
Report from Dagstuhl Seminar 18151

Program Equivalence
Edited by
Shuvendu K. Lahiri1, Andrzej Murawski2, Ofer Strichman3, and
Mattias Ulbrich4

1 Microsoft Research – Redmond, US, shuvendu.lahiri@microsoft.com
2 University of Oxford, GB, andrzej.murawski@cs.ox.ac.uk
3 Technion – Haifa, IL, ofers@ie.technion.ac.il
4 KIT – Karlsruher Institut für Technologie, DE, ulbrich@kit.edu

Abstract
Program equivalence is the problem of proving that two programs are equal under some defin-
ition of equivalence, e.g., input-output equivalence. The field draws researchers from formal
verification, semantics and logics.

This report documents the program and the outcomes of Dagstuhl Seminar 18151 “Program
Equivalence”. The seminar was organized by the four official organizers mentioned above, and
Dr. Nikos Tzevelekos from Queen-Mary University in London.

Seminar April 8–13, 2018 – http://www.dagstuhl.de/18151
2012 ACM Subject Classification Software and its engineering → Software verification, Software

and its engineering → Semantics
Keywords and phrases program equivalence, regression-verification, translation validation
Digital Object Identifier 10.4230/DagRep.8.4.1

1 Executive summary

Shuvendu K. Lahiri
Andrzej Murawski
Ofer Strichman
Mattias Ulbrich

License Creative Commons BY 3.0 Unported license
© Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich

Program equivalence is arguably one of the most interesting and at the same time important
problems in formal verification. It has attracted the interest of several communities, ranging
from the field of denotational semantics and the problem of Full Abstraction, to software
verification and Regression Testing. The aim of this meeting was to bring together the
different approaches and techniques of the current state of the art and to facilitate the
cross-pollination of research between these areas.

This interdisciplinary community met once before in the workshop on program equivalence
in London (April 2016). There was a general agreement among the participants that a
research community around this topic should be established in the form of a workshop and
eventually a conference, and that the interest in this topic continuously grows around the
world, including a growing interest in the industry. Furthermore, currently there is little
overlap in the conferences that some of the key players attend, to the point that many
participants were little aware of other participants’ work.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Program Equivalence, Dagstuhl Reports, Vol. 8, Issue 04, pp. 1–19
Editors: Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/18151
http://dx.doi.org/10.4230/DagRep.8.4.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 18151 – Program Equivalence

We were happy to witness that indeed participants learned greatly from this week,
collaborations were established, and cross fertilization between the communities occurred.
We hope to meet again in Dagstuhl in the future!

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 3

2 Table of Contents

Executive summary
Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich . . . 1

Overview of Talks
Relational Logic with Framing and Hypotheses (status report)
Anindya Banerjee and David A. Naumann . 5

Semantic Differencing for HipHop Bytecode
Nick Benton . 5

Verification with Reusing Exchangeable Results (Conditions, Witnesses, Precisions)
Dirk Beyer . 5

Validating Optimizations of Concurrent C/C++ Programs
Soham Chakraborty . 6

Semantics-Parametric Program Equivalence
Stefan Ciobaca . 7

Abstract Semantic Diffing of Evolving Concurrent Programs
Constantin Enea . 7

Property Directed Equivalence via Abstract Simulation
Grigory Fedyukovich . 8

A graph-rewriting refinement of the β law
Dan R. Ghica . 8

Regression Verification of Multi-Threaded Programs
Arie Gurfinkel and Ofer Strichman . 9

Model-checking contextual equivalence of higher-order programs with references
Guilhem Jaber . 9

Distinguishing between Communicating Transactions
Vasileios Koutavas . 10

DEEPSEC: Deciding Equivalence Properties in Security Protocols
Steve Kremer . 10

Interprocedural Relational Verification in SymDiff and Applications
Shuvendu K. Lahiri . 11

Polymorphic Game Semantics for Dynamic Binding
James Laird . 11

Program equivalences and program refinements for compiler verification
Xavier Leroy . 12

Client-Specific Equivalence Checking – An Overview
Yi Li and Julia Rubin . 13

Semantic Program Repair Using a Reference Implementation
Sergey Mechtaev . 13

An introduction to game semantics
Andrzej Murawski . 14

18151

4 18151 – Program Equivalence

Trace Equivalence For Android Malware Detection
Julia Rubin . 14

Proofs for Performance
Rahul Sharma . 15

Program equivalence problems in computational science
Stephen Siegel . 15

Proving Mutual Termination
Ofer Strichman . 16

The Software Analysis Workbench
Aaron Tomb . 16

Nominal Games: A Semantics Paradigm for Effectful Languages
Nikos Tzevelekos . 17

Relational Equivalence Proofs Between Imperative and MapReduce Algorithms
Mattias Ulbrich . 17

A Behavioural Equivalence for Algebraic Effects: Logic with Modalities
Niels Voorneveld . 18

Participants . 19

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 5

3 Overview of Talks

3.1 Relational Logic with Framing and Hypotheses (status report)
Anindya Banerjee (NSF – Alexandria, US) and David A. Naumann (Stevens Institute of
Technology – Hoboken, US)

License Creative Commons BY 3.0 Unported license
© Anindya Banerjee and David A. Naumann

Joint work of Anindya Banerjee, David Naumann, Mohammad Nikouei

Relational properties arise in many settings: relating two versions of a program that use differ-
ent data representations, noninterference properties for security, etc. The main ingredient of
relational verification, relating aligned pairs of intermediate steps, has been used in numerous
guises, but existing relational program logics are narrow in scope. We are investigating a
logic based on novel syntax that weaves together product programs to express alignment of
control flow points at which relational formulas are asserted. Correctness judgments feature
hypotheses with relational specifications, discharged by a rule for the linking of procedure
implementations. The logic supports reasoning about program-pairs containing both similar
and dissimilar control and data structures. Reasoning about dynamically allocated objects is
supported by a frame rule based on frame conditions amenable to SMT provers. In this talk
we give an overview of the project ideas and status.

3.2 Semantic Differencing for HipHop Bytecode
Nick Benton (Facebook – London, GB)

License Creative Commons BY 3.0 Unported license
© Nick Benton

We describe a semantic differencing tool used to compare the bytecodes generated by two
different compilers for Hack/PHP at Facebook. The tool is a prover for a simple relational
Hoare logic for low-level code and is used in testing, allowing the developers to focus on
semantically significant differences between the outputs of the two compilers.

3.3 Verification with Reusing Exchangeable Results (Conditions,
Witnesses, Precisions)

Dirk Beyer (LMU München, DE)

License Creative Commons BY 3.0 Unported license
© Dirk Beyer

This presentation covers the topic of exchangable verification results. First, we explain how
the conditions of conditional model checking [1] can be used to pass information from one
verifier to another, in particular, the first verifier describes in the condition the parts of
the state space that it was able to successfully verify, while the second verifying can use
the condition of the first verifier in order to concentrate on the state space that the first
verifier did not succeed on [2]. Second, abstraction based approaches (cf. CEGAR) need to
compute the abstract model, i.e., specify a precision that defines the level of abstraction (set
of predicates for predicate abstraction, set of variables for value analysis). The precision

18151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

6 18151 – Program Equivalence

is a valuable piece of information that should be reused when verifying a similar program
(as, e.g., in regression verification) /citePrecisionReuse. Third, verification witnesses are
exchangeable objects that contain information that another verification tool (validator) can
use to re-establish the verification result [4, 5, 3]. Witnesses enable many new opportunities
to improve the value of verification tools for the user, e.g., by supporting verification-based
debugging [6].

References
1 D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. 2012. Conditional Model

Checking: A Technique to Pass Information between Verifiers. In Proc. FSE. ACM, Article
57, 57:1–57:11 pages. ISBN:978-1-4503-1614-9, https://doi.org/10.1145/2393596.2393664

2 Dirk Beyer, Marie-Christine Jakobs, Thomas Lemberger, and Heike Wehrheim. 2018
Reducer-Based Construction of Conditional Verifiers. In Proc. ICSE. ACM. https://doi.
org/10.1145/3180155.3180259

3 D. Beyer and P. Wendler. 2013 Reuse of Verification Results: Conditional Model Checking,
Precision Reuse, and Verification Witnesses. In Proc. SPIN LNCS 7976). Springer, 1–17.
https://doi.org/10.1007/978-3-642-39176-7_1

4 D. Beyer,M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. 2015 Witness Validation
and Stepwise Testification across Software Verifiers. In Proc. FSE. ACM, 721–733. ISBN:
978-1-4503-3675-8. https://doi.org/10.1145/2786805.2786867

5 D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. 2016. Correctness Witnesses: Ex-
changing Verification Results Between Verifiers. In Proc. FSE. ACM, 326–337. https:
//doi.org/10.1145/2950290.2950351

6 Dirk Beyer and Matthias Dangl. 2016. Verification-Aided Debugging: An Interactive Web-
Service for Exploring Error Witnesses. In Proc. CAV (2) LNCS 9780). Springer, 502–509.
https://doi.org/10.1007/978-3-319-41540-6_28

3.4 Validating Optimizations of Concurrent C/C++ Programs
Soham Chakraborty (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Soham Chakraborty

Compilation of C/C++ shared memory concurrent programs faces many challenges. On the
one hand, C/C++ concurrency enable multiple transformations on shared memory accesses
and fences. On the other hand, not all transformations which are correct for sequential
programs are correct in the concurrent setting. Thus, compiler writers have to perform
careful analysis to determine which transformations are correct.

In this talk I will present our work on validating the optimizations of LLVM, a state-of-
the-art C/C++ compiler. Our work has revealed some previously unknown bugs in LLVM
concerning the compilation of concurrent C/C++ programs.

https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1007/978-3-319-41540-6_28
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 7

3.5 Semantics-Parametric Program Equivalence
Stefan Ciobaca (University AI. I. Cuza – Iasi, RO)

License Creative Commons BY 3.0 Unported license
© Stefan Ciobaca

Joint work of Stefan Ciobaca, Dorel Lucanu

The operational semantics of any programming language can be modeled as a set of constrained
rewrite rules of the form “l rewrites into r if b”, where l and r are terms representing program
configurations and where b is a logical constraint. The rewrite rules are interpreted in an
algebra of program configurations and the reduction relation generated by the rewrite rules
is the one-step transition relation.

Using this encoding, we can prove program equivalence in a semantics-parametric manner.
We build an equivalence checker E(P, Q, L, R) that takes as input not only two programs P
and Q that we want to prove equivalent, but also the operational semantics L and R of the
programming languages of P and Q.

We implement the equivalence checker and show that it works on several examples, which
cover both imperative and functional languages. This is work-in-progress.

This work was supported by a grant of the Romanian National Authority for Scientific
Research and Innovation, CNCS/CCCDI – UEFISCDI, project number PN-III-P2-2.1-BG-
2016-0394, within PNCDI III.

3.6 Abstract Semantic Diffing of Evolving Concurrent Programs
Constantin Enea (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
© Constantin Enea

Joint work of Ahmed Bouajjani, Constantin Enea, Shuvendu K. Lahiri
Main reference Ahmed Bouajjani, Constantin Enea, Shuvendu K. Lahiri: “Abstract Semantic Diffing of Evolving

Concurrent Programs”, in Proc. of the Static Analysis – 24th International Symposium, SAS 2017,
New York, NY, USA, August 30 – September 1, 2017, Proceedings, Lecture Notes in Computer
Science, Vol. 10422, pp. 46–65, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-66706-5_3

We present an approach for comparing two closely related concurrent programs, whose goal
is to give feedback about interesting differences without relying on user-provided assertions.
This approach compares two programs in terms of cross-thread interferences and data-
flow, under a parametrized abstraction which can detect any difference in the limit. We
introduce a partial order relation between these abstractions such that a program change
that leads to a “smaller” abstraction is more likely to be regression-free from the perspective
of concurrency. On the other hand, incomparable or bigger abstractions, which are an
indication of introducing new, possibly undesired, behaviors, lead to succinct explanations of
the semantic differences.

18151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-66706-5_3
http://dx.doi.org/10.1007/978-3-319-66706-5_3
http://dx.doi.org/10.1007/978-3-319-66706-5_3
http://dx.doi.org/10.1007/978-3-319-66706-5_3
http://dx.doi.org/10.1007/978-3-319-66706-5_3

8 18151 – Program Equivalence

3.7 Property Directed Equivalence via Abstract Simulation
Grigory Fedyukovich (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Grigory Fedyukovich

Joint work of Grigory Fedyukovich, Arie Gurfinkel, Natasha Sharygina
Main reference Grigory Fedyukovich, Arie Gurfinkel, Natasha Sharygina: “Property Directed Equivalence via

Abstract Simulation”, in Proc. of the Computer Aided Verification – 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, Lecture
Notes in Computer Science, Vol. 9780, pp. 433–453, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-319-41540-6_24

Numerous versions of software have to be designed, developed, and verified before the product
is ready for a release. Each version suffers from bugs which have to be fixed and should
not appear again in the future. Once a version is formally verified for safety, its proof
should be made available for verification of the coming versions. However, vast majority of
verification tools are tailored to verification of each new program version in isolation from the
version history. We present an approach for incremental verification based on constrained
Horn clauses that lifts the proofs across program modifications. The key idea behind our
approach is to establish a property directed equivalence between pairs of program versions,
and we propose a way to do it through synthesis of simulation relations. We present the
implementation and evaluation of the algorithm supporting our hypothesis that incremental
verification can be performed efficiently, even if the program modifications are non-trivial. In
cases when the complete proof lifting is impossible, our tool lifts the proof partially, which
further allows the generation of the missing parts of the proof, or the calculation of a change
impact certificate.

3.8 A graph-rewriting refinement of the β law
Dan R. Ghica (University of Birmingham, GB)

License Creative Commons BY 3.0 Unported license
© Dan R. Ghica

Joint work of Dan R. Ghica, Koko Muroya, Todd Waugh Ambridge

The newly developed Dynamic Geometry of Interaction is a graph-rewriting abstract machine
based on Girard’s semantics of linear logic proofs. It can model in a unified setting all the
reduction strategies of the lambda calculus, also giving accurate cost models for execution.
Using it we can refined the standard beta law of the lambda calculus into four, simpler,
graph-rewriting laws.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 9

3.9 Regression Verification of Multi-Threaded Programs
Arie Gurfinkel (University of Waterloo, CA) and Ofer Strichman (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Arie Gurfinkel and Ofer Strichman

Joint work of Arie Gurfinkel, Sagar Chaki, Ofer Strichman
Main reference Sagar Chaki, Arie Gurfinkel, Ofer Strichman: “Regression verification for multi-threaded programs

(with extensions to locks and dynamic thread creation)”, Formal Methods in System Design,
Vol. 47(3), pp. 287–301, 2015.

URL http://dx.doi.org/10.1007/s10703-015-0237-0
Main reference Sagar Chaki, Arie Gurfinkel, Ofer Strichman: “Regression Verification for Multi-threaded

Programs”, in Proc. of the Verification, Model Checking, and Abstract Interpretation – 13th
International Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceedings,
Lecture Notes in Computer Science, Vol. 7148, pp. 119–135, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-27940-9_9

Regression verification is the problem of deciding whether two similar programs are equivalent
under an arbitrary yet equal context, given some definition of equivalence. So far this problem
has only been studied for the case of single-threaded deterministic programs. We present
a method for regression verification to establish partial equivalence (i.e., input/output
equivalence of terminating executions) of multi-threaded programs. Specifically, we develop
two proof-rules that decompose the regression verification between concurrent programs to
that of regression verification between sequential functions, a more tractable problem. This
ability to avoid composing threads altogether when discharging premises, in a fully automatic
way and for general programs, uniquely distinguishes our proof rules from others used for
classical verification of concurrent programs.

3.10 Model-checking contextual equivalence of higher-order programs
with references

Guilhem Jaber (ENS – Lyon, FR)

License Creative Commons BY 3.0 Unported license
© Guilhem Jaber

This talk will present SyTeCi, a general automated tool to check contextual equivalence
for programs written in a typed higher-order language with references (i.e. local mutable
states), corresponding to a fragment of OCaml. After introducing the notion of contextual
equivalence, we will see on some examples why it is hard to prove such equivalences (reentrant
calls, private states). Then, we will introduce SyTeCi, a tool to automatically check such
equivalences. This tool is based on a reduction of the problem of contextual equivalence
of two programs to the problem of reachability of “error states” in a transition system of
memory configurations. Contextual equivalence being undecidable (even in a finitary setting),
so does the non-reachability problem for such transition systems. However, one can apply
model-checking techniques (predicate abstraction, analysis of pushdown systems) to check
non-reachability via some approximations. This allows us to prove automatically many
non-trivial examples of the literature, that could only be proved by hand before. We will
end this talk by the presentation of a prototype implementing this work.

18151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10703-015-0237-0
http://dx.doi.org/10.1007/s10703-015-0237-0
http://dx.doi.org/10.1007/s10703-015-0237-0
http://dx.doi.org/10.1007/s10703-015-0237-0
http://dx.doi.org/10.1007/978-3-642-27940-9_9
http://dx.doi.org/10.1007/978-3-642-27940-9_9
http://dx.doi.org/10.1007/978-3-642-27940-9_9
http://dx.doi.org/10.1007/978-3-642-27940-9_9
http://dx.doi.org/10.1007/978-3-642-27940-9_9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

10 18151 – Program Equivalence

3.11 Distinguishing between Communicating Transactions
Vasileios Koutavas (Trinity College Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Vasileios Koutavas

Joint work of Vasileios Koutavas, Maciej Gazda, Matthew Hennessy
Main reference Vasileios Koutavas, Maciej Gazda, Matthew Hennessy: “Distinguishing between communicating

transactions”, Inf. Comput., Vol. 259(1), pp. 1–30, 2018.
URL http://dx.doi.org/10.1016/j.ic.2017.12.001

Communicating transactions is a form of distributed, non-isolated transactions which provides
a simple construct for building concurrent systems. We will explore the observable behaviour
of such systems through different nominal modal logics which share standard communication
modalities, but have distinct past and future modalities involving transactional commits. We
will discuss how, although quite different, the distinguishing power of these logics is identical.
Furthermore, they are equally expressive because there are semantics-preserving translations
between their formulae. Using the logics we can clearly exhibit subtle example inequivalences
between communicating transactions, sheding light on the behaviour of such constructs.

3.12 DEEPSEC: Deciding Equivalence Properties in Security Protocols
Steve Kremer (INRIA Nancy – Grand Est, FR)

License Creative Commons BY 3.0 Unported license
© Steve Kremer

Joint work of Vincent Cheval, Steve Kremer, Itsaka Rakotonirina
Main reference Vincent Cheval, Steve Kremer, Itsaka Rakotonirina: “DEEPSEC: Deciding Equivalence Properties

in Security Protocols – Theory and Practice”. In Proc. of the 39th IEEE Symposium on Security
and Privacy (S&P’18), pp. 525–542, IEEE Computer Society Press, San Francisco, CA, USA, May
2018.

URL http://doi.ieeecomputersociety.org/10.1109/SP.2018.00033

Automated verification has become an essential part in the security evaluation of cryptographic
protocols. Recently, there has been a considerable effort to lift the theory and tool support
that existed for reachability properties to the more complex case of equivalence properties.
In this talk I will report on our recent advances in theory and practice of this verification
problem. We establish new complexity results for static equivalence, trace equivalence and
labelled bisimilarity and provide a decision procedure for these equivalences in the case of
a bounded number of sessions. Our procedure is the first to decide trace equivalence and
labelled bisimilarity exactly for a large variety of cryptographic primitives—those that can
be represented by a subterm convergent destructor rewrite system. We implemented the
procedure in a new tool, DEEPSEC. We showed through extensive experiments that it is
significantly more efficient than other similar tools, while at the same time raises the scope
of the protocols that can be analysed.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.ic.2017.12.001
http://dx.doi.org/10.1016/j.ic.2017.12.001
http://dx.doi.org/10.1016/j.ic.2017.12.001
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://doi.ieeecomputersociety.org/10.1109/SP.2018.00033
http://doi.ieeecomputersociety.org/10.1109/SP.2018.00033
http://doi.ieeecomputersociety.org/10.1109/SP.2018.00033
http://doi.ieeecomputersociety.org/10.1109/SP.2018.00033
http://doi.ieeecomputersociety.org/10.1109/SP.2018.00033

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 11

3.13 Interprocedural Relational Verification in SymDiff and
Applications

Shuvendu K. Lahiri (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Shuvendu K. Lahiri

Main reference Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, Chris Hawblitzel: “Differential assertion
checking”, in Proc. of the Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, pp. 345–355, ACM, 2013.

URL http://dx.doi.org/10.1145/2491411.2491452
Main reference Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri, Henrique Rebêlo: “Towards Modularly

Comparing Programs Using Automated Theorem Provers”, in Proc. of the Automated Deduction –
CADE-24 – 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June
9-14, 2013. Proceedings, Lecture Notes in Computer Science, Vol. 7898, pp. 282–299, Springer,
2013.

URL http://dx.doi.org/10.1007/978-3-642-38574-2_20
Main reference Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, Henrique Rebêlo: “SYMDIFF: A

Language-Agnostic Semantic Diff Tool for Imperative Programs”, in Proc. of the Computer Aided
Verification – 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings, Lecture Notes in Computer Science, Vol. 7358, pp. 712–717, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31424-7_54
Main reference Francesco Logozzo, Shuvendu K. Lahiri, Manuel Fähndrich, Sam Blackshear: “Verification modulo

versions: towards usable verification”, in Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom – June 09 – 11,
2014, pp. 294–304, ACM, 2014.

URL http://dx.doi.org/10.1145/2594291.2594326
Main reference Shaobo He, Shuvendu K. Lahiri, Zvonimir Rakamaric: “Verifying Relative Safety, Accuracy, and

Termination for Program Approximations”, J. Autom. Reasoning, Vol. 60(1), pp. 23–42, 2018.
URL http://dx.doi.org/10.1007/s10817-017-9421-9

In this talk, I describe the SymDiff tool that is a verifier for proving properties of program
differences. Differential program verification concerns with proving interesting properties
over program differences, as opposed to the program itself. Such properties include program
equivalence, but can also captures more general differential/relational properties. SymDiff
provides a specification language to state such differential (two-program) properties using
the concept of mutual summaries that can relate procedures from two versions. It also
provides proof system for checking such differential specifications along with the capability
of generating simple differential invariants.

We describe applications of SymDiff towards interprocedural equivalence checking, cross-
version compiler validation, differential assertion checking, checking the safety of approximate
transformations and for semantic change impact analysis.

3.14 Polymorphic Game Semantics for Dynamic Binding
James Laird (University of Bath, GB)

License Creative Commons BY 3.0 Unported license
© James Laird

Main reference James Laird: “Polymorphic Game Semantics for Dynamic Binding”, in Proc. of the 25th EACSL
Annual Conference on Computer Science Logic, CSL 2016, August 29 – September 1, 2016,
Marseille, France, LIPIcs, Vol. 62, pp. 27:1–27:16, Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.CSL.2016.27

We present a game semantics for an expressive typing system for block-structured programs
with late binding of variables and System F style polymorphism. As well as generic programs
and abstract datatypes, this combination may be used to represent behaviour such as dynamic
dispatch and method overriding.

18151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2491411.2491452
http://dx.doi.org/10.1145/2491411.2491452
http://dx.doi.org/10.1145/2491411.2491452
http://dx.doi.org/10.1145/2491411.2491452
http://dx.doi.org/10.1145/2491411.2491452
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1145/2594291.2594326
http://dx.doi.org/10.1145/2594291.2594326
http://dx.doi.org/10.1145/2594291.2594326
http://dx.doi.org/10.1145/2594291.2594326
http://dx.doi.org/10.1145/2594291.2594326
http://dx.doi.org/10.1007/s10817-017-9421-9
http://dx.doi.org/10.1007/s10817-017-9421-9
http://dx.doi.org/10.1007/s10817-017-9421-9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.27
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.27
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.27
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.27
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.27

12 18151 – Program Equivalence

We give a denotational models for a hierarchy of programming languages based on
our typing system, including variants of PCF and Idealized Algol. These are obtained by
extending polymorphic game semantics to block-structured programs. We show that the
categorical structure of our models can be used to give a new interpretation of dynamic
binding, and establish definability properties by imposing constraints which are identical
or similar to those used to characterize definability in PCF (innocence, well-bracketing,
determinacy). Moreover, relaxing these can similarly allow the interpretation of side-effects
(state, control, non-determinism) – we show that in particular we may obtain a fully abstract
semantics of polymorphic Idealized Algol with dynamic binding by following exactly the
methodology employed in the simply-typed case.

3.15 Program equivalences and program refinements for compiler
verification

Xavier Leroy (INRIA – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Xavier Leroy

Verifying the soundness of a compiler means proving that the generated code behaves as
prescribed by the semantics of the source program. There are many definitions of interest
for “behaves as prescribed”. Observational equivalence is appropriate for well-defined source
languages such as Java. However, for C and C++, observational equivalence cannot be
guaranteed because several evaluation orders are allowed for source programs, while the
compiled code implements one of those evaluation orders. Moreover, C and C++ treat
run-time errors such as integer division by zero or out-of-bound array accesses as undefined
behaviors, meaning that the compiled code is allowed to perform any actions whatsoever,
from aborting the program to continuing with random values to opening a security hole.

The CompCert compiler verification project builds on a notion of program refinement
that enables the compiler to choose one among several possible evaluation orders, making
the program “more deterministic”, and also to optimize source-level undefined behaviors
away, making the program “more defined”. An example of the latter dimension of refinement
is the elimination of an integer division z = x / y if z is unused later: if y is 0, the original
program exhibits undefined behavior (division by zero), but not the optimized program.

Program refinement is proved using simulation diagrams between the labeled transition
systems that define the semantics of the original and transformed program. In full generality a
so-called backward simulation diagram is needed, relating every transition of the transformed
program with zero, one or several transitions of the original program, provided the original
program is at a safe state (a state that cannot silently reach undefined behavior). For
compilation passes that preserve the amount of nondeterminism, a simpler proof is possible
as a forward simulation diagram, relating transitions of the original program with sequences
of transitions of the transformed program.

This notion of program refinement and the associated proof techniques have served Com-
pCert well so far, but can be difficult to extend to aggressive optimizations, other properties
of interest, or other language features of interest. For example, loop optimizations such as
loop exchange or loop blocking change control flow in a non-local manner, renewing interest
in more denotational or more relational alternatives to simulation diagrams. Interesting
program properties that we would like to see and to prove preserved during compilation

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 13

include constant-time cryptography, i.e. the fact that secret data is never used as argument
to conditional branches, memory addressing, or other operations whose execution time
depend on the value of the arguments. Finally, shared-memory concurrency is a challenge
for compiler verification. Many compiler optimizations and code generation scheme that
are valid for sequential programs remain valid for concurrent programs that are free of data
races. Controlled data races, as supported by the low-level atomics of C and C++ 2011,
raise many more challenges and are only starting to be understood semantically.

3.16 Client-Specific Equivalence Checking – An Overview
Yi Li (University of Toronto, CA) and Julia Rubin (University of British Columbia – Van-
couver, CA)

License Creative Commons BY 3.0 Unported license
© Yi Li and Julia Rubin

Joint work of Yi Li, Federico Mora, Marsha Chechik, Julia Rubin

Software is often built by integrating components created by different teams or even different
organizations. Changes in one component may trigger a sequence of updates to its downstream
clients. To avoid dealing with updates, developers often delay upgrades, negatively affecting
correctness and robustness of their systems. In this work, we investigate the effect of
component changes on the behaviour of their clients. We observe that changes in a component
are often irrelevant to a particular client and thus can be adopted without any delays or
negative effects. Following this observation, we formulate the notion of client-specific
equivalence checking (CSE), lay out particular challenges and opportunities, and discuss
possible solutions for checking such equivalence. We also present our early findings and
propose some promising directions for further exploration.

3.17 Semantic Program Repair Using a Reference Implementation
Sergey Mechtaev (National University of Singapore, SG)

License Creative Commons BY 3.0 Unported license
© Sergey Mechtaev

Joint work of Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske and Abhik Roychoudhury
Main reference Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske and Abhik Roychoudhury:

“Semantic Program Repair Using a Reference Implementation” In Proc. of 40th Int’l Conference on
Software Engineering, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE ’18)

URL https://doi.org/10.1145/3180155.3180247

The goal of program repair is to automatically modify a given incorrect program to eliminate
the observable failures. One of the key challenges of this technology is that a formal
specification of the intended behavior is typically not available in practice, and the use of
a test suite as a correctness criteria often leads to the generation of incorrect patches that
merely overfit the tests.

Semantic program repair aims to understand the meaning of software defects by means
of semantic program analysis. This approach has two advantages over previous syntactic
techniques. First, semantic analysis helps to efficiently navigate the conceptually large search
space of patches. Second, semantic analysis helps to compensate the lack of correctness
specification in real-world software.

18151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1145/3180155.3180247
https://doi.org/10.1145/3180155.3180247
https://doi.org/10.1145/3180155.3180247
https://doi.org/10.1145/3180155.3180247

14 18151 – Program Equivalence

In this talk, we discuss a semantic approach of generating program patches using a
reference implementation. Specifically, this approach extracts specification from a reference
implementation and generates a patch that enforces conditional equivalence of the patched
and the reference programs w.r.t. a user-defined inputs condition. We demonstrate the
effectiveness of this techniques in our experiments with GNU Coreutils and Busybox that
implement the same set of UNIX utilities. We also discuss how this technique contributes
to a broader vision of a general-purpose program repair system that will able to address
many types of defects in commodity software and have applications in software development,
security and education.

3.18 An introduction to game semantics
Andrzej Murawski (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Andrzej Murawski

I will give an introductory talk on game semantics, which is a modelling theory for higher-
order programming languages based on the metaphor of game playing. Over the last 25 years,
game semantics has been used to obtain the first full abstraction results for a wide spectrum
of programming languages (full abstraction means that interpretations of two programs
coincide exactly when the programs are equivalent). More recently, game models have been
exploited to classify decidable (wrt program equivalence) fragments of various programming
languages based on their type signatures. I will give a brief survey of the results and mention
the kinds of automata that have turned out useful in capturing the dynamics of game models.

3.19 Trace Equivalence For Android Malware Detection
Julia Rubin (University of British Columbia – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© Julia Rubin

Joint work of Khaled Ahmed, Mieszko Lis, Julia Rubin

In this talk, we will present a novel approach we propose for efficiently detecting Android
malware at runtime. Our approach relies on monitoring application execution, collecting
execution traces, and then reasoning about equivalent vs. different traces. We will discuss
characteristics of Android malware and identify a notion of trace equivalence that helps
detect such malware. We will then show that the optimal notion of equivalence is impractical
to implement due to the event-driven and multi-threaded nature of the Android system, and
examine other possible solutions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 15

3.20 Proofs for Performance
Rahul Sharma (Microsoft Research India – Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Rahul Sharma

Joint work of Eric Schkufza, Berkeley Churchill, Alex Aiken
Main reference Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, Alex Aiken: “Data-driven equivalence

checking”, in Proc. of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013, pp. 391–406, ACM, 2013.

URL http://dx.doi.org/10.1145/2509136.2509509

Automated formal reasoning has the potential to significantly improve the quality of compiler
generated code. We describe a data-driven approach to such reasoning: the proof steps
are assisted by analysis applied to data gathered from program executions. We show how
data-driven equivalence checking proves the correctness of code generated by production
compilers (such as GCC with all optimizations enabled) by generating a formal proof of
equivalence between a C source and the compiler generated x86 binary. Moreover, this
equivalence checker lets us generate provably correct code that is up to 70% faster than the
compiler generated code. Furthermore, we show how data-driven precondition inference lets
us generate code that can be multiple times faster than compiler generated code.

3.21 Program equivalence problems in computational science
Stephen Siegel (University of Delaware – Newark, US)

License Creative Commons BY 3.0 Unported license
© Stephen Siegel

Main reference Stephen F. Siegel, Manchun Zheng, Ziqing Luo, Timothy K. Zirkel, Andre V. Marianiello, John G.
Edenhofner, Matthew B. Dwyer, Michael S. Rogers: “CIVL: the concurrency intermediate
verification language”, in Proc. of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015,
pp. 61:1–61:12, ACM, 2015.

URL http://dx.doi.org/10.1145/2807591.2807635

A number of interesting program equivalence problems arise in computational science. Many
algorithms used in that domain have a straightforward implementation–e.g., matrix multi-
plication. But these straightforward implementations are then transformed in innumerable
ways, e.g., to reduce the number of floating-point operations, to use cache more efficiently,
and to take advantage of parallel hardware. The transformed programs are expected to be
equivalent – in some sense – to the original simple versions. In this talk I will describe several
examples of such problems, and our use of symbolic execution tools (CIVL and TASS) to
solve them. In many cases, equivalence can be established within some small bounds (on
the sizes of inputs, number of processes, etc.), but some progress has been made on proofs
without such bounds.

18151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2509136.2509509
http://dx.doi.org/10.1145/2509136.2509509
http://dx.doi.org/10.1145/2509136.2509509
http://dx.doi.org/10.1145/2509136.2509509
http://dx.doi.org/10.1145/2509136.2509509
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2807591.2807635
http://dx.doi.org/10.1145/2807591.2807635
http://dx.doi.org/10.1145/2807591.2807635
http://dx.doi.org/10.1145/2807591.2807635
http://dx.doi.org/10.1145/2807591.2807635
http://dx.doi.org/10.1145/2807591.2807635

16 18151 – Program Equivalence

3.22 Proving Mutual Termination
Ofer Strichman (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Ofer Strichman

Joint work of Dima Elenbogen, Shmuel Katz, Ofer Strichman
Main reference Dima Elenbogen, Shmuel Katz, Ofer Strichman: “Proving mutual termination”, Formal Methods

in System Design, Vol. 47(2), pp. 204–229, 2015.
URL http://dx.doi.org/10.1007/s10703-015-0234-3

Two programs are said to be mutually terminating if they terminate on exactly the same
inputs. We suggest inference rules and a proof system for proving mutual termination of a
given pair of procedures <f, f’> and the respective subprograms that they call under a free
context. Given a (possibly partial) mapping between the procedures of the two programs, the
premise of the rule requires proving that given the same arbitrary input in, f(in) and f ′(in)
call procedures mapped in the mapping with the same arguments. A variant of this proof
rule with a weaker premise allows to prove termination of one of the programs if the other
is known to terminate. In addition, we suggest various techniques for battling the inherent
incompleteness of our solution, including a case in which partial equivalence (the equivalence
of their input/output behavior) has only been proven for some, but not all, the outputs of the
two given procedures. We present an algorithm for decomposing the verification problem of
whole programs to that of proving mutual termination of individual procedures, based on our
suggested inference rules. In this talk I will survey our work on proving mutual termination
of programs and demo our prototype implementation of this algorithm.

3.23 The Software Analysis Workbench
Aaron Tomb (Galois – Portland, US)

License Creative Commons BY 3.0 Unported license
© Aaron Tomb

Joint work of Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman, Dylan McNamee, Aaron Tomb
Main reference Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman, Dylan McNamee, Aaron Tomb:

“Constructing Semantic Models of Programs with the Software Analysis Workbench”, in Proc. of
the Verified Software. Theories, Tools, and Experiments – 8th International Conference, VSTTE
2016, Toronto, ON, Canada, July 17-18, 2016, Revised Selected Papers, Lecture Notes in Computer
Science, Vol. 9971, pp. 56–72, 2016.

URL http://dx.doi.org/10.1007/978-3-319-48869-1_5

The Software Analysis Workbench (SAW) is a tool for transforming programs into models of
their functional behavior, manipulating those models, and using various third-party reasoning
tools to prove properties of those models. Although it is in principle more than a program
equivalence checking tool, it is most highly tuned for proving equivalence.

SAW currently uses symbolic execution to construct program models, and uses path
merging and path satisfiability checking to increase the class of programs for which it can
generate a single, complete model. As a result, the current behavior is roughly an instance of
bounded model checking, with the bounds provided by the program rather than some fixed
constant.

SAW integrates closely with Cryptol, a domain-specific functional language originally
designed for the high-level description of cryptographic algorithms, and generally well-suited
to describing finite programs of the sort that are most amenable to analysis with SAT

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10703-015-0234-3
http://dx.doi.org/10.1007/s10703-015-0234-3
http://dx.doi.org/10.1007/s10703-015-0234-3
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_5

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 17

and SMT. We have used SAW to prove functional equivalence between many imperative
implementations of cryptographic algorithms and high-level specifications written in Cryptol.

This talk describes some of the techniques used in SAW along with some examples of the
concrete implementations we have used it to verify.

3.24 Nominal Games: A Semantics Paradigm for Effectful Languages
Nikos Tzevelekos (Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Nikos Tzevelekos

Joint work of Andrzej Murawski, Steven Ramsay, Dan Ghica, Guilhem Jaber, Thomas Cuvillier, Nikos Tzevelekos

Game semantics has been developed since the 90’s as a denotational paradigm capturing
observational equivalence of functional languages with imperative features. While initially
introduced for PCF variants, the theory can nowadays express effectful languages ranging
from ML fragments and Java programs to C-like code. In this talk we present recent advances
in devising game models for effectful computation. Central in this approach is the use of
names for representing in an abstract fashion different forms of notions and effects, such as
references, higher-order values and polymorphism. We moreover look at automata models
relevant to nominal games and how can they be used for model checking program equivalence.

3.25 Relational Equivalence Proofs Between Imperative and
MapReduce Algorithms

Mattias Ulbrich (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Mattias Ulbrich

Main reference Bernhard Beckert, Timo Bingmann, Moritz Kiefer, Peter Sanders, Mattias Ulbrich, Alexander
Weigl: “Relational Equivalence Proofs Between Imperative and MapReduce Algorithms”, CoRR,
Vol. abs/1801.08766, 2018.

URL http://arxiv.org/abs/1801.08766

MapReduce frameworks are widely used for the implementation of distributed algorithms.
However, translating imperative algorithms into these frameworks requires significant struc-
tural changes to the algorithm. As the costs of running faulty algorithms at scale can be
severe, it is highly desirable to verify the correctness of the translation, i.e., to prove that the
MapReduce version is equivalent to the imperative original. We present a novel approach for
proving equivalence between imperative and MapReduce algorithms based on partitioning
the equivalence proof into a sequence of equivalence proofs between intermediate programs
with smaller differences. Our approach is based on the insight that two kinds of sub-proofs
are required: (1) uniform transformations rewriting the controlflow structure that are mostly
independent of the particular context in which they are applied; and (2) context-dependent
transformations that are not uniform but that preserve the overall structure and can be
proved correct using coupling invariants. I demonstrated the feasibility of our approach by
applying it to the PageRank algorithm. The potential for automation has been discussed.

18151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1801.08766
http://arxiv.org/abs/1801.08766
http://arxiv.org/abs/1801.08766
http://arxiv.org/abs/1801.08766

18 18151 – Program Equivalence

3.26 A Behavioural Equivalence for Algebraic Effects: Logic with
Modalities

Niels Voorneveld (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Niels Voorneveld

Joint work of Alex Simpson, Niels F.W. Voorneveld
Main reference Alex Simpson, Niels F.W. Voorneveld: “Behavioural Equivalence via Modalities for Algebraic

Effects”, in Proc. of the Programming Languages and Systems – 27th European Symposium on
Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Lecture
Notes in Computer Science, Vol. 10801, pp. 300–326, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-319-89884-1_11

In this talk we investigate behavioural equivalence between programs of a functional language
extended with a signature of (algebraic) effect-triggering operations. Two programs are
considered behaviourally equivalent if they enjoy the same behavioural properties. To
formulate this, we define a logic whose formulas specify these behavioural properties. A
crucial ingredient is a collection of modalities expressing effect-specific aspects of behaviour.
The construction of the logic and the theory of such modalities are outlined.

We look at examples of effects and what modalities we may choose for them. These
examples include: nondeterminism, error, probabilistic choice, global store and input/output.
Moreover, we will briefly look at two technical conditions for such modalities which, if
satisfied, makes the logically-specified behavioural equivalence a congruence. The given
examples satisfy these properties. The induced behavioural equivalence is also related to a
notion of Abramsky’s applicative bisimilarity.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-89884-1_11
http://dx.doi.org/10.1007/978-3-319-89884-1_11
http://dx.doi.org/10.1007/978-3-319-89884-1_11
http://dx.doi.org/10.1007/978-3-319-89884-1_11
http://dx.doi.org/10.1007/978-3-319-89884-1_11
http://dx.doi.org/10.1007/978-3-319-89884-1_11

Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich 19

Participants

Anindya Banerjee
NSF – Alexandria, US

Gilles Barthe
IMDEA Software – Madrid, ES

Nick Benton
Facebook – London, GB

Dirk Beyer
LMU München, DE

Soham Chakraborty
MPI-SWS – Kaiserslautern, DE

Stefan Ciobaca
University AI. I. Cuza – Iasi, RO

Constantin Enea
University Paris-Diderot, FR

Grigory Fedyukovich
Princeton University, US

Dan R. Ghica
University of Birmingham, GB

Arie Gurfinkel
University of Waterloo, CA

Guilhem Jaber
ENS – Lyon, FR

Vasileios Koutavas
Trinity College Dublin, IE

Steve Kremer
INRIA Nancy – Grand Est, FR

Shuvendu K. Lahiri
Microsoft Research –
Redmond, US

James Laird
University of Bath, GB

Xavier Leroy
INRIA – Paris, FR

Yi Li
University of Toronto, CA

Sergey Mechtaev
National University of
Singapore, SG

Andrzej Murawski
University of Oxford, GB

Kedar Namjoshi
Nokia Bell Labs –
Murray Hill, US

David A. Naumann
Stevens Institute of Technology –
Hoboken, US

Julia Rubin
University of British Columbia –
Vancouver, CA

Philipp Rümmer
Uppsala University, SE

Neha Rungta
Amazon.com, Inc. –
Palo Alto, US

Chaked Saydoff
Technion – Haifa, IL

Rahul Sharma
Microsoft Research India –
Bangalore, IN

Stephen Siegel
University of Delaware –
Newark, US

Marcelo Sousa
University of Oxford, GB

Ofer Strichman
Technion – Haifa, IL

Aaron Tomb
Galois – Portland, US

Nikos Tzevelekos
Queen Mary University of
London, GB

Mattias Ulbrich
KIT – Karlsruher Institut für
Technologie, DE

Niels Voorneveld
University of Ljubljana, SI

18151

	Executive summary Shuvendu Lahiri, Andrzej Murawski, Ofer Strichman, and Mattias Ulbrich
	Table of Contents
	Overview of Talks
	Relational Logic with Framing and Hypotheses (status report) Anindya Banerjee and David A. Naumann
	Semantic Differencing for HipHop Bytecode Nick Benton
	Verification with Reusing Exchangeable Results (Conditions, Witnesses, Precisions) Dirk Beyer
	Validating Optimizations of Concurrent C/C++ Programs Soham Chakraborty
	Semantics-Parametric Program Equivalence Stefan Ciobaca
	Abstract Semantic Diffing of Evolving Concurrent Programs Constantin Enea
	Property Directed Equivalence via Abstract Simulation Grigory Fedyukovich
	A graph-rewriting refinement of the law Dan R. Ghica
	Regression Verification of Multi-Threaded Programs Arie Gurfinkel and Ofer Strichman
	Model-checking contextual equivalence of higher-order programs with references Guilhem Jaber
	Distinguishing between Communicating Transactions Vasileios Koutavas
	DEEPSEC: Deciding Equivalence Properties in Security Protocols Steve Kremer
	Interprocedural Relational Verification in SymDiff and Applications Shuvendu Lahiri
	Polymorphic Game Semantics for Dynamic Binding James Laird
	Program equivalences and program refinements for compiler verification Xavier Leroy
	Client-Specific Equivalence Checking – An Overview Yi Li and Julia Rubin
	Semantic Program Repair Using a Reference Implementation Sergey Mechtaev
	An introduction to game semantics Andrzej Murawski
	Trace Equivalence For Android Malware Detection Julia Rubin
	Proofs for Performance Rahul Sharma
	Program equivalence problems in computational science Stephen Siegel
	Proving Mutual Termination Ofer Strichman
	The Software Analysis Workbench Aaron Tomb
	Nominal Games: A Semantics Paradigm for Effectful Languages Nikos Tzevelekos
	Relational Equivalence Proofs Between Imperative and MapReduce Algorithms Mattias Ulbrich
	A Behavioural Equivalence for Algebraic Effects: Logic with Modalities Niels Voorneveld

	Participants

