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Abstract
Our ability to generate and collect biological data has accelerated significantly in the past two
decades. In response, many novel computational and statistical analysis techniques have been
developed to process and integrate biological data sets. However, in addition to computational
and statistical approaches, visualization techniques are needed to enable the interpretation of
data as well as the communication of results. The design and implementation of such techniques
lies at the intersection of the biology, bioinformatics, and data visualization fields. The purpose
of Dagstuhl Seminar 18161 “Visualization of Biological Data – Crossroads” was to bring together
researchers from all three fields, to identify opportunities and challenges, and to develop a path
forward for biological data visualization research.
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The rapidly expanding application of experimental high-throughput and high-resolution
methods in biology is creating enormous challenges for the visualization of biological data.
To meet these challenges, a large variety of expertise from the visualization, bioinformatics
and biology domains is required. These encompass visualization and design knowledge, al-
gorithm design, strong implementation skills for analyzing and visualizing big data, statistical
knowledge, and specific domain knowledge for different application problems. In particular,
it is of increasing importance to develop powerful and integrative visualization methods
combined with computational analytical methods. Furthermore, because of the growing
relevance of visualization for bioinformatics, teaching visualization should also become part
of the bioinformatics curriculum.
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With this Dagstuhl Seminar we wanted to continue the process of community building
across the disciplines of biology, bioinformatics, and visualization. We aim to bring together
researchers from the different domains to discuss how to continue the BioVis interdisciplinary
dialogue, to foster the development of an international community, to discuss the state-
of-the-art and identify areas of research that might benefit from joint efforts of all groups
involved.

Based on the topics identified in the seminar proposal, as well as the interest and expertise
of the confirmed participants, the following four topics were chosen as focus areas for the
seminar, in addition to the overarching topic of collaboration between the data visualization,
bioinformatics, and biology communities:

Visualization challenges related to high-dimensional medical data. Patient data is in-
creasingly available in many forms including genomic, transcriptomic, epigenetic, proteomic,
histologic, radiologic, and clinical, resulting in large (100s of TBs, 1000s of patients), het-
erogeneous (dozens of data types per patient) data repositories. Repositories such as The
Cancer Genome Atlas (TCGA) contain a multitude of patient records which can be used for
patient stratification, for high-risk group and response to treatment discoveries, or for disease
subtype/biomarker discoveries. Still, patient records from the clinic are used singularly to
diagnose patients in the clinic without including likely insights from other sources. Similarly,
molecular expression signatures from the omic sources barely impinge on the clinical observa-
tions. There is an urgent need to bridge the divide the precision medicine gap between the
laboratory and the clinic, as well as a need to bridge the quantitative sciences with biology.
Additionally, many precision medicine studies plan to include sensor data (e.g. physical
activity, sleep, and other patient-worn sensors) that will add another dimension of complexity
that analysis and visualization tools need to take into account.

This highly relevant topic focused on visual analytic tools and collaborations that will
promote and leverage notions of patient similarity across the phenotypical scales. Scalable
and robust machine learning methods will need to work synergistically to integrate evidence of
similarity while meaningful visual encodings should simultaneously summarize and illuminate
patient similitude at the individual and group level. This topic is closely related to some of
the topics below.

Visualization of biological networks. Modeling the stochasticity of genetic circuits is an
important field of research in systems biology, and can help elucidate the mechanisms of
cell behavior, which in turn can be the basis of diseases. These models can further enable
predictions of important phenotypic cellular states. However, the analysis of stochastic
probability distributions is difficult due to their spatiotemporal and multidimensional nature,
and due to the typically large number of simulations run under varying settings. Moreover,
stochastic network researchers often emphasize that what is of biological significance is often
not of statistical significance – numerical analyses often miss small or rare events of particular
biological relevance. A visual approach can help, in contrast, in mining the network dynamics
through the landscape defined by these probability distributions.

Another major challenge relates to finding “stable behavior” of networks, including those
recruited in signal transduction. Multistability and bistability have been often studied in
metabolic chemically reactive networks. Necessary conditions have been formulated to imply
the emergence of stable phenotypes. However, these methods have been deployed on small
networks. Recently many groups have recognized that scalable methods can be explored
using steady state or quasi steady state models that are derived from stoichiometry and
rate-action kinetics. These unfortunately suffer from the lack of methods that will examine
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the large parametric space. Consider this: N interacting molecules imply N2 interactions and
in turn the same order of the governing “parameters” (activation rates and abundances). For
even mid-size portions of salient pathways (EGFR, B-cell Receptor activation, etc.) finding
stable states is challenging. It is certainly the case that a complete graph is never realized
and sparsity and network mining can be used to glean the necessary structure. Design of
experiments followed by visualization of parametric spaces will be required to search for
these stable points. Furthermore, the huge size of this space needs possibly new scalable
approaches for the visualization.

Visualization for pan-genomics. With the advent of next-generation sequencing we can
observe the increase of genome data both in the field of metagenomics (simultaneous as-
sessment of many species) as well as within the field of pan-genomics. In metagenomics,
the aim is to understand the composition and operation of complex microbial consortia in
environmental samples. On the other hand in pangenomics genomes within a species are
studied. While originally a pan-genome has been referred to as the full complement of genes
in a clade (mainly a species in bacteria or archaea), this has recently been generalized to
considering a pan-genome as any collection of genomic sequences to be analyzed jointly or to
be used as a reference rather than a single genome.

In bioinformatics, both topics impose a number of computational challenges. For example,
a recent review paper by Marschall et al. on “Computational Pan-Genomics: Status, Promises
and Challenges” (DOI: 10.1093/bib/bbw089) addresses current efforts in this sub-area of
bioinformatics. This area needs novel, qualitatively different computational methods and
paradigms. While the development of new promising computational methods and new data
structures both in metagenomics and pangenomics can be observed, a number of open
challenges exist. One of them in the area of pangenomics is for example the transition from
the representation of reference genomes as strings to representations as graphs. However, the
important topic of pangenome visualization has not been addressed in the aforementioned
review. Interestingly this has been taken up in a break-out session in a recent Dagstuhl seminar
on “Next Generation Sequencing - Algorithms, and Software For Biomedical Applications”,
and identified as a topic of urgent interest and demand. One observation for example is
that in pan-genomes there are segments of conserved regions interspersed by highly variable
regions. Open question here is how to visualize the highly variable regions, or how to interpret
its content in the context of its neighborhood. Other open visualization topics involve the
visual representation of the graph structure underlying pangenomes.

In the field of metagenomics some common visualization approaches, such as heatmaps or
scatter plots in combination with principal component analyses, are used, however, many open
challenges exist. In particular those visualization tools that are developed for genomics studies
fall short in representing large-scale, high dimensional metagenomics studies. Especially the
magnitude of the data presents a challenge to meaningfully represent biologically valuable
information from complex analysis results. Thus also in this topic the question of large-scale
and heterogeneous data visualization is of central importance.

Curriculum development of biological data visualization. Parallel to the recognized need
to teach bioinformatics students about big data in biology, there is a growing need to
familiarise students with modern visual analytics methodologies applied to biological data,
and to provide hands-on training. While several community members are teaching summer
camps, tutorials, and workshops on biological data visualization, many of these educational
sessions take the form of an introduction to specific tools. We find ourselves handling similar
questions: what is exploratory data visualization, what is visual analytics, which frameworks

https://doi.org/10.1093/bib/bbw089
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to think about visualization exist, how can we explore design space, and how can we visualise
biological data to gain insight into them, so that hypotheses can be generated or explored
and further targeted analyses can be defined?

Despite the increasing importance of visualization for bioinformatics, there is currently a
general lack of integration into the bioinformatics education, and a useful and appropriate
curriculum has not yet been developed. In this topic the following questions will be addressed:
What should a modern and seminal curriculum for visualization in bioinformatics look like?
How far along the introductory visualization courses should this curriculum go, while allowing
biological data topics as well? What are the essential topics, and how can comprehensive
training be achieved?

The schedule for the seminar was developed by the organizers based on previous successful
Dagstuhl seminars. Emphasis was given to a balance between prepared talks and panels and
break groups for less structured discussions focused on a selection of highly relevant topics.
Three types of plenary presentations were available to participants who had indicated interest
in presenting during the seminar: overview talks (20 minutes plus 10 minutes for questions),
regular talks (10 minutes plus 5 minutes for questions), and panel presentations (5 minutes
per speaker followed by a 20 – 25 minute discussion). The break out groups met multiple
times for several hours during the week and reported back to the overall group on several
occasions. This format successfully brought bioinformatics and visualization researchers onto
the same platform, and enabled researchers to reach a common, deep understanding through
their questions and answers. It also stimulated very long, intense, and fruitful discussions
that were deeeply appreciated by all participants.

This report describes in detail the outcomes of this meeting. Our outcomes include a set
of white papers summarizing the breakout sessions, overviews of the talks, and a detailed
curriculum for biological data visualization courses.
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Table 1 Schedule of Dagstuhl Seminar 18161 from April 15th through April 20th, 2018.

Monday Tuesday Wednesday Thursday Friday

Introductions High-D Medical
Data Talks

Curriculum
Panel

Curriculum
Discussion Breakouts

Collaboration
Talks & Panel

High-D Medical
Data Panel

Breakout
Reports

Breakout
Reports

Breakout
Reports

Biological Networks
Talks

Pan-Genomics
Talks & Panel Trip to Villa Borg Breakouts

Biological Networks
Panel Breakouts Cloef Hike Breakout

Reports

3 Program and Participants

An overview of the schedule for the seminar is provided in Table 1.
During the five days of the seminar, a total of 30 prepared presentations were given across

five focus areas:

Collaboration
Overview Talk – Marc Streit
Panel – Sheelagh Carpendale, Jan Aerts, Barbora Kozlikova

Biological Networks
Overview Talk – Falk Schreiber
Regular Talks – Bruno Pinaud, Katja Bühler, Alexander Lex, Angus Forbes, Karsten
Klein
Panel – Will Ray, Jessie Kennedy, Carsten Görg, Liz Marai

High-Dimensional Medical Data
Overview Talk – Raghu Machiraju
Regular Talks – Cydney Nielsen, Jens Rittscher, Ewy Mathe, Ana Crisan, Christian
Stolte, Blaž Zupan
Panel – Jos Roerdink, Timo Ropinski, Cagatay Turkay, Raghu Machiraju

Pan-Genomics
Overview Talk – Granger Sutton
Panel – Danielle Szafir, Kay Nieselt, Granger Sutton

Curriculum
Panel – Lennart Martens, Martin Krzywinski, Michael Krone

On the second day, participants joined one or in rare cases two breakout groups that focused
on problems in these areas. The break out groups met multiple times for several hours during
the week and reported back to the overall group on three occasions.

The breakout groups received detailed instructions to guide their discussions towards
tangible outcomes. Specifically, the breakout groups were given the following tasks in addition
to the discussion of their focus topic:

Day 2
Identify driving questions for a publication
Decide what type of publication and venue would be appropriate
Create a timeline for the remainder of the week
Identify a speaker for the breakout group

Day 3
Create a rough outline of the manuscript and finalize paper type
Review closest related work
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Day 4
Finalize outline
Assign manuscript sections to breakout group participants
Formulate one paragraph outlining the contributions of the manuscript

Day 5
Agree on timeline for deliverables post-seminar

Based on feedback provided at the end of the seminar, this structured approach was well
received by the participants and helped them to focus their discussions.

4 Discussions and Outcomes

High-Dimensional Medical Data
The topic on High-Dimensional Medical Data was split into three subtopics: patient similarity,
trust, and awareness.

A. Patient similarity

The patient similarity workgroup included the following members: Jan Aerts, James Chen,
Arlene Chung, Mirjam Figaschewski, David Gotz, Raghu Machiraju, Jens Rittscher.

Comparing individuals is a common aspect in different levels of working with patient-
related data. First, all-versus-all comparisons are relevant in patient stratification (e.g. to
select a patient subgroup which is relevant for inclusion in a clinical trial, or to identify
how patient populations behave in a public health context) as well as disease stratification.
Second, a single patient can also be compared to larger groups, for example to identify the
cases that a new patient resembles so that adequate treatment can be selected. In this
workgroup, we discussed the context of calculating these similarities, their different types
and constituent parts, and developed some recommendations including how visual analytics
can fit into the process.

Patient information is collected in a long list of features (pathology, genotype, EHR-based
features, lifestyle, treatment response, prognosis, etc), and different approaches were discussed
for combining this information. In traditional stratification methods, such as risk scores,
focus often lies on ranking patients in a linear order. However, because there is a mismatch
between the linear ordering and the high-dimensional mathure of patient data, patients with
similar rank may be very different. For example, patients with the same risk for hospital
readmission may be at risk for very different reasons (see Figure 1).

Early integration of features, on the one hand, allows for generating a more holistic
overview of a patient population which allows the identification of e.g. subgroups and the
stratification thereof. A prime example of this is the use of topological data analysis, which
aims at discerning the underlying “shape” of a complex dataset (see Figure 2).

Other use cases – such as for point-of-care decisions – require a more hierarchical approach
where features are considered one or a few at a time, as in a decision tree. Nevertheless, also
for the point-of-care use case the placement of a patient in their broader context can be very
beneficial. For example, capturing similarities and building reference libraries can allow for a
more systematic approach to clinical grading.

Calculating these similarities however does have its challenges, especially when combining
several across different categories and scales. We identified a number of issues with the
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Figure 1 In traditional stratification methods, a mismatch often exists between the linearity of
e.g. risk scores, and the high-dimensionality and richness of the underlying patient data.

calculation of similarities. First, we may have clearly-defined similarity in specific cases but
a family of similarities can give inconsistent partial ordering. Second, what if the corpus
of data is dynamic? Third, data may be sparse and there may be individuals that do not
have similarities to any other. Finally, there is a significant problem with missing data, as
different patients will have data available for different features.

We believe that a visual analytics (VA) approach – i.e. combining interactive data
visualization with automated analysis methods (both statistics and machine learning) –
can alleviate some of the issues present in this field, and will allow for opportunities for
more informed decisions, more trust in these decisions, and greater objectivity. The VA
approach is particularly useful for so-called wicked problems such as this. Wicked problems
are described as suffering from finitude in resources and/or knowledge, having very complex
interactions between components, and partially depending on values and norms of the people
involved. In this case, visual analytics can help in making the patient-comparison process
more transparent, interpretable and contextualized for users who leverage those insights into
their normal workflows. In particular, VA aims to help generate insights and uncover biases
and issues with unknown assumptions as they can make these explicit.

B. Revealing biases in the biomedical research process through visualization

Group consisting of Ryo Sakai, Anamaria Crisan, Ewy Mathé, Torsten Möller, Christian
Stolte and Jos Roerdink.

Modern biomedical research has become a complex process involving a growing arsenal of
technical devices to generate data. It requires collaboration between disciplines to design
experiments, manage and process the collected data, and interpret and analyse the results.

Trust is an essential ingredient for successful collaborative projects, and needs to exist on
many levels, in each phase of a project: trust in protocols and measurement accuracy for
data collection; in algorithms, models, and processes for data processing; in decision-making
and result-finding; and, finally, trust in people and their willingness and ability to collaborate
to disseminate the results. We believe that visualization could be used to build trust in the
research process and confidence in its outcomes by addressing and revealing biases that can
enter the process at each stage.
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Figure 2 Shape of NKI cancer patient population, coloured by ESR1 expression, and indicating
a subpopulation of patients who survived with low ESR1 levels. (taken from Lum et al, 2013; for
full details see reference)

Biases can be categorized by their source, along a gradient from machine-centered to
human-centered bias (see Figure 3). Over time, the extent and source of a particular bias
may change; overlaps can indicate a multitude of factors that need to be taken into account.

At different stages of a research project, the same bias may require different visualizations
to reveal its effect in each particular context.

Careful selection of visualizations to highlight each potential bias will help make the
analysis transparent, establish a solid basis for quality control and validation, and may also
be useful for explaining methods in a publication.

Figure 4 is an example of a structure that can be populated with specific visualization
types to address each kind of bias, at each project phase.

By identifying and quantifying potential biases visually, we believe we can help researchers
become vigilant to flaws and pitfalls to mitigate risks in the biomedical research process.

Additional Sources:
https://eagereyes.org/basics/encoding-vs-decoding
http://decisive-workshop.dbvis.de/?page_id=555#101
https://www.computer.org/csdl/trans/tg/2006/04/v0421.html
https://en.wikipedia.org/wiki/List_of_cognitive_biases
https://betterhumans.coach.me/cognitive-bias-cheat-sheet-55a472476b18

C. VISard: a card game

Group consisting of Martin Krzywinski, Timo Ropinski, Marc Streit, Cagatay Turkay, Michel
A. Westenberg, Blaz Zupan.
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Figure 3 Categorization of bias types.

VISard is a card game and playful take on data visualization education and engagement.
It teaches players about the vicissitudes of creating visualizations, dealing with data, users
and tasks and the fortunes (good and bad) of practical aspects of computing, design and
publishing.

Game goal. The goal of this multiplayer game is to be the first to create a visualization
that satisfies requirements, while being subject to constraints, benefitting from lucky breaks
and suffering setbacks due to unfortunate events. The game may be played cooperatively or
competitively – you can hinder other players to avoid being scooped as you race to publish
your visualization.

Game process. Each player creates a visualization by playing various cards. The visualiza-
tion must meet an acceptable level of accuracy, intuitiveness and engagement.

These acceptable levels are defined by a combination of data set, user and task. These
levels are the same for each player and generated at the beginning by randomly drawing
requirement cards.

Visualization requirements. The requirements for a successful visualization are determined
by three cards drawn at random from the requirements pile at the start of the game.

Data requirement cards (Figure 5) describe a dataset or analysis context such as protein
interactions or bacterial phylogeny. Each of these data sets is associated with a specific type,
such as a network or tree. These types influence the behaviour of other cards.

Each data set contributes uniquely to the accuracy, intuition and engagement requirement.
For example, the bacterial phylogeny card (Figure 6) adds +4 to accuracy, +2 to intuition
and +1 to engagement.
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Figure 4 Categorization of bias types.

Figure 5 A sample of data requirement cards.

The second requirement is the user. Each of these cards has its own requirements
(Figure 7). For example, designing a visualization for a scientist calls for high accuracy (+5)
but low engagement (+1). On the other hand, kids require high accuracy (+5) but low
engagement (+1).

The final requirement card represents the task (Figure 8). Just as for data and user, the
task cards contribute to the overall requirement.

The requirement cards are drawn at random – unusual combinations of data, user and
tasks are possible! For example, consider the following requirement set: exploring bacterial
phylogeny with kids (Figure 9). The total requirements for a visualization for this set of
cards is 6 accuracy, 8 intuition and 8 engagement.

The cards are designed so that they can be stacked to show only the requirement tab to
assist in counting the requirements (Figure 10).

Examples of requirement cards with scores. Scores are (accuracy,intuition,engagment,class)
where class is an (optional) data type that influences the behaviour of other player cards
(e.g. plot type).

User: scientist (1,5,2), kids (5,1,4), patient (2,3,5), politician/decision maker (3,2,4),
student of engineering (4,4,2)
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Figure 6 Each requirement card contributes towards a requirement in accuracy, intuition and
engagement. A user’s visualization must meet or exceed each of these requirements for a successful
visualization.

Figure 7 A sample of user requirement cards.

Figure 8 A sample of task requirement cards.

Figure 9 A sample set of data, user and task requirement cards that define the requirements for
a successful visualization.
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Figure 10 Requirements are shown as circles on the card’s tab, allowing cards of a similar type
to be stacked.

Figure 11 Example algorithm cards.

Data: ECG (5,1,4, time series), Country happiness index (5,2,3,geo), Protein interactions
(3,2,1,network), Health demographics (5,2,4,table+geo), Bacterial phylogeny (3,4,1,tree),
Gene expression (1,5,4,table), Patient collection (1,5,2,text)
Task: Outlier detection (4,2,2), Trends (2,1,2), Correlation (5,2,5), Cluster analysis (1,2,4),
Pedigree analysis (2,3,4)

Building the visualization. Once the requirements have been determined, each player builds
a visualization using a combination of analysis, plot, encoding and design cards. Each of
these contributes uniquely towards the requirements (Figure 11).

For example, the t-SNE algorithm card contributes +1 to accuracy and +1 to engagement.
However, it does not contribute to intuition. On the other hand, linear regression card
contributes +2 to accuracy, +1 to intuition but imposes a penalty of –1 to engagement.

The requirement values selected for each card are a combination of our perception of the
method, how it might be perceived by users and, importantly, of aspects of the algorithm
that we wish to emphasize to the player. For example, the t-SNE card would briefly describe
the algorithm and indicate that distance between projected points is not interpretable.

Similarly the plot (visualization) and encoding cards contribute to a user’s visualization
(Figure 12). Some cards may be incompatible with others – for example, a scatter plot cannot
be used on time-course data.
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Figure 12 Examples of visualization, encoding and design cards.
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Examples of visualization-building cards.
Design: hot metal colormap (4,3,1), rainbow colormap (5,1,4), log scale (1,3,1), area
encoding (4,2,5), length encoding (5,5,5), shape encoding (5,4,4)
Transformation: k-means, regression analysis, t-SNE, MDS, missing value imputation,
PCA
Visualization type: scatterplot, force-directed layout, treemap, heatmap, matrix layout,
mosaic diagram, circos, pie chart, bar chart, parallel coordinates, silhouette plot

Game mechanics – Single player.
1. Draw a data, user and task card randomly. These are your requirements.
2. From a deck of all other cards, player draws 6 cards to make a hand.
3. A round begins by playing a card towards the requirements. Every played card adds

or subtracts from the running total of each of the 3 requirement categories. Cards are
organized based on type and you can only have one card of each type in play at any given
time.

4. Some cards have additional requirements that must be fulfilled. This may prevent playing
certain cards or cards of a certain type.

5. Anytime a card played successfully, the user may discard up to 2 cards and draw to
complete the hand.

Various end game scenarios are possible. 1. endless play (game ends whenever the player
chooses). 2. when a fixed number of cards have been played (e.g. 5, 7, whatever).

Game mechanics – Multiplayer.
1. Draw a data, user and task card for the group and place them in the center. These are

the requirements which every player attempts to meet.
2. Each player draws 5 cards from the deck to make a hand.
3. The group chooses who goes first and order proceeds clockwise.
4. A round begins by a player performing one of these tasks (user cannot pass): play a card

to build up their solution or perform a task made possible by an action or event card.
Cards are organized based on type and you can only have one card of each type in play
at any given time. This can be facilitated by stacking the cards of a given type, with the
active card placed on top of the stack.

The game ends only when a player chooses to play a publish action card. In order to
complete a visualization a player must have at least one card of each type.

Player-specific constraints. To teach users about the challenges of constraints and benefits
of new technologies or approaches, mixed with the visualization-building cards are constraint
cards (Figure 13).

For example, if a user draws a 3D constraint card then they are penalized for accuracy but
obtain a bonus for intuition and engagement – the constraint card contributes –3 to accuracy,
+1 to intuition and +2 to engagement. Constraint card examples: Excel, PowerPoint,
Tableau, Cytoscape, 3D, black and white, small screen, VR headset.

Events. Some cards in the deck act as events (Figure 14). When they’re drawn, the player
may be forced (or choose) to perform an action.

The event cards represent fortunate or unfortunate events that may occur during the
process of building a visualization. Some cards penalize the player (e.g. data loss, which
requires that a player discard one of the active cards in their hand) while others benefit the
player (e.g., scoop, which allows the player to steal any card from another player).
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Figure 13 Examples of constraint cards which impose a bonus and/or penalty to the user. These
are specific to a user and modify their requirements for a successful visualization.

Figure 14 Examples of event cards.

The publish card is a special event. It is required for a user to be able to trigger the end
of the game, assuming that they have met the requirements of the visualization.

Event cards.
Publish – ends game at user’s discretion
Scoop – take a cards of a certain type from any other player’s visualization. Steal card
may allow for more than one type. The stolen card must be immediately played or
discarded.
Swap – exchange a card of a certain type from any other player. Swapped card must be
played immediately. There are different kinds of swaps: single card from top of type pile,
entire type pile, or entire visualization.
Data loss – discard the number of cards on the dala loss card from the top of type stack
Reflect disaster – cancel action of another player on your hand or a drawn action card
Change requirement card – replace one of the requirement cards by a new randomly
drawn card
Modify requirement card – alters the requirements for a given player, place this card face
up near your visualization

Game modes. The game may be played with the requirements visible to all players (Fig-
ure 15).

The requirement cards are double-sided, with one side printed without the explicit
requirements. In this mode, the players must anticipate the requirements of each card. The
player who triggers the end of the game takes the chance of meeting the requirements. If
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Figure 15 An example game state in which player A and B both see the visualization requirements.

they do not, then the amount that they fall short off is added to the visualizations of other
players when tallying the score (Figure 16).

Expansions. The game is scalable through expansion packs. Themes in current news, for
example, can be made available as additional data or task cards (Figure 17). Similarly, newly
published algorithms or visualizations can be accommodated.

Biological Networks
The biological networks group included the following members: Alexander Lex, Scooter
Morris, Jessie Kennedy, Carsten Gorg, Bruno Pinaud, Anne Knudsen, Katja Buhler, Angus
Forbes, William Ray, and Liz Marai. In a common meeting, the group brainstormed for open
research topics. As a group, we then assessed both individual member interest and expertise
in the resulting list of questions and culled the list. After several passes, we converged
towards six main topics and the following subgroups; each subgroup produced next a list
of keywords to better crystallize the topic, and a list of potential publication venues, along
with the publication type (survey versus position versus guidelines etc.):
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Figure 16 An example game state in which player A and B do not know the precise requirements.
Each player must guess the requirements for each card.

Figure 17 Examples from an ethics expansion pack.
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Topic: Query-networks (details-first, expand on demand) for thousands of nodes
Members: A. Lex (Lead), S. Morris, C. Goerg, J. Kennedy, A. Knudsen
Keywords: zoom-into-detail vs reorient-for-detail, semantic vs geometric zoom, “too
many” nodes vs “too many” edges, “meaning” of thresholds (weight vs relative weight)
Venue: Perspective PLoS CompBio

Topic: Spatiality in neural networks
Members: L. Marai (Lead), K. Buhler, A. Forbes
Keywords: biological networks, spatial data, 3D coordinates, neurons, atlases, data
integration, spatial nonspatial integration, survey, review, design, guidelines, neur-
oscience, connectome visualization, Hypergraphs, Multilayer networks, constrained
layout, multidimensional projections (parallel coords, etc)
Venue: Review followed by Taxonomy/Position: TVCG, Nature Methods, Neuroin-
formatics

Topic: Visualization for the Rule-Based Modeling of Biological Systems
Members: A. Forbes (Lead), B. Pinaud, L. Marai
Keywords: rule based model, rule inference, graph rewriting
Venue: Review, Bioinformatics/BMC Bioinformatics

Topic: 10 simple rules to create biological network figures for communication
Members: L.Marai (Lead), S. Morris, A. Lex, J. Kennedy, C. Goerg, K. Buhler, B.
Pinaud
Keywords: Visualization design, Ideas that need keywords/better searches: (data-
centric vs user-centric vs task-centric,what to sacrifice for simplicity/informing the
user); Is the visualization of both nodes and edges always necessary?
Venue: Guideline; PLoS CompBio

Topic: What Cytoscape needs to do to get vis researchers to work in its web-browser
Members: S. Morris (Lead) and everybody else in the group
Keywords: Cytoscape, network visualization
Venue: (non publishable)

Topic: Spatial Networks in Bioinformatics
Members: W. Ray (Lead), A.Forbes, B. Pinaud, L. Marai
Keywords: bioinformatics network visualization
Venue: Position/Survey/Guidelines

Additional topics that the group considered were: Comparison, Dynamic Nets, Spatiality
in protein networks, Aggregation, Provenance of nets, Multi-attribute nets, and Hypernetwork
graphs. These topics of interest could not be tackled due to time constraints, and were slated
for discussion at future meetings.

Over the following energetic breakout sessions, the smaller groups converged towards an
outline and an abstract for each publication, as well as which group member was in charge
of which section. Group leads then contacted editors at potential publication venues. Each
group agreed on a timeline for finalizing their target publication, on the platform they were
going to use for drafts, and on their preferred means of communication.

Pangenomics
The working group for this topic consisted of the following four members (in alphabetical
order):
Kay Nieselt, Jim Procter, Granger Sutton, Danielle Szafir.
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After a first discussion round it was agreed to work on the topic ‘Open Visualisation
challenges for Pangenomics’. In the first discussion round also the following tasks, questions
and open challenges were identified:

Which are the standard and most commonly used visualisations for pangenomes?
Which analytics should be connected with the visualisations, in term of visual analytics
(VA) software?
Which questions do researchers in pangenomics ask?
What type of data feeds into a Vis or VA tool?
What commonly used visual encodings exist?
In terms of scalability (growing pan-genomes), what type of aggregation methods are in
place or missing?
For a given pangenome what is the best computational as well visual approach for an
update of a given pan-genome?

In a separate document, many more details for each of these questions and open challenges
have been collected.

Topic: ‘The 10 most important visualisations of pangenomes’

for the series ‘Ten simple rules’ in Plos Comp Biol.
The ten rules / most important visualisations are:
1. Central definition of the pangenome: Gene content is the core of pangenome. Thus the

central visualisation is a matrix view of the gene content, possibly in conjunction with a
synteny viewer (see below no. 4). A dichotomy of approaches exists:
a. Start at the whole genome alignment and layer features onto it
b. Start at the feature level and zoom into the nucleotide level

2. Overview and details on demand to represent gene organisation (an example tool is
PanACEA (T. Clarke et al., BMC Bioinformatics 2018).

3. Visualisation of clustering results for the visual identification of core genome as well as
unique genes for individual members. Analytical approaches are for example bi-clustering.
Visualisation should allow reordering of rows and columns of matrix.

4. Clustering of species as a dendrogram combined with the gene content matrix, for example
as a heatmap. An example tool is ROARY (Page et al., 2015) for a gene-content heatmap
or Sequence Surveyor (Albers, Dewey, & Gleicher, 2011) for a heatmap encoding synteny.

5. Allow possibility of tree comparison, for example to highlight leaves that have been
rearranged between two trees (example tool is TreeJuxtaposer by Munzner et al., ACM
Transactions on Graphics (TOG) 2003)

6. Visually analyse horizontal gene transfer and gene loss (an example tool is panX by Ding,
Baumdicker & Neher, NAR 2017)

7. Visually compare intersection and uniqueness of genes between two (sub)sets of a pan-
genome (given for example by a dendrogram, an example tool is Hierarchical Sets by
Pedersen, 2017). If more than two sets (of species’ gene content) are compared, then
UpSet (Lex et al., 2014) is a recommended tool.

8. Represent genomic architectures to visually show rearrangements in genomes (example
tool is GenomeRing (Herbig et al., Bioinformatics 2012)

9. Curation of genomic annotation: a visualisation of a pangenome together with provided
gene annotation in each strain can help to identify poorly and even erroneously annotated
features. An example tool is Pan-Tetris (Hennig et al., BMC Bioinformatics 2016).

10. Aggregation: a challenge in future is the issue of scalability. A visual tool for pangenomes
should offer the possibility to aggregate species and pangenes.
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The group agreed to write such an article and it agreed on a timeline for finalizing the
publication. The structure of the article is as follows: we start with (our) central definition
of the pangenome with respect to its visual representation and mining possibilities. We will
reflect the prokaryotic perspective more than the eukaryotic one and focus on a subset of
tasks from prokaryotes. Then the ten rules will follow with example applications.

Collaboration
The following seminar participants joined the collaboration working group: Lennart Martens,
Cydney Nielsen, Sheelagh Carpendale, Nils Gehlenborg, Michael Krone, Barbora Kozlikova,
Helena Jambor, Falk Schreiber, Karsten Klein.

The collaboration breakout group focused on the question of how one can turn the
visualization research conducted in a collaboration between visualization, bioinformatics,
and biology researchers, into a stable tool that can serve the bioinformatics and biology
community beyond the duration of the collaboration.

The group agreed that collaborations between data visualization, bioinformatics, and
biology researchers can be productive and result in progress in all three fields. However,
one of the major challenges encountered is that collaborations often end too early, when a
prototype visualization has been created and potentially published, but not turned into a
usable and maintainable tool for the bioinformatics and biology communities. The group
identified the vastly different timescales of conducting and publishing research in these three
communities as a major driver behind such undesirable outcomes. In essence, there is a period
in which the visualization collaborator has already gained close to maximum cumulative
value from the collaboration, when the bioinformatician and the biologist have not yet gained
much value from the collaboration (see Figure 18). The group termed this period the “valley
of death”, because it is the phase during which many collaborations fall apart.

Next, the group identified the reasons for why the valley of death exists, considering
the perspectives of visualization, bioinformatics, and biology researchers. For visualization
researchers, the main concerns are lack of incentives to move beyond a prototype and create
a usable tool that would not result in a visualization venue paper, visualization researchers
might lack the software engineering skills to build a production quality tool and the inability
to attract and retain professional software developers, as well as a the lack of appreciation
for a stable tool that could serve as a basis for future research. From the perspective of
bioinformatics researchers, the biggest concerns are the need to publish a usable tool rather
than a prototype, the time required to develop a usable tool, as well as the need to move
from a feature-laden prototype to a streamlined tool that is focused on core functionality
but stable. Biologists are generally less concerned about the valley of death, as the insight
needed for their research question might be provided by the prototype – with the data loaded
by the visualization researcher – or a a tool built based on the prototype.

Based on these observations, the group discussed what would need to happen in visualiz-
ation, bioinformatics, and biology research for more collaborations to successfully cross the
valley of death. A visualization researcher would be incentivized to continue a collaboration
if there was recognition that a finished tool can offer value for future work, the consideration
of publishable contributions to the tool (e.g. an evaluation or systems paper), if there was
agreement that trans-community research is valuable, if there was more recognition for
visualization work published outside the visualization community, and finally that usable
tools will likely be helpful in establishing future collaborations. Bioinformatics and biology
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Figure 18 A draft diagram produced during the seminar that illustrates the concept of the valley
of death.

researchers could support the process by allocating resources for the transition from prototype
to tool, which is explicitly supported by some funding agencies. Additionally, biologists
and bioinformatics should use the prototype to generate interest in the method in their
communities, further incentivizing the development of a tool.

The key take away identified by the group is that everyone in the collaboration needs
to have awareness about the valley of death and there needs to be agreement by among all
collaborators about how the valley of death will be crossed in this particular context.

Finally, the group identified several representative examples from different biological and
data visualization domains, that illustrate characteristics of both successful and unsuccessful
collaborations. Based on these examples, the group formulated a structure for the ideal
collaboration, which is broken down into three stages. The first stage would result in a
prototype and publication in the visualization literature, the second stage would result
in joint publications in biology and bioinformatics venues describing a tool based on the
prototype and applications of that tool, and the third stage would be adoption of the tool by
the community and transition from active development to long-term maintenance.

Curriculum
The seminar discussion of a curriculum took place in three phases. In the first phase, the
seminar participants dedicated one breakout session and a plenary session to discussing the
contents of a curriculum in biology visualization. For the first breakout session, the seminar
participants partitioned spontaneously in five groups. We took advantage of the splendid
weather and grouped around the tables in the yard outside the dining room. Each group
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discussed the core competencies required in a biology visualization course, and reported back
to the plenary.

In the second phase, a small subset of participants, representing each group, dedicated
one additional breakout session to summarizing the output of the seminar’s work in this
direction. Representatives Torsten Möller, Liz Marai, Danielle Albers-Szafir, William Ray,
and Bruno Pinaud collected the notes from all working groups and compiled a taxonomy
for the contents of such a biology visualization course. One result that emerged from this
discussion was that different audiences have different content needs: for example, someone
teaching molecular biology visualization will need to cover the rendering pipeline, while
someone teaching genomic visualization will not. The result of this intensive work and
discussion was a matrix table of contents, with sections mandatory for all such courses, and
with optional topics depending on the data type (see table below).

I. Cross-Cutting Processes.
1. Why Visualization?
2. Tasks+Data+Workflows
3. Design Principles + Typography (both process, e.g., prototyping, and visualization

design)
4. Evaluation
5. Provenance (optional)
6. Ethics (optional)
7. Rendering Pipeline (optional)

II. Applications. Choose topic(s) of interest, e.g. a subset of Geospatial Data Images,
Networks, Populations & Sets, Sequences & Genomes, Tables, Text, and Three-Dimensional
Structures. Cover the following topics for each application:
1. Color
2. Perception
3. Visual Encodings
4. Facets
5. Interaction
6. Summarization

III. Additional Characteristics of Data.
1. Temporality
2. Scale / Multi-scale
3. Uncertainty

Each cell in the resulting matrix will be crowd-sourced and moderated by a designated
contributor. Each such cell will contain metadata and links to example teaching materials,
organized along the following categories:

Moderator
Table of Contents
Instructional Videos (Brief, 5-15 minutes)
Reading Materials
Examples (good and bad)
Exercises & Summative Evaluations
Tools
Tutorials
Example Courses (including durations & schedules)
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Learning Outcomes (Bloom’s Taxonomy)
Lecture Materials

In the third phase, the results from this consolidating work were reported and discussed in
another plenary session. The seminar participants were extremely pleased with the outcome.
A lively discussion of the logistics for completing the cells of the curriculum table followed.

5 Conclusion and Next Steps

In the final plenary session all participants of the seminar discussed the possibility of a
follow-up meeting or even the possibility to have a regular Dagstuhl seminar about the topic
of large-scale biological data visualization. An overwhelming majority of the group voted
for a follow-up or even regular meeting. This was also confirmed in the Dagstuhl survey.
Finally, the result of the survey showed that the scientific quality of the seminar was rated
as ‘outstanding’ (as a median). Thus, the organizers of this seminar would like to discuss
possibilities for repeating this seminar with the Dagstuhl directors and staff.

6 Overview of Talks

6.1 Spatial Networks in Neuroscience
Katja Bühler (VRVis – Wien, AT)

License Creative Commons BY 3.0 Unported license
© Katja Bühler

In my talk, I addressed one of the questions given as a point for discussion in context of the
Networks Panel. “What type of spatial data (3D coordinates), if any, show up in biological
networks?” Understanding how the brain works is currently subject of large scale brain
initiatives worldwide generating huge amounts of data at all scales. The brain is a spatial
structure and consequently also the data underlying neurocircuit research is inherently spatial.
I started with an overview on different kinds of spatial data and spatial networks being
central to neurocircuit research and how standard brains and hierarchical brain parcellations
are used to establish a spatial and semantic reference system. These reference systems allow
us to integrate data across scales and types, to perform data aggregation to reduce complexity
and to provide important anatomical and functional context for neuroscientists. I presented
several examples illustrating how these spatial data characteristics can be exploited to create
comprehensive network visualizations, to design data structures ensuring interactivity on
large scale datasets and to fuse heterogeneous network and non-network data across scales.
A discussion of open challenges and requirements on visualizations and interactive visual
analytics systems for supporting neuroscientists in their daily research tasks concluded my
talk.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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6.2 Visualizing Public Health Data
Anamaria Crisan (University of British Columbia – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© Anamaria Crisan

Background. Genomic epidemiology integrates next-generation sequencing data from surveil-
lance programs and outbreak investigations with administrative datasets, providing a rich
pool of data to inform public health decision-making. Bioinformatics pipelines culminating
in data visualizations are often used to explore, interrogate, and communicate these complex
integrated datasets, but while the bioinformatics tools underlying these platforms are rigor-
ously tested and evaluated, the resulting data visualizations are often created on an ad hoc
basis.

Methods. We have conducted a systematic review of the microbial genomic epidemiology
literature from the past ten years to survey existing visualizations and to systematically
characterize those visualizations by creating a why-what-how annotation code set that
describes why the visualization was created (e.g. to show disease transmission in a hospital),
what data were used (e.g. genomic data, event data, outcome data), and how the data was
visualized (e.g. phylogenetic tree, timeline). To populate the why-what-how code set in
a reproducible, transparent, and timely manner we have also created a pipeline that uses
text mining and topic modelling to understand why a visualization was created followed
by annotation using online open source software borrowed from image analysis research
to derive the what and how components of the code set. Together the components of the
why-what-how code set form the basis of a typology.

Results. We have developed GEViT (Genomic Epidemiology Visualization Typology),
which allows researchers to systematically characterize and analyze visualizations developed
specifically for microbial genomic epidemiology applications. Our initial findings show that
different visualizations for a common objective (why) incorporated different data types (what)
and used a variety of approaches to visualize these data (how), from colour to shapes to
textual annotations. The preliminary data visualization corpus and associated code set have
been compiled into a searchable gallery with suggestions of best practices that researchers
and public health officials can use to guide data visualization efforts to communicate findings,
or inform the design of data visualization components within analytic tools.

Conclusions. Through the development of GEViT, we demonstrate how it is possible
to reason systematically about data visualization design and analysis. We anticipate that
the GEViT resources will provide a comprehensive framework that allows researchers and
healthcare stakeholders to design and analyze visualizations that facilitate the exploration
and interpretation of complex healthcare datasets.

6.3 Big Mechanism Visualization
Angus Forbes (University of California, Santa Cruz, US)

License Creative Commons BY 3.0 Unported license
© Angus Forbes

My talk presents a series of visualization projects related to the “Big Mechanism” program,
supporting a range of tasks broadly relating to the assembly and execution of biological
networks extracted from biomedical texts. Understanding the complex processes of life
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requires multiple points of view, enabling a wide range of analysis tasks. This understanding,
especially when drawn from contemporary heterogeneous big datasets, is often only a working
model which is likely to undergo revision, and some of the visualization tools I present
explicitly indicate where our knowledge comes from, i.e., which databases, which cell lines,
which articles, which sentences. Designing accurate representations of biological data is in
itself a interesting research topic, but it is also important to create representations that
support useful ways of analyzing this data, and another series of tools I present utilize novel
encodings to facilitate reasoning about the dynamics of and casual relationships within
complex biological systems.

Overview of BioVis projects:
1. P Murray, F McGee, and AG Forbes. A taxonomy of visualization tasks for the analysis

of biological pathway data. BMC Bioinformatics 18(2), 2017. https://creativecoding.soe.
ucsc.edu/pdfs/Murray_BioPathTaxonomy_BMCBioinformatics2017.pdf

2. P Boutillier, M Maasha, X Li, HF Medina-Abarca, J Krivine, J Feret, I Cristescu, AG
Forbes, and W Fontana. The Kappa platform for rule-based modeling. Bioinformatics
34(15), 2018.
https://creativecoding.soe.ucsc.edu/pdfs/Boutillier_KappaPlatform_BioVis2018.pdf

3. AG Forbes, A Burks, K Lee, X Li, P Boutillier, J Krivine, and W Fontana. Dynamic
influence networks for rule-based models. IEEE Transactions on Visualization and
Computer Graphics 24(1), 2018.
https://creativecoding.soe.ucsc.edu/pdfs/Forbes_DIN-Viz_VAST2017.pdf

4. AG Forbes, K Lee, G Hahn-Powell, MA Valenzuela-Escárcega, and M Surdeanu. Text an-
notation graphs: Annotating complex natural language phenomena. LREC 2018. https://
creativecoding.soe.ucsc.edu/pdfs/Forbes_TAG_AnnotatingComplexNLPPhenomena_LREC_
2018.pdf

5. TN Dang, P Murray, J Aurisano, and AG Forbes. ReactionFlow: An interactive visualiz-
ation tool for causality analysis in biological pathways. BMC Proceedings 9(6), 2015.
https://creativecoding.soe.ucsc.edu/pdfs/Dang_ReactionFlow_BioVis2015.pdf

6.4 Network Visualization Challenges
Karsten Klein (Universität Konstanz, DE)

License Creative Commons BY 3.0 Unported license
© Karsten Klein

Network visualization has come a long way and there are many solutions for problems that
were posed 10-20 years ago. However, some problems are not really solved, and new issues
arise as more and more data is available, integrated, and also tasks become more complex.
Notable examples are visual comparison and visualization of dynamic networks. In addition,
new technology is available the affordances and requirements of which are often ignored in
the visualisation concept design. I give an overview on network visualisation from my point
of view, list the most pressing challenges, and give a few examples from my current research.

https://creativecoding.soe.ucsc.edu/pdfs/Murray_BioPathTaxonomy_BMCBioinformatics2017.pdf
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https://creativecoding.soe.ucsc.edu/pdfs/Forbes_TAG_AnnotatingComplexNLPPhenomena_LREC_2018.pdf
https://creativecoding.soe.ucsc.edu/pdfs/Forbes_TAG_AnnotatingComplexNLPPhenomena_LREC_2018.pdf
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https://creativecoding.soe.ucsc.edu/pdfs/Dang_ReactionFlow_BioVis2015.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Jan Aerts, Nils Gehlenborg, Georgeta Elisabeta Marai, and Kay Katja Nieselt 59

6.5 Biological Networks
Alexander Lex (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Alexander Lex

There is a variety of biological data types that can be modeled as networks. Most of
these networks are more valuable if they are considered in the context of node and edge
attributes. In this talk I present some layout adaption/linearization strategies to visualize
such multivariate networks.

I also introduce a distinction between overview and local tasks, those that are concerned
with specific nodes, and argue that local network analysis tasks are more common. I present
some techniques that are optimized to ensure readability for local network analysis tasks.

6.6 Telling Stories With High-D Data in the Clinic
Raghu Machiraju (The Ohio State University – Columbus, US)

License Creative Commons BY 3.0 Unported license
© Raghu Machiraju

It is typical for multiple data to be used in the clinic for diagnosis. However, diagnosis in the
clinic is stymied by genetic heterogeneity which often results in different outcomes for the
same treatment. Patient stratification and biomarker discovery is needed while using multiple
data. In this talk, we discuss how “visual stories” can help with gleaning disease etiology
and lead to better patient stratifications. Many of these visual stories use interpretable
representations. A case is also made for data-driven and often uninterpretable representations
especially obtained from deep learning methods.

6.7 Curriculum Panel: Teaching Visualization
Lennart Martens (Ghent University, BE)

License Creative Commons BY 3.0 Unported license
© Lennart Martens

Teaching visualization can follow an overall scheme that works for most courses (or curricula).
This schema focuses (in that order) on the following answers to the questions that a
student would like answered. (i) What is the topic of the course (centred on definitions
and/or description)? (ii) Why is this topic important? (iii) What is the objective of this
course/curriculum (what are the learning outcomes)? (iv) What can be done to reach
this course/curriculum objective (transferring the relevant knowledge teaching the actual
skills)? (v) Learn how to apply these skills in practice. With regards to the content of such
a course, some elements that come to mind are listed next. Start from poor examples of
visualizations, and critique these. Teach the basics of human perception. List and describe
visual elements, and what each is good for (possibly extending this with what each of these is
not good for, similar to the format for software design patterns). List and describe graphical
representations and their uses in the same overall way. List and describe existing frameworks
for visualization, and teach elementary considerations related to how to make libraries or
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plugins in such tools. The practical sessions can be based on improved visualizations for
poor examples that the students have found.

6.8 Visualizing and Interpreting Metabolite-Gene Relationships with
RaMP

Ewy Mathé (Ohio State University – Columbus, US)

License Creative Commons BY 3.0 Unported license
© Ewy Mathé

Joint work of Ewy Mathé, Elizabeth Baskin, Senyang Hu, Andrew Patt, Jalal K. Siddiqui, Bofei Zhang
Main reference Bofei Zhang, Senyang Hu, Elizabeth Baskin, Andrew Patt, Jalal K. Siddiqui, Ewy Mathé: “RaMP:

A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment
Analysis of Genes and Metabolites”, Metabolites, 8(1). pii: E16, 2018.

URL https://doi.org/10.3390/metabo8010016

The value of metabolomics in translational research is undeniable and metabolomics data is
increasingly being generated in large cohorts, alongside other omics data such as gene expres-
sion. Analysis of these integrated datasets and functional interpretation of disease-associated
metabolites is difficult,and is often hampered by the lack of user-friendly computational
tools. With this in mind, we developed RaMP (Relational database of Metabolomics Path-
ways), which integrates biological pathways from KEGG, Reactome, WikiPathways, and
HMDB. The database is accessible directly (mysql dump) or through an R package that
is publicly available via GitHub (https://github.com/Mathelab/RaMP-DB) and includes
detailed documentation on installation and usage. The next steps are to visualize the con-
tents of the database to evaluate metabolite annotations between different databases and
to create visual approaches to enable toggling between different types of information (e.g.
biological pathways, chemical information, etc.). During this process of developing tools, it is
important to balance out generalized/simple tools, that are easier to implement and arguably
more user-friendly, and domain-specific/tailored tools, that are powerful and flexible but
require in-depth understanding. In all cases though, robustness and reproducibility should
be integrated.

6.9 Visualization of Single Cell Cancer Genomes
Cydney Nielsen (BC Cancer Agency – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© Cydney Nielsen

Joint work of Cydney Nielsen, Maia Smith, Samantha Leung, Viktoria Bojilova, Oleg Golovko, Daniel Machev,
Sohrab Shah

Cancer development is an evolutionary process driven by mutation. Single cell genomics is
changing our ability to quantify tumour heterogeneity and observe the dynamics of genetically
distinct cells over time and anatomical space. This rich research domain offers many
visualization challenges and I will highlight four pressing issues that potentially generalize to
other areas of biomedical research: (1) designing new visual representations; (2) creating
interfaces that serve a broad spectrum of users; (3) achieving responsive interactivity with
large and varied data; and (4) integrating with the analytical process. In conclusion, I would
encourage us as a community to further integrate our visualizations into the relevant analysis
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workflows, such that interactive visualization is increasingly embraced by the bioinformatics
and biology communities as a central analysis methodology, rather than niche.

6.10 Strategic Graph Rewriting, Network Analysis, and Visual
Analytics: challenges and thoughts

Bruno Pinaud (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Bruno Pinaud

Joint work of Maribel Fernández, Hélène Kirchner, Bruno Pinaud, Jason Vallet
Main reference Maribel Fernández, Hélène Kirchner, Bruno Pinaud, Jason Vallet: “Labelled graph strategic

rewriting for social networks”, J. Log. Algebr. Meth. Program., Vol. 96, pp. 12–40, 2018.
URL http://dx.doi.org/10.1016/j.jlamp.2017.12.005

In my 10-minute talk I have presented some challenges and thoughts about rule-based
modelling and the usage of visualisation to steer every step of the workflow: model design,
simulation, then analysis. This talk is based on my work on Porgy (http://porgy.labri.fr)
and the collaboration with Maribel Fernandez (King’s College London), Hélène Kirchner
(Inria, France) and Guy Melançon (U. Bordeaux, France).

I started with a quick reminder about Graph Rewriting which is all about designing
executable specifications of complex systems and in the end trying to understand how the
behaviour of the system at a global scale emerges from rules specifying how local modifications
operate. To create such a software, one big challenge is if there is a data-structure universal
enough to handle efficiently all operations of the system and moreover, a data-structure
powerful enough to support different type of networks (e.g., bio, social net, capital markets,
relational database design).

To give my answer to this question, I have presented in a few slides our visual graph
programming environment called Porgy and our data-structure called “labelled port graph”.
However, this graph model has to be used along with a graph hierarchy mechanism to avoid
duplicating nodes/edges/attributes like the one implemented in Tulip (Porgy is built upon
Tulip). To conclude, I left some open questions about the usage of higher order rules (i.e., a
node of the rule replaces a sub-graph) and from a more technical point of view the usage of
graph database to improve the rule matching phase.

6.11 The Bio/Life-Sciences need better visualization of statistical
network structures

William Ray (Ohio State University – Columbus, US)

License Creative Commons BY 3.0 Unported license
© William Ray

Many biological systems possess properties such that there are natural elements that are
thought of as nodes, with weighted connections between them that can be thought of as
edges, but that do not fit into traditional graph-theoretic frameworks, and that therefore are
difficult to represent using traditional graph-layout tools.

For example, if one looks at a protein family – a collection of proteins from different
organisms that all perform the same function – one can learn quite a lot about why proteins
that perform that function work, or don’t work.
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However, that inspection requires looking not-only at the choices that evolution has made
at each position in the protein, but also how these choices are interrelated.

Unfortunately the intuitive graph-theoretic representation for a protein treats each
sequential residue as a node in a graph, and treats dependencies, distances, or other biophysical
relationships between residues that can be determined for the family, as weighted edges
between nodes. This representation can show, for example, the mutual information between
different positions in the family alignment, but can’t show amino-acid-specific relationships
between position.

As a result, this position-centric view disguises many important dependencies, such as
when the large majority of choices are independent, but some small subset have a strong
dependence requirement.

Conditional Random Fields provide an interesting formalism for approaching this data.
Structurally CRFs (and similar probabilistic networks) describe node-link networks where
each node contains a set of categorical sub-nodes, and each edge is composed of conditionally-
weighted sub-edges between the sub-nodes. This formalism maps conveniently to these
biological networks, and it appears to be a natural mapping to many biological phenomenon
with conditionally-interrelated features. As a result, visualizing and interacting with the
structure of Conditional Random Fields can provide important insight into fundamental
biology.

6.12 Making Sense of Large Scale Image Data
Jens Rittscher (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Jens Rittscher

Three concrete examples for generating high-dimensional data from image data sets are being
presented. The first illustrates visualisation tasks in high-throughput screening. The main
challenge here to discover new cellular phenotypes. A human organotypic cell culture system
that models epithelial interactions in vitro serves as a second example. Finally, I will use
digital pathology to demonstrate how various different technology can be nitrated to visualize
genomic and molecular information in the tissue architecture context. In summary, the talk
will motivate three questions and challenges: (1) How can we integrate dynamic information
over time, (2) How can we analyse and visualise expression of molecular markers in the tissue
architecture context and (3) The need for developing metrics that capture patient similarity.

6.13 High-Dimensional Medical Data Panel: Exploration and
Communication in Biomedical Visualization

Timo Ropinski (Universität Ulm, DE)

License Creative Commons BY 3.0 Unported license
© Timo Ropinski

When designing visualizations, typically user, data and task need to be considered in order
to obtain an effective visualization. Whereas in the area of biomedical visualization at
least three different types of users need to be taken into account: medical doctors, medical
researchers, and patients. Furthermore, with respect to data, often the high dimensionality
in this context is challenging. Unfortunately, for many scenarios in this field, state-of-the-art
high-dimensional visualization techniques are not appropriate. When for instance a medical
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doctor analyses blood work, often the main task is to compare the data at hand with
given reference values. Thus, no embedding of several data sets is required, but rather a
comparative visualization of relatively few ones. Similar requirements must be met when
a patient reviews his/her tracked health data. On the other hand, when a medical doctor
communicates made findings, storytelling techniques seem to be the relevant technique of
choice. Accordingly, biomedical visualization researchers need to look into these different
requirements, when developing or selecting appropriate visualizations.

6.14 Metronome – Connecting genotypes and phenotypes
Christian Stolte (New York Genome Center, US)

License Creative Commons BY 3.0 Unported license
© Christian Stolte

Joint work of Christian Stolte, Kevin Shi, Nathaniel Novod, Nina Lapchyk, Fred Criscuolo, Toby Bloom
URL https://metronome.nygenome.org

MetroNome is a web-based genotype/phenotype exploration platform with a data visualization
interface. It is focused on enabling data sharing, data integration, data exploration, and
identification of cohorts via complex combinations of genotypic and phenotypic traits, across
diseases.

Metronome is intended to allow researchers to:
explore data with minimal effort to generate and test hypotheses
identify cohorts of interest by filtering across multiple types of data, including genotype
and clinical data
use data visualization to find relationships among genomic variants and subject or sample
attributes
share data among groups of collaborators, privately and securely
combine private data with large public cohorts while retaining full control over that data

MetroNome is intended to hold all types of genomic variants, gene expression data, as
well as de-identified subject data from medical records.

6.15 Collaborations between VIS / Bioinformatics / Bio Communities
Marc Streit (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Marc Streit

In the first part of my talk, I summarize what advice researchers and practitioners can get
from a theory of visualization. We – as a community – currently provide advice by publishing
models and theories, by collecting techniques and methods, and by describing best practices.
While this is very useful, it is often not actionable. A less explored possibility is to provide
cheat sheets in the form of decision trees that can help practitioners to create effective
visualizations. These decision trees could be created as a community effort, underpinned
with our models, and carefully annotated. In the second part, I talk about why generalizing
design studies is hard, why data and task abstraction is key to create impact in visualization
through collaboration with domain experts, and what lessons I’ve learned from previous
collaborations.
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6.16 Visualization for Pan-genomes and Meta-genomes
Granger Sutton (J. Craig Venter Institute – Rockville, US)

License Creative Commons BY 3.0 Unported license
© Granger Sutton

Pan-genomes share many characteristics with meta-genomes and can use the same visualiza-
tion approaches in part but also have distinctive needs. At the highest level a pan-genome is
a universe of genes distributed across a set of genomes where each genome contains a set of
genes which is a subset of the universe. This is also true for meta-genomes but with genomes
being replaced by samples or environments. The top level data representation is then a two
dimensional matrix of genes across genomes or samples. A typical visualization is a heat
map which has been bi-clustered to provided cladograms in both dimensions. Both can also
be represented by metabolic networks of what functional capabilities are contained. In many
cases a meta-genomic sample will in fact contain one or more pan-genomes. Meta-genomes
tend to have much less complete or fractured genome representations than pan-genomes.
Deconvoluting assembled contigs into species specific bins is unique to meta-genomes and
often read based approaches rather than assembled contigs are used for meta-genomes.

6.17 Democratization of Data Science
Blaz Zupan (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Blaz Zupan

I will talk about how visual programming, interactive visualization, and explorative data
analysis can help us in making visual analytics and machine learning accessible to everyone.
I will demo these concepts in the case of single cell data analytics in Orange (visit http:
//orange.biolab.si or http://youtube.com/orangedatamining for short videos).

7 Panel discussions

7.1 Collaboration Panel: From Genomics/Bioinformatics to
Visualization – in 5 minutes

Jan Aerts (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Jan Aerts

In this short talk in preparation on a panel discussion regarding collaboration between
visualization experts and biology/bioinformatics researchers, I start with a quick overview of
my own journey from genomics to visualization research. In addition, and more importantly,
I indicate some challenges that we encounter in bridging the gap between these two domains.
These include reusability of solutions, composability of bioinformatics tools versus often
monolithic approach for visualization tools, and the (incorrectly) perceived nice-to-have view
on visualization in omics projects.
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7.2 Collaboration Panel: Mutual Respect
Sheelagh Carpendale (University of Calgary, CA)

License Creative Commons BY 3.0 Unported license
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This talk is about mutual respect – just one of the many important factors in a good collab-
oration. One aspect of mutual respect is developing an understanding of how the different
research communities think about the way they would like to make contributions to their
discipline. While biologists’ goals usually center around developing a better understanding of
their data, ideally leading to new biological insights, visualization researchers’ goals usually
center around contributing to advancing visualization through creating new visual representa-
tions, new layout approaches and/or new exploration techniques. There can be a tendency to
favour the more easily understand the global importance of new biological insights. However,
it is important in a collaboration that one disciplines goals not over shadow the other. We
should remember that there are visual representations that have fundamentally empowered
society, for example, the alphabet is a ‘visualization’ of spoken language. It may be difficult
to learn but is a very powerful visual representation.

7.3 Biological Networks Panel: Matching the User’s Mental Map
Carsten Görg (University of Colorado – Aurora, US)

License Creative Commons BY 3.0 Unported license
© Carsten Görg

Biologists tend to think about relationships between biological entities they study in a specific
way. Often, they have a detailed mental map or even use an actual sketch or drawing that
represents relationships between biological entities or biological processes. Computationally
generated representations of networks typically don’t match the biologists’ mental or drawn
representation. We propose a network layout approach that arranges the nodes not only
based on the network topology but takes the underlying biological semantics into account
to create a high-level blueprint of the network. Biologists can interactively rearrange the
elements in the blueprint so that the representation matches their mental model. The detailed
layout is then generated based on the constraints and structure defined in the blueprint.

7.4 Biological Networks Panel: Visualising Biological Networks:
comparison of trees to graphs

Jessie Kennedy (Edinburgh Napier University, GB)

License Creative Commons BY 3.0 Unported license
© Jessie Kennedy

Comparison in and between biological networks is a common problem in biological visualisa-
tion. In biological taxonomy visualisation the underlying data structure is a graph consisting
of many overlapping trees, where one of the user tasks is to compare their taxonomy with
pre-existing taxonomies. In 2000, we developed two visualisations to support comparison
of multiple taxonomies, one was a force directed graph layout, where the user could add
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as many of the taxonomies as desired. Taxonomies in the graph are identified by having
different coloured edges and nodes contain coloured marks to show which taxonomies they
belong to. The graph layout suffered from hairball issues therefor we introduced search and
filter mechanisms to assist in understanding for the user. However, the users still found
the graph layout difficult to comprehend due to the inability to easily identify and separate
individual taxonomies and the difficulty in seeing the top down layout of the taxonomies. We
also developed a small multiples visualisation with icicle plots representing each taxonomy
with linking and focus & context techniques for exploring and comparing the taxonomies.
The tool supported removal of ranks in the taxonomies to ease comparison of trees by forcing
similar tree structures across the taxonomies. This approach was much preferred by the
taxonomists. We then developed a combined approach based on a directed acyclic graph,
which maintained the top down layout of the taxonomies, where the user could highlight one
taxonomy in the context of the other taxonomies to easily show the differences.

More recently we have been addressing the problem of comparison of multiple networks
faced by computational biologists trying to determine best network models for a range of
biological networks such as gene interaction networks to ecological networks. In determining
the biological network the computational biologists make use of Bayesian network inference
algorithms to generate 100s-100s of candidates networks which are given a score based
on their fit to the underlying model. The biologists need to examine and compare these
hundreds of networks to understand the scores assigned to the networks, e.g. to determine
if networks with similar scores are similar of different. If similar then it is likely that the
highest scoring network will be the best, however if different then the user might want to
generate a consensus network form a range of networks selected by the user. This problem
concerns comparison of many small to medium networks rather than one or a few large
networks. We have created Bayespiles which is adapted from small multipiles, a matrix based
visualisation of many networks which piles and summarises networks. BayesPiles enables
the exploration, organisation and comparison of hundreds of scored directed networks from
multiple heuristic search runs. It features two matrix-based representation modes for directed
networks (top-down and diamond), a normalised histogram that shows the distribution of
scores in the solution space, flexible network ordering based on run ID, iteration or score,
node reordering, interactive comparison of networks across groups, support for the manual
construction of a consensus network, interactive graph filtering mechanisms and a summary
view of all outgoing edges for selected nodes.

There remain many challenges in comparing networks including scalability to many large
networks and comparing multilayer and multidimensional networks.

7.5 Collaboration Panel: Visualization and Visual Analysis of
Biomolecular Structures

Barbora Kozlíková (Masaryk University – Brno, CZ)

License Creative Commons BY 3.0 Unported license
© Barbora Kozlíková

In my five-minute talk I am introducing my experience in collaboration with protein engin-
eering research group. With its members, we are focusing on analysis and visualization of
protein structures, namely searching for tunnels connecting the protein outer environment
with its active site. Such tunnels can be subsequently used for transportation of ligands to
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the active site. In my talk I am stressing the importance of finding the common language
with the domain experts and developing mutual trust. I also discuss different publication
possibilities and options, as well as issues related to transferring the research results into
practice, which requires more engineering and management skills than the research ones.

7.6 Curriculum Panel: Designing a curriculum for teaching
visualization in bioinformatics

Michael Krone (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
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My talk focusses on the requirements and contents of a curriculum (or course) for teaching
visualization in bioinformatics. I will present my personal recommendation for core visualiza-
tion principles that should be taught in the context of biological visualization. Key aspects
that have to be considered are the background of the intended audience (computer science,
bioinformatics, biology) and the level of their studies (bachelor, master, PhD). Students also
need to learn certain technical skills in order to be able to create their own visualizations
(e.g., programming). Libraries like D3 for non-spatial data or Three.js for spatial data can
be powerful tools that lessen the programming burden. This leads to the question of how to
teach students to use these tools efficiently in a reasonably short time. In summary, I think
that teaching basic visualization concepts is more important than teaching using tools.

7.7 Curriculum Panel: Vis is a large number of small problems
Martin Krzywinski (BC Cancer Research Centre – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© Martin Krzywinski

An effective way to teach visualization is to break a visualization task or challenge into a
large number of small problems. Many of these small problems recur and for each there
is a relatively small number of ways in which well-meaning users get it wrong. This talk
demonstrates redesign examples of typical visualizations from biology and demonstrates the
similarity across users’ missteps in the context of this kind of divide-and-conquer strategy.

7.8 Biological Networks Panel: Scaffolding Bionetwork Visualization
with models and theories

Georgeta Elisabeta Marai (University of Illinois – Chicago, US)

License Creative Commons BY 3.0 Unported license
© Georgeta Elisabeta Marai

Four years ago, I joined a fearless research group at the Electronic Visualization Laboratory,
who have the wisdom to question all existing paradigms. In that spirit, I question three
definitions and paradigms for biological networks. First, a biological network is any network
that applies to biological systems – for example, a functional network in the mouse audio
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cortex is still a biological network. Second, some biological networks have spatial components
– even when those components are not anchored in the physical (e.g., image) space, they bear
meaning to the biologist. Third, in terms of principles that should guide the selection of
a visualization technique for biological networks, “overview-first” is not the only possible
design approach. There is also “Search-first” (van Ham and Perer 2009), “Details-first”, and
so on.

7.9 Pan-Genomics Panel: Some questions and challenges about
comparative genomics and pan-genomics

Kay Katja Nieselt (Universität Tübingen, DE)

License Creative Commons BY 3.0 Unported license
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In my short panel talk I briefly outline some of the questions and challenges in pan-genomics.
I start first with a generalized definition of a pangenome. Based on that I point out that
pangenomics has and will influence a number of both traditional viewpoints in biology in
the future, such as the definition of a species. One main point is the data structure that
represents a pangenome, which depends on its definition as well as context that it is studied
in. Depending on the data structure, different visualisations are needed that biologists would
want to see when studying pangenomes. There are many algorithmic as well as visualisation
challenges in this field, such as scalability and update, which hopefully will be addressed
during this seminar.

7.10 High-Dimensional Medical Data Panel: High-Dimensional
Medical Data

Jos B.T.M. Roerdink (University of Groningen, NL)

License Creative Commons BY 3.0 Unported license
© Jos B.T.M. Roerdink

In my presentation I will focus on a number of aspects when dealing with High-Dimensional
Medical Data, such as:

How to collaborate? Important issues are spending time with collaborators, using simple
visualizations with explanations, avoiding sophistication and information overload, and the
need to build trust.

How to integrate into existing, complex data ecosystems? This is generally not possible
in medicine, because of certification issues. But integrating tools in systems of medical
researchers is. It is important to find a liaison person.

Who are the key influencers in this field? This concerns first of all people with a genuine
interest who want to invest time and energy, funding agencies, societal drives.

Cross-cutting interests shared by other communities. High on my list are comparison of
visualizations, workflows, and provenance.
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7.11 Biological Networks Panel: Visualisation of Biological Networks:
Past, Present, and Future

Falk Schreiber (Universität Konstanz, DE)

License Creative Commons BY 3.0 Unported license
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Networks play an important role in the life sciences. Networks can represent data and processes
from chemistry (e.g. chemical structure graphs) to molecular biology (e.g. metabolic networks,
co-expression networks) to ecology (e.g. food webs, animal behaviour networks) to medicine
(e.g. infection networks) to other related areas. In the first part, this talk will present
the history and state-of-the-art of network visualisation (layout) with a focus on metabolic
networks. Here we will discuss benefits and disadvantages of common layout algorithms often
used to visualise biological networks and look at some specific layout methods. The second
part of the talk will investigate visualisation-related topics such as graphical standards for
biological networks (e.g. SBGN) and visual analytics for biological network exploration and
investigation. This presentation will finish with an outlook to future developments such as
immersive analytics for biological networks.
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7.12 Pan-Genomics Panel: Scaling Sequence Comparison for Pan &
Metagenomics

Danielle Szafir (University of Colorado – Boulder, US)
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Pangenome and metagenome comparisons require biologists to identify and interpret meaning-
ful similarities and differences between organisms. This comparison problem requires analysis
tools to support comparisons as the number and complexity of sequences increase and also
introduce new questions unsupported by different tools. Existing sequence comparison tools
enable scalability along at most two of these different dimensions. By understanding the
needs and computational and visual challenges associated with comparison tasks in pan- and
metagenomes, we can begin to create visualizations that support the needs of these analyses
along all three dimensions.
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7.13 High-Dimensional Medical Data Panel: Living with Algorithms
Cagatay Turkay (City – University of London, GB)
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The analysis and modelling of high-dimensional medical data is relevant for a wide spectrum
of users (researchers/clinicians/patients) in different capacities and complexities. Wherever a
user stands on this spectrum, due to the complexities that high dimensional data introduces
(heterogeneity / sparsity / uncertainty), interacting with algorithms is unavoidable, be it in
terms of getting a recommendation or in terms of building explanatory models. The pursuit
for interpretable, comprehensible and explainable algorithms is getting interest in several
domains currently including machine learning, knowledge discovery and data visualisation
focusing on several different application domains. Visualisation has already shown great
potential as an expressive and insightful medium with integrated and linked representations
of several components of algorithms and engaging different users in various capacities. This
talk investigates the different users in the context of high-dimensional medical data, touches
upon a number of visual analytics techniques, and discusses a number of challenges that cuts
across these different use cases at the intersection of algorithms and users.
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