratic cuts. We also discuss the computational imple-
mentation of the Mixed Integer Quadratically Constrained Programming (MIQCP) master
problem that makes use of the Quadratically Constrained Programming (QCP) solution
methods. Numerical results of benchmark MINLP problems demonstrate the effectiveness of
the proposed MINLP solution methods with scaled quadratic cuts. In particular, numerical
experiments show that OA and PSC with scaled quadratic cuts and multigeneration cuts can
solve all the tested MINLP benchmark problems, and need few iterations and CPU solution
times, especially for difficult problems.

3.15 Binary Extended Formulations for Mixed-Integer Linear Programs
Oktay Gunluk (IBM TJ Watson Research Center – Yorktown Heights, US), Sanjeeb Dash
(IBM TJ Watson Research Center – Yorktown Heights, US), and Robert Hildebrand

License Creative Commons BY 3.0 Unported license
© Oktay Gunluk, Sanjeeb Dash, and Robert Hildebrand

Main reference Sanjeeb Dash, Oktay Gunluk, Robert Hildebrand: “Binary Extended Formulations of Polyhedral
Mixed-integer Sets”, R. Math. Program., Vol. 170(1), pp. 207–236, Springer, 2018.

URL https://doi.org/10.1007/s10107-018-1294-0
URL http://www.optimization-online.org/DB_HTML/2018/01/6403.html

We analyze different ways of constructing binary extended formulations of polyhedral mixed-
integer sets with bounded integer variables and compare their relative strength with respect
to split cuts. We show that among all binary extended formulations where each bounded
integer variable is represented by a distinct collection of binary variables, what we call
“unimodular” extended formulations are the strongest. We also compare the strength of
some binary extended formulations from the literature. Finally, we study the behavior of
branch-and-bound on such extended formulations and show that branching on the new binary
variables leads to significantly smaller enumeration trees in some cases.
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3.16 Disjunctive cuts and extended formulations for bilinear functions
Akshay Gupte (Clemson University, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Akshay Gupte, Thomas Kalinowski, Fabian Rigterink, Hamish Waterer
Main reference Akshay Gupte, Thomas Kalinowski, Fabian Rigterink, Hamish Waterer: “Extended formulations

for convex hulls of some bilinear functions”, CoRR, Vol. abs/1702.04813, 2017.
URL https://arxiv.org/abs/1702.04813

We consider the problem of convexifying a bilinear function over some bounded polyhedral
domain. When the incidence graph of this function is bipartite, the convex hull is known
to be polyhedral. Special structure on one set of variables in the partition can be used
to characterize this convex hull. If the structure is box constraints, then we note that a
sequential convexification procedure converges to the convex hull. If the structure is a
simplicial polytope, i.e., a polytope whose every facet is a simplex, then we use disjunctive
programming to derive a small (polynomial)-sized extended formulation of the convex hull.
Our second set of results is for the non-bipartite case of the incidence graph. Here, we
characterize several graphs for which a small (linear) number of inequalities that are valid
for the Boolean Quadric Polytope are sufficient to obtain a minimal extended formulation of
the convex hull of the bilinear function. Our proof technique uses a new measure-theoretic
characterization of combinatorial polytopes that we simplify from literature and establish for
graphs of nonlinear functions over boxes.

3.17 Semidefinite Programming Cuts in Gravity
Hassan Hijazi (Los Alamos National Laboratory, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Ksenia Bestuzheva, Hassan HIjazi
URL https://www.allinsights.io/gravity

Gravity is an open source, scalable, memory efficient modeling language for solving mathem-
atical models in Optimization and Machine Learning. It exploits structure to reduce function
evaluation time including Jacobian and Hessian computation. Gravity is implemented in c++
with a flexible interface allowing the user to specify the numerical accuracy of variables and
parameters. It is also designed to handle iterative model solving, convexity detection, distrib-
uted algorithms, and constraint generation approaches. When compared to state-of-the-art
modeling languages such as Jump, Gravity is 5 times faster in terms of function evaluation
and up to 60 times more memory efficient. It also dominates commercial languages such as
Ampl on structured models including quadratically-constrained and polynomial programs.
In this talk, we will give a brief overview of the language and present preliminary results on
generating linear cuts that capture the strength of semidefinite programming relaxations and
their implementation in Gravity.
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3.18 Stronger polyhedral relaxations for polynomial optimization
problems

Aida Khajavirad (Carnegie Mellon University – Pittsburgh, US) and Alberto Del Pia (Uni-
versity of Wisconsin – Madison, US)

License Creative Commons BY 3.0 Unported license
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We consider the Multilinear set defined by a collection of multilinear terms over the unit
hypercube. Such sets appear in factorable reformulations of many types of mixed-integer
nonlinear programs including polynomial optimization problems. Utilizing an equivalent
hypergraph representation for the Multilinear set, we derive various types of facet defining
inequalities for its polyhedral convex hull and present a number of tightness results based on
the acyclicity degree of the underlying hypergraph. Finally, we discuss the complexity of
corresponding separation problems.

3.19 Mixed-Integer Nonlinear Programming Applications: Pyomo
Tools for Tailored Strategies

Carl Damon Laird (Sandia National Labs – Albuquerque, US)

License Creative Commons BY 3.0 Unported license
© Carl Damon Laird

There are a number of applications in safety and critical infrastructure protection that are best
represented as mixed-integer nonlinear programming problems (MINLP), having nonlinear
models of the key physics and discrete decisions. These applications push the limits of general
off-the-shelf solvers due to large size induced by network structure or discretization due to
uncertainty or time. In this presentation, I will discuss two MINLP applications (gas detector
placement in chemical process facilities and global solution of ACOPF problems) and our
multi-tree solution strategies based on problem tailored relaxations and progressive refinement.
We are working on a toolset within Pyomo to provide support for rapid development of these
tailored solution strategies and testing of new relaxations and cuts.

3.20 Global solutions of MIQCPs
Amélie Lambert (CNAM – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Amélie Lambert

We present an algorithm for solving MIQCPs. For this, we develop a B&B based on
a quadratic convex relaxation of the initial problem. This relaxation is built from the
solution of a semidefinite programming relaxation and captures its strength. Computational
experiences show that our general method is competitive with standard solvers, on many
instances.This is a dummy text.
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3.21 Virtuous smoothing and more virtuous smoothing
Jon Lee (University of Michigan – Ann Arbor, US), Daphne Skipper, and Luze Xu

License Creative Commons BY 3.0 Unported license
© Jon Lee, Daphne Skipper, and Luze Xu

Joint work of Luze Xu, Daphne Skipper, Jon Lee

I am going to talk about how to smooth a univariate increasing concave function that is nice
except at 0, where the derivative maybe be intolerably large (or infinite, which is definitely
computationally intolerable). The killer application is power functions f(w) := wp, with
0 < p < 1, on [0,∞]; some advocate these types of functions for inducing sparsity. In the
context of MINLP (where we care about being nice to NLP solvers and in producing bounds),
I will explain how to do this in a nice way, with a particular increasing concave smooth
piecewise-defined function that is better than a simple shift. Our results apply under very
general conditions, which I won’t fully reveal in a 15 minute talk. Facility to handle our
methodology was introduced in SCIP. We (Luze Xu, Daphne Skipper, J. Lee) now have a
paper on arXiv (see [1]).

References
1 Luze Xu, Daphne Skipper, Jon Lee. More virtuous smoothing.

arXiv: https://arxiv.org/abs/1802.09112

3.22 Mixed-Integer Derivative-Free Optimization
Sven Leyffer (Argonne National Laboratory – Lemont, US)

License Creative Commons BY 3.0 Unported license
© Sven Leyffer

Many design and engineering applications result in optimization problems that involve
so-called black-box functions as well as integer variables, resulting in mixed-integer derivative-
free optimization problems (MIDFOs). MIDFOs are characterized by the fact that a single
function evaluation is often computationally expensive (requiring a simulation run for example)
and that derivatives of the problem functions cannot be computed or estimated efficiently.
In addition, many problems involve integer variables that are non-relaxable, meaning that
we cannot evaluate the problem functions at non-integer points.

We present a new method for non-relaxable MIDFO that enables us to prove global
convergence under idealistic convexity assumptions. To the best of our knowledge this is the
first globally convergent method for non-relaxable MIDFO apart from complete enumeration.
Our method constructs hyperplanes that interpolate the objective function at previously
evaluated points. We show that in certain portions of the domain, these hyperplanes are
valid underestimators of the objective, resulting in a set of conditional cuts. The union of
these conditional cuts provide a nonconvex underestimator of the objective. We show that
these nonconvex cuts can be modeled as a standard mixed-integer linear program (MILP).
We provide some early numerical experience with our new method.
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3.23 LP and SDP for kissing numbers
Leo Liberti (CNRS & Ecole Polytechnique – Palaiseau)

License Creative Commons BY 3.0 Unported license
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Joint work of Jon Lee, Leo Liberti
Main reference Jon Lee, Leo Liberti: “On an SDP relaxation for kissing number”, Optimization Letters, pp. 1–6,

Springer, 2018.
URL https://doi.org/10.1007/s11590-018-1239-9

Main reference Leo Liberti: “Mathematical programming bounds for kissing numbers, in Proc. of AIRO/ODS
2017, Proceedings in Mathematics and Statistics, Vol. 217., pp. 213–222, Springer, 2017.

URL https://doi.org/10.1007/978-3-319-67308-0_22

The “natural” MINLP formulation for the Kissing Number Problem (KNP) yields an SDP
formulation for which we prove a uselessness theorem. We also look at some practical issues
arising from the well known Delsarte LP bound.

3.24 External Intersection Cuts
James Luedtke (University of Wisconsin – Madison, US) and Eli Towle

License Creative Commons BY 3.0 Unported license
© James Luedtke and Eli Towle

Intersection cuts are a general framework for deriving valid inequalities for nonconvex
optimization problems. Specifically, given an open convex set C that does not contain any
feasible solution and a basic solution that lies inside C, the intersection cut is derived by
intersecting the rays of the cone K defined by the basic solution with the boundary of C, and
using these points to define the separating hyperplane. Intersection cuts can be derived from
both feasible and infeasible bases of a polyhedral relaxation of the problem. We investigate a
new approach for deriving cuts from infeasible bases for which the basic solution does not lie
in the set C (i.e., external points). Surprisingly, we find that the intersection cut framework
can be used to derive valid disjunctions from such solutons, which can in turn be used to
derive valid inequalities via Balas’ disjunctive cut framework. We present examples that
illustrate when this framework can identify cuts that are not implied by standard intersection
cuts.

3.25 Automatic reformulations of convex MINLPs in Minotaur
Ashutosh Mahajan (Indian Institute of Technology – Mumbai, IN)

License Creative Commons BY 3.0 Unported license
© Ashutosh Mahajan

Joint work of Ashutosh Mahajan, Sharma, Meenarli

We consider two structures that may be exploited for solving convex MINLPs faster: separ-
ability in the nonlinear functions and perspective reformulations. We have implemented
algorithms to identify these structures and reformulate the convex relaxation automatically.
We will describe these methods and show how they were implemented in the Minotaur
framework. Our experiments show that automatic reformulation can significantly reduce the
solution time for benchmark instances when these structures are detected.
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3.26 Optimising with Gradient-Boosted Trees and Risk Control
Miten Mistry (Imperial College London, GB), Dimitrios Letsios, Gerhard Krennrich, Ruth
Misener (Imperial College London, GB), and Robert M. Lee

License Creative Commons BY 3.0 Unported license
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Decision trees usefully represent the sparse, high dimensional and noisy nature of chemical
data from experiments. Having learned a function from this data, we may want to thereafter
optimise the function, e.g. for picking the best catalyst for a chemical process. This work
studies a mixed-integer nonlinear optimisation problem involving:

gradient boosted trees modelling catalyst behaviour
penalty functions mitigating risk
penalties enforcing chemical composition constraints.

We develop several heuristic methods to find feasible solutions, and an exact, branch and
bound algorithm that leverages structural properties of the gradient boost trees and penalty
functions. We computationally test our methods on an industrial instance from BASF.

3.27 Using 2D Projections for Separation and Propagation of Bilinear
Terms

Benjamin Müller (Konrad-Zuse-Zentrum – Berlin, DE), Ambros M. Gleixner (Konrad-Zuse-
Zentrum – Berlin, DE), and Felipe Serrano (Konrad-Zuse-Zentrum – Berlin, DE)
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One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is
the well-known McCormick relaxation for a bilinear product of two variables x and y over a
box-constrained domain. The starting point of this talk is the fact that these may be far from
tight if the feasible region and its convexification projected in the x-y-space is a strict subset
of the box. We develop an algorithm that solves a sequence of linear programs in order to
compute globally valid inequalities on x and y in a similar fashion as optimization-based
bound tightening. These valid inequalities allow us to exploit polyhedral results from the
literature in order to tighten the classical McCormick relaxation. As a consequence we
obtain a convexification procedure that can exploit objective cutoff information during
branch-and-bound. We use the MINLP solver SCIP to analyze the impact of the tighter
relaxations on instances of the MINLPLib2.

3.28 CIA Decomposition
Sebastian Sager (Universität Magdeburg, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Sager

Solving mixed-integer nonlinear programs (MINLPs) is hard in theory and practice. Decom-
posing the nonlinear and the integer part seems promising from a computational point of
view. In general, however, no bounds on the objective value gap can be guaranteed and
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iterative procedures with potentially many subproblems are necessary. The situation is
different for mixed-integer optimal control problems with binary choices that switch over
time and space. Here, a priori bounds were derived for a decomposition into one continuous
nonlinear control problem and one mixed-integer linear program, the combinatorial integral
approximation (CIA) problem.

We generalize and extend the decomposition idea. The extension is also transferable in a
straightforward way to recently suggested variants for certain partial differential equations, for
algebraic equations, for additional combinatorial constraints, and for discrete time problems.

All algorithms and subproblems were implemented in AMPL for proof of concept. Nu-
merical results show the improvement compared to standard CIA decomposition with respect
to objective function value and compared to the general purpose MINLP solver Bonmin with
respect to runtime.

3.29 ALAMO: Machine learning from data and first principles
Nikolaos V. Sahinidis (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Alison Cozad, David Miller, Zachary Wilson
Main reference Zachary T. Wilson, Nikolaos V. Sahinidis: “The ALAMO approach to machine learning”,

Computers & Chemical Engineering, Vol. 106, pp. 785–795, 2017.
URL http://dx.doi.org/10.1016/j.compchemeng.2017.02.010

We have developed the ALAMO methodology with the aim of producing a tool capable of
using data to learn algebraic models that are accurate and as simple as possible. ALAMO
relies on integer nonlinear optimization, derivative-free optimization, and global optimization
to build and optimize models. We present the methodology behind ALAMO and comparisons
with a variety of learning techniques, including the lasso.

3.30 Separating over the convex hull of MINL constraints
Felipe Serrano (Konrad-Zuse-Zentrum – Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Felipe Serrano

Techniques for computing facets of arbitrary mixed-integer sets have had many applications.
We apply the methodology to optimize over the relaxation obtained by intersecting the
convex hull of every 1-row MINL relaxations of an MINLP.
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3.31 Product convexification: A new relaxation framework for
nonconvex programs

Mohit Tawarmalani (Purdue University – West Lafayette, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Mohit Tawarmalani, Taotao He

We develop a new relaxation that exploits function structure while convexifying a product of
n functions. The function structure is encapsulated using at most d over and underestimators.
We convexify the function product in the space of estimators. The separation procedure
generates facet-defining inequalities in time polynomial in d for a fixed n. If the functions are
non-negative, the concave envelope can be separated in O(nd log(d)). Then, we extend our
construction to infinite families of under and overestimators. Our relaxation procedure can
be interpreted as a two-step procedure where we first express the product as a telescoping
sum and in the second step apply a simple relaxation strategy. This interpretation admits
various generalizations that yield various valid inequalities for nonconvex programs. We
conclude by discussing techniques to generate the over and underestimators and various ways
in which the proposed techniques improve and/or generalize current relaxation schemes for
factorable programs.

3.32 Mixed-integer convex representability
Juan Pablo Vielma (MIT – Camridge, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Miles Lubin, Ilias Zadik, Juan Pablo Vielma
Main reference Miles Lubin, Ilias Zadik, Juan Pablo Vielma: “Mixed-Integer Convex Representability”, in Proc. of

the Integer Programming and Combinatorial Optimization – 19th Int’l Conference, IPCO 2017,
Waterloo, ON, Canada, June 26-28, 2017, Proceedings, Lecture Notes in Computer Science,
Vol. 10328, pp. 392–404, Springer, 2017.
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We consider the question of which nonconvex sets can be represented exactly as the feasible
sets of mixed-integer convex optimization problems (MICP). We first show a complete
characterization for the case when the number of possible integer assignments is finite. We
then further study the characterization for the more general case of unbounded integer
variables and introduce a simple necessary condition for representability. This condition can
be used to show that the set of prime numbers is not MICP representable, even though it
can be represented using polynomial equations and integrality constraints. While the result
for the prime numbers suggests certain regularity of MICP representable sets, we show that
even for subsets of the natural numbers, MICP representable sets can be significantly more
irregular than rational mixed integer linear programming representable sets. Inspired by these
irregular MICP representable sets we introduce a notion of rational MICP representability
and show how this notion imposes regularity to MICP representable subsets of the natural
numbers, for compact convex sets and the graphs and epigraphs of certain functions. Finally,
we study other notions of regularity associated to infinite unions of convex sets with the
same volume. This is joint work with Miles Lubin and Ilias Zadik.
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3.33 Experimentation with MINLP solver software
Stefan Vigerske (GAMS Software GmbH, DE) and Ambros M. Gleixner (Konrad-Zuse-
Zentrum – Berlin, DE)

License Creative Commons BY 3.0 Unported license
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We briefly mention some issues that frequently come up when benchmarking software that
solves MINLPs. In particular, we discuss different interpretations of primal feasibility,
dependence of performance on the choice of the optimality tolerance, and difficulty in defining
the optimal value of a problem. By applying permutations to the order of variables and
constraints, we exploit the extend of performance variability, including its dependence on the
choice of optimality tolerance and whether the primal-dual integral is less prone to variability
than solving time.

3.34 Integer Optimal Solutions are Sparse
Robert Weismantel (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
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Joint work of Iskander Aliev, Jesus De Loera, Fritz Eisenbrand, Timm Oertel, Robert Weismantel

Given a system of m equations in n variables subject to nonnegativity, how sparse is an
optimal integer solution? We prove that an optimal integer solution is independent on n and
in the order of mlog(ma) where a is the largest absolute value of an entry of the constraint
matrix. This bound is asymptotically optimal.

3.35 Combining ADAL with Factorizing the Dual to Solve SDP
Angelika Wiegele (Alpen-Adria-Universität Klagenfurt, AT)

License Creative Commons BY 3.0 Unported license
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Joint work of Marianna De Santis, Franz Rendl, Angelika Wiegele
Main reference Marianna De Santis, Franz Rendl, Angelika Wiegele: “Using a Factored Dual in Augmented

Lagrangian Methods for Semidefinite Programming”, CoRR, Vol. abs/1710.04869, 2017.
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Using semidefinite programming has become a promising method for solving or approximating
various combinatorial optimization problems. However, solving semidefinite programs is
challenging due to either the large size of the matrices involved or a huge number of constraints.
The most prominent methods, interior point methods, run out of memory for many practical
applications.

Other algorithms for solving semidefinite problems are based on augmented Lagrangian
methods using various ways of dealing with the semidefiniteness constraint. We developed
such an augmented Lagrangian algorithm where we replace the semidefiniteness constraint
of the dual problem by a factorization Z = V V t. Using this factorization, we end up with
an unconstrained (non-convex) problem in V. We then perform updates of this matrix V
towards the optimal solution of Z following an alternating direction method or in the fashion
of the boundary point method. We will present results for computing the theta number of a
graph and computing bounds on the quadratic linear ordering problem.
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3.36 Mixed-integer conic optimization and MOSEK
Sven Wiese (MOSEK ApS – Copenhagen, DK)
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Recently Lubin et al. showed that all convex instances of the nonlinear mixed-integer
benchmark library MINLPLIB2 can be reformulated as conic optimization problems using 5
different cone types. These are the linear, the quadratic, the semidefinite, the exponential
and the power cones. The former three cones belong to the class of symmetric cones, whereas
the latter two are non-symmetric.

We call modeling with affine expressions and the five previously mentioned cone types
extremely disciplined modeling. Based on Lubin et al., and on the experience at MOSEK,
we claim that almost all practical convex optimization problems can be expressed using
extremely disciplined modeling, making it a quite general framework. Now it is much easier
to build optimization algorithms and software for extremely disciplined optimization models
rather than for general (less structured) convex problems due to the limited and explicit
structure. This fact is exploited in the software package MOSEK that we will discuss.

MOSEK has for many years been able to solve conic optimization problems over the
symmetric cones, but in the upcoming version 9 MOSEK can also handle the two non-
symmetric cones i.e. the exponential and the power cones. In this presentation we will discuss
the continuous and mixed-integer conic optimizer in MOSEK. In addition, computational
results, that illustrate the performance of MOSEK on problems including non-symmetric
cones, are presented.

4 Working groups

4.1 Applications in Energy
The working group on applications in the energy sector, led by Alexander Martin and
Frauke Liers from the University of Erlangen-Nuremberg, addressed both structural topics
at the interface between engineering and optimization as well as algorithmic bottlenecks. It
was agreed that mixed-integer nonlinear programming is a key paradigm for modeling and
solving engineering applications both in the energy sector and beyond. However, structurally,
it became clear that the engineering community puts a stronger focus on the modeling
aspect, while the applied mathematics community rather values algorithmic research, a
divide that is also reflected in the publication system. Algorithmically, the participants
identified that the mathematical MINLP community potentially overemphasizes research on
proving optimality. However, success of MINLP in engineering applications rather requires
near-optimal answers quickly and robustly. The participants formulated the recommendation
to adapt solver benchmarks to these needs in order to set the right incentives for solver
development according to requirements in practice.

4.2 Sound experimentation with MINLP software
This working group channeled discussions on several questions that lie at the core of the
seminar. Two technical presentations on Monday prepared the session thematically and
summarized central questions of solver benchmarking to the entire seminar. Stefan Vigerske
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from GAMS Software presented results from a series of experiments to compare how different
solvers react to various experimental parameters including tolerances for feasibility and
representations of models. Timo Berthold from the solver FICO Xpress highlighted particular
difficulties regarding numerical stability. During the session these observations were analyzed
in more detail. The participation of core developers from the MIP and MINLP solvers
ANTIGONE, BARON, Couenne, Gurobi, Minotaur, SCIP and FICO Xpress resulted in a
discussion on a technical level that is generally difficult to reach in a broader audience.

The main conclusions of the session were:
the need to incorporate experimentation on permuted models as has become standard in
the MIP community;
the need to develop more informative solver output beyond optimal solutions (including
sensitivity information);
the potential usefulness of a MINLP analogue to the „MIP kappa“ measure for an a
posteriori evaluation of numerical safety;
the affirmation that conducting fair benchmarks between different solvers remains inher-
ently difficult and users of solver software should not rely on simplistic comparisons.

Since our working group, Timo Berthold and the FICO Xpress team are already working
to move the solver software discussions into practice (see [1]).

References
1 https://community.fico.com/community/articles/blog/2018/05/01/

numerical-challenge-accepted

4.3 Connections between MINLP and Machine Learning
The machine learning working group was organized and led by Andrea Lodi. Dr. Lodi started
the session with a presentation on the two views of machine learning and optimization/mixed
integer nonlinear programming.

What can MINLP do for machine learning? One great example is improved algorithm
performance on classification problems where the loss function is not convex.
What can machine learning do for MINLP? He described one interesting example where
classical ML techniques were used to dynamically tune parameters for the commercial
MINLP software CPLEX. The discussion led to other areas where ML could be used to
help MINLP algorithm performance, for example in variable branching.

Matteo Fischetti then described an interesting application of mixed integer linear pro-
gramming to machine learning. It is a simple but interesting observation that for a very
common type of neural net activation function – the so-called ReLU – the mapping from input
to output performed by a (deep) neural network can be modeled as the solution of a mixed
integer program. Given a fixed network topology and weights, this gives the opportunity
of optimizing over inputs to find, for example, an input to the network that is “close” to
other inputs of a given class, but for which the output of the network classifies it differently.
This “adversarial” approach to machine learning is important for creating robust training
sets. There followed discussion on other classes of problems where MINLP could be used
in ML. First, MINLP is unlikely to be the appropriate tool for one of the most important
and canonical optimization problems in ML – the training of neural networks. Second, a
lot of interest was generated around finding other places where one could make use of the
equivalence of MIP and the neural network encoding.
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To finish the working group, Dr. Oktay Gunluk from IBM described an application in
symbolic regression. The algebraic operations in a grammar of valid mathematical expressions
can be modeled using integer variables, so the problem of finding the optimal mathematical
form of a model that best matches data, the so-called symbolic regression problem – can be
modeled as a MINLP. This is an extremely interesting and challenging class of problems. To
date, the MINLP technology can solve only small-sized problems.

5 Open problems

During the Open Problem Solving Session, we identified several areas where more research is
required. We are currently working on a more extensive document to be published in the
mathematical optimization community. This paper will give complete background for these
questions and invite further comments from the community.

5.1 Mathematical Foundations
Column generation - If we have many columns but a convex objective function, is there a
notion of column generation?
Second-Order Cone Representation - When is the convex hull of a semi-algebraic set
second-order cone representable? Alternatively, what is the minimum number of extra
variables needed for second-order cone representability?

5.2 Computing Implications
Here we focussed on the need to make MINLP solvers (and the relevant sub solvers) more
reliable, by discussing:

improving semidefinite optimization solvers, nonlinear optimization solvers working with
perspective functions, and nonlinear optimization solvers in general;
borrowing an assortment of tools from other communities, e.g. high performance comput-
ing, multiscale and multigrid methods, and logic-based methods;
extended formulations of mathematical optimization problems and why these are so
difficult to solve.

5.3 Engineering Applications
The applications where we see significant growth potential are machine learning, optimal
power flow, and the pooling problem. We discussed the current barriers to being able to
solve large-scale instantiations of these problems with MINLP.
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