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Abstract
Secure compilation is an emerging field that puts together advances in security, programming
languages, verification, systems, and hardware architectures in order to devise secure compilation
chains that eliminate many of today’s vulnerabilities. Secure compilation aims to protect a source
language’s abstractions in compiled code, even against low-level attacks. For a concrete example,
all modern languages provide a notion of structured control flow and an invoked procedure is
expected to return to the right place. However, today’s compilation chains (compilers, linkers,
loaders, runtime systems, hardware) cannot efficiently enforce this abstraction: linked low-level
code can call and return to arbitrary instructions or smash the stack, blatantly violating the high-
level abstraction. The emerging secure compilation community aims to address such problems by
devising formal security criteria, efficient enforcement mechanisms, and effective proof techniques.

This seminar strived to take a broad and inclusive view of secure compilation and to provide
a forum for discussion on the topic. The goal was to identify interesting research directions and
open challenges by bringing together people working on building secure compilation chains, on
developing proof techniques and verification tools, and on designing security mechanisms.
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1 Executive Summary
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Today’s computer systems are distressingly insecure. The semantics of mainstream low-level
languages like C and C++ is inherently insecure, and even for safer languages, establishing
security with respect to a high-level semantics does not prevent devastating low-level attacks.
In particular, all the abstraction and security guarantees of the source language are currently
lost when interacting with lower-level code, for instance when using low-level libraries. For a
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concrete example, all modern languages provide a notion of structured control flow and an
invoked procedure is expected to return to the right place. However, today’s compilation
chains (compilers, linkers, loaders, runtime systems, hardware) cannot efficiently enforce this
abstraction: linked low-level code can call and return to arbitrary instructions or smash the
stack, blatantly violating the high-level abstraction.

Secure compilation is an emerging field that puts together advances in security, pro-
gramming languages, compilers, verification, systems, and hardware architectures in order to
devise secure compiler chains that eliminate many of today’s low-level vulnerabilities. Secure
compilation aims to protect high-level language abstractions in compiled code, even against
low-level attacks, and to allow sound reasoning about security in the source language. The
emerging secure compilation community aims to achieve this by:
1. Identifying and formalizing secure compilation criteria and attacker models.

What are the properties we want secure compilers to have, and under what attacker
models? Should a secure compilation chain preserve observational equivalence of programs?
Should it preserve some class of security properties of the source programs? Should it
guarantee invariants on the run-time state of the compiled program (like for instance
well-formedness of the call-stack)? And what are realistic attacker models? Can attackers
only interact with compiled programs by providing input and reading output? Or can
they link arbitrary low-level code to the program? Well-studied notions like fully abstract
compilation provide partial answers: a fully abstract compiler chain preserves observational
equivalence under an attacker model where attackers are target-level contexts. Even
where this is the desired end-to-end security goal, it can still be too hard to enforce, for
instance in cases where target level contexts can measure time.

2. Efficient enforcement mechanisms. The main reason today’s compiler chains are
not secure is that enforcing abstractions in low-level compiled code can be very inefficient.
In order to overcome this problem, the secure compilation community is investigating
various efficient security enforcement mechanisms: from the use of static checking of
low-level code to rule out linking with ill-behaved contexts, to software rewriting (e.g.,
software fault isolation), dynamic monitoring, and randomization. One key enabler is
that hardware support for security is steadily increasing.

3. Developing effective formal verification techniques. Secure compilation proper-
ties like full abstraction are generally much harder to prove than compiler correctness.
Intuitively, in order to show full abstraction one has to be able to back-translate any
low-level context attacking the compiled code to an equivalent high-level context that can
attack the original source code. This back-translation is, however, nontrivial, and while
several proof techniques have been proposed (e.g., based on logical relations, bisimulations,
game semantics, multi-language semantics, embedded interpreters, etc.), scaling these
techniques to realistic secure compilers is a challenging research problem. This challenge
becomes even more pronounced if one expects a strong level of assurance, as provided by
formal verification using a proof assistant.

The Secure Compilation Dagstuhl Seminar 18201 attracted a large number of
excellent researchers with diverse backgrounds. The 45 participants represented the program-
ming languages, formal verification, security, and systems communities, which led to many
interesting points of view and enriching discussions. Some of these discussions were ignited
by the “guided discussions” on the 3 aspects above and by the 35 talks contributed by the
participants. The contributed talks spanned a very large number of topics: investigating
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various secure compilation criteria and attacker models, building prototype secure compi-
lation chains, proposing different enforcement techniques, studying the relation to verified
compilation and compositional compiler correctness, specifying and restricting undefined
behavior, protecting against side-channels, studying intermediate representations, performing
translation validation, securing multi-language interoperability, controlling information-flow,
compartmentalizing software, enforcing memory safety, compiling constant-time cryptog-
raphy, securing compiler optimizations, designing more secure (domain-specific) languages,
enforcing security policies, formally specifying the semantics of realistic languages and
ISAs, compartmentalization, capability machines, tagged architectures, integrating with
existing compilation chains like LLVM, making exploits more difficult by diversification,
multi-language interoperability, etc. Talks were interspersed with lively discussions, since by
default each speaker could only use half of the time for presenting and had to use the other
half for answering questions and engaging with the audience.

Given the high interest spurred by this first edition and the positive feedback received
afterwards, we believe that this Dagstuhl Seminar should be repeated in the future. Particular
aspects that could still be improved in future editions is focusing more on secure compilation
and spurring more participation from the practical security and systems communities.

18201
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3 Guided Discussions

3.1 What Is Secure Compilation? Security Goals and Attacker Models
Discussion led by Catalin Hritcu (INRIA – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Catalin Hritcu
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In the broadest sense, the goal of secure compilation research is to devise more secure
compilation chains. Since there are many different ways to define “more secure,” there are
also many different notions of secure compilation. This discussion was aimed at identifying
various different security goals and attacker models for secure compilation chains. Here we
use the term “compilation chain” to include not just the compiler, but also the linker, loader,
runtime, operating system, hardware, and security enforcement mechanisms at any of these
levels. We do this since the responsibility of enforcing secure compilation often does not
rest just with the compiler, but is shared by various parts of the compilation chain. For
instance, achieving memory safety requires not only changing the compiler, but also most
other components of the compilation chain have to at least be taught that pointers are not
integers, and to achieve efficient enforcement the hardware needs to be extended as well.

So what are some of the possible security goals and attacker models for secure compilation
chains? A first class of secure compilation chains aim at providing a “safer” semantics
for unsafe low-level languages like C and C++, whose standard semantics call out a large
set of undefined behaviors for which compilers can produce code that behaves arbitrarily,
often leading to exploitable vulnerabilities. For instance, memory safety is aimed at turning
spatial and/or temporal memory violations–e.g., buffer overflows, use after free–into safe
behavior–e.g., raising an exception or terminating the program. Similarly, type safety can
ensure that invalid casts are always detected and do not cause undefined behavior. The
standard attacker model for type and memory safety protects against an external adversary
that provides malicious, often malformed, inputs into the program and tries to hijack control,
corrupt or disclose data, etc.

Ideally, one would like to turn as much undefined behavior in C and C++ as possible
into safe behavior. However, especially when done solely in software, this can have a
very high performance cost. So most security defenses that are widely deployed today are
mitigations focused not at making languages like C and C++ safe, but instead at making
exploiting security vulnerabilities more difficult: control-flow integrity, data-flow integrity,
code-pointer integrity, lightweight stack protection, randomization. The attacker model
for these mitigations is that the attacker can send inputs that exploit a particular class of
vulnerabilities: for instance the attacker can use a buffer overflow to access memory via
say contiguous writes or arbitrary reads. The goal of the attacker is then to inject code or
behavior, to corrupt or leak data, while avoiding the mitigations in place. With enough effort
a motivated attacker can usually achieve just this, and the goal here is only to increase the
attacker effort, not to provide watertight guarantees.

In contrast, compartmentalization (e.g., software-fault isolation) is a mitigation technique
that does provide watertight guarantees. The security goal of compartmentalization is to limit
the damage of an attack only to the compromise of the components encountering undefined
behavior. In particular, compartmentalization can be applied in unsafe low-level languages
to structure large, performance-critical applications into mutually distrustful components
that have clearly specified privileges and interact via well-defined interfaces. Intuitively,

18201
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protecting each component from all the others should bring strong security benefits, since a
vulnerability in one component need not compromise the security of the whole application.

The applications of compartmentalization are, however, much broader. One can use
compartmentalization to, for instance: (1) protect a trusted host application from untrusted
plugins or libraries that could be malicious (e.g., as usually done for securing securing web
browsers plugins, etc.); (2) protect a secure enclave from a malicious host (e.g., Intel SGX,
ARM TrustZone, Sancus, Sanctum, etc.); or (3) protect mutually distrustful components
written in an unsafe language against each other (e.g., as done for achieving least privilege
design with process-based isolation, SFI, capability machines, tagged architectures, etc). In
all these scenarios a minimal security goal is to preserve the integrity of the code and data of
each component from malicious or compromised code in the other components. In addition
one could also aim that no component can infer the secrets of other components, other than
communicating with them through their high-level interface. This is particularly challenging
though when bad components can also observe side-channels like execution time. Finally,
one could also aim at protecting the availability of critical components, ensuring that others
cannot cause crashes or hangs.

The common way of formalizing the security guarantees of compartmentalization is
in terms of the source-level security reasoning principles it enables. Reasoning about the
security in the source language (or “the safe part” of the source language, without undefined
behaviors) is useful because then one does not need to worry about low-level attacks that
can only happen at the target level, since one knows the abstractions of the source language
are implemented in a watertight way by the secure compilation chain. A good way to
formalize this is in terms of preserving various classes of security property during compilation:
(1) trace properties such as safety and liveness, (2) hyperproperties such as noninterference,
or (3) relational hyperproperties such as trace equivalence and observational equivalence.

An important point in the discussion was that specially designed source languages or
source language extensions could make it easier to precisely specify the intended security
properties, so that the secure compilation chain only needs to preserve those, and can thus
be more efficient than if trying to preserve a large class of properties. For instance, explicitly
annotating what is the secret data that external observers or other components should not
be able to obtain, maybe even using side-channels like timing, gives the compilation chain
the freedom to more efficiently handle any data that is not influenced by secrets.

We end this report summary with some interesting questions raised in our discussion:
What are meaningful security properties to preserve in a particular application domain?
When is it more meaningful for secure compilation chains to preserve large classes of
properties (in which case, one doesn’t don’t need to specify much at the source level),
and when is it more meaningful to preserve application-specific security properties?
How much can program verification help and what are its scalability limitations?
How does one go about preserving security intent all the way to the hardware and how
can one convince hardware manufacturers to use this information for security?
Can domain-specific languages make certain properties easier to achieve?
In cases where security is not just binary, can we properly quantify the notion of attacker
cost, taking maybe inspiration from cryptographic proofs?
What are low-cost mitigations for (the lack of) full abstraction, maybe inspired by current
mitigations for (the lack of) memory safety?
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3.2 Effective Enforcement Mechanisms for Secure Compilation
Discussion led by Frank Piessens (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
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This discussion session started from the observation that there is a wide variety of enforcement
mechanisms, including hardware based mechanisms (such as processor privilege levels,
virtual memory, capabilities, trusted computing, . . .), software based mechanisms (including
techniques such as type checking, static analysis, program verification, run-time monitoring,
taint tracking, . . .), and cryptographic mechanisms.

A first question that was discussed is where this wide variety of techniques is still
insufficient. Several areas where there is need for novel kinds of enforcement mechanisms
were discussed, the most prominent being the area of protecting against micro-architectural
side-channel attacks.

A second topic that was addressed during the discussions is the issue of passing security
information across abstraction layers, and in particular the question of what security infor-
mation should be passed down to the compiler and further down to the hardware by software
source code. Should software engineering inspired abstraction mechanisms be enforced as
security boundaries after compilation? Or should specific security annotations be added to
the source code to inform the compiler and the hardware about what security boundaries to
enforce?

Finally, the discussion focused on trade-offs (for instance, expressivity versus performance
versus complexity) of different enforcement techniques.

3.3 Formal Verification and Proof Techniques for Secure Compilation
Discussion led by Amal Ahmed (Northeastern University and INRIA – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Amal Ahmed
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This session involved discussion of what kinds of formalisms and proof techniques might be
needed for verifying secure compilation and compositional compiler correctness.

The first issue discussed was what it would take to extend existing verified compilers
into secure compilers and compositionally correct compilers. Here “secure compiler” might
encompass various different notions of security, e.g., resistant to side-channel attacks, satisfy-
ing robust safety preservation, fully abstract, and so on. Two central questions raised were:
(1) when do we need entirely new proof architectures, and (2) what are good strategies for
reusing mechanized proof efforts. The following points were raised during this part of the
discussion:

Taking CompCert as an exemplar, it was posited that a central challenge is stating the
security properties we want. A related issue (discussed earlier at the seminar) is that C is
not a language in which programmers can express their “security intent” so we either need
to (a) have the compiler writer decide what security properties to enforce or (b) provide
programmers with compiler flags or program annotations so they can communicate their
security intent to the compiler.

18201
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Proof architectures such as CompCert’s have proved fairly reusable, but whether we
can keep using refinement and simulation style proofs will likely depend on the security
properties we wish to establish.
There’s a question of what security architectures are employed for enforcing security
properties in a compiler like CompCert, e.g., capability machines like CHERI or tag-based
architectures. There may be potential difficulties here since these mechanisms may be
quite different from CompCert’s memory model.
A significant issue that must be taken into account when extending existing verified
compilers into secure compilers is that the correctness of certain compiler optimizations
will be influenced by the attacker model. This might complicate the statements of
theorems as well as the proofs themselves.

The second issue discussed was about better techniques for compositional compiler
correctness. While there are a number of existing techniques–e.g., multi-language semantics,
cross-language logical relations, PILS, interaction semantics with structured simulations–it
would be useful to have guidelines about which technique is suitable when. One example is
that while the language-independent interaction semantics used by Compositional CompCert
works for CompCert–where the source, intermediate, and target languages use the same
memory model–it’s unclear how to extend it to compilers where the languages have different
memory models. There are also open questions of how to reduce the effort involved in
multi-pass compilers–i.e., making it easier to prove transitivity (or vertical compositionality)
for a compositionally correct compiler–and the related question of how to do prove transitivity
when different passes of the compiler are verified using different proof techniques. Finally, it
would be nice to have some common infrastructure for mechanizing proofs. The following
additional points were raised in the discussion:

Compositional compiler correctness requires reasoning about the behavior of the target-
level (assembly) code that a compiled component is linked with. But if we take that
target code to simply be assembly then we may have a difficult reasoning problem, as
well as a highly powerful attacker model.
Can we impose constraints on the attacker even when it is assembly code? Yes, we can
either impose constraints statically or dynamically through mechanisms such as SFI,
capabilities, or putting code in enclaves as in SGX.
Once target contexts (attackers) are somewhat constrained using static or dynamic
mechanisms, we must correctly model the power of target-level attackers. The multi-
language semantics approach gives one way to do this. Different kinds of multi-language
semantics can be set up to allow more restricted or less restricted interactions between
target contexts and source (or compiled) components. Another strategy might be to
come up with the right abstractions to add to the source level that correctly model the
additional power of the target contexts/attackers. This is similar to the “linking types”
idea presented at the seminar.
The ultimate goal for secure compilation is to have compiled code that does not have
attacks. If we could lift that specific security goal into a proof obligation at the source
level, what would that proof obligation be? If we can specify what abstractions we must
add to the source to model additional attacker power, then at least we know exactly what
we must protect our source components against.
Over time, as we encounter new attacks, we may want to adapt our proofs of compositional
compiler correctness or secure compilation to new attacker models. But this will probably
be quite challenging since this is an instance where the tension between horizontal and
vertical compositionality might come into play.
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The final issue brought up was regarding proof methods that help reason about the
power of the adversary in secure compilation. In particular, context-based back-translation
has been widely used, but back-translation techniques differ depending on how different
the source and target languages are from each other, whether they are Turing-complete or
not, and whether the back-translation used is syntax-based or trace-based. Trace-based
back-translations might be easier to reuse across languages.

4 Working Groups

4.1 Meltdown and Spectre Attacks
Discussion led by Chris Hawblitzel (Microsoft Research – Redmond, US-WA)

License Creative Commons BY 3.0 Unported license
© Chris Hawblitzel

Slides https://github.com/secure-compilation/ds-2018/raw/master/18201.ChrisHawblitzel.Slides.pptx

The discussion was illustrated by a (contrived) Spectre example. Consider an array of flat
pointers, not secret, each pointing to an integer, also not secret. In memory, the array is
followed by some secret data. In performing a standard, safe loop over the elements of the
array, the hardware may speculatively go beyond the bounds of the array and execute the
next potential iteration, therefore loading the secret into the cache and exposing it to an
adversary.

For the described example, potential mitigations include the modular indexing of elements
in the array, which are then accessed modulo the length of the array. Attempts to implement
such fixes can be performed at the source level or directly in the compiler (or even on
hardware)–it should be noted that interval analysis, already implemented, say, in JavaScript
compilers, allows a compiler to patch up this vulnerability.

The discussion revolved around two main questions:

4.1.1 What Can Software Do?

Several ideas were given:
For conditional branches: clamping or sandboxing array accesses (as in the motivating
example).
For unconditional jumps: turning speculation off, other measures?
In general, formal reasoning requires a hardware model: e.g., an operational semantics
that nondeterministically speculates on conditional branches (however, the necessity of
establishing a fruitful dialogue with architects was noted). A suggested example would
involve adding a cache to the operational semantics and stating properties about that
cache. The obvious question will be whether a model is good enough to prevent attacks
in practice.

Regardless, it was noted that speculation may not need to be turned off completely,
though these considerations may be application-dependent.
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4.1.2 What Can Hardware Do?

Again, several lines of discussion were considered:
Partitioning of shared resources: the software would decide which data goes into which
partition (and the hardware would be responsible for providing partitions, each with its
own cache and resources).
Protection of secret data: the software would mark some addresses and data as sensitive.
Side channel avoidance without software help: a more speculative idea, by which the
hardware would avoid committing changes to shared resources until all relevant speculation
were resolved.

As in the discussion of software-based strategies, the need to engage in discussion with
more architects was noted.

An upcoming Panel on the implications of the Meltdown & Spectre design flaws (http:
//iscaconf.org/isca2018/panel.html) was mentioned, where the state of affairs was tentatively
summarized as:

Computer Architecture 1.0 specifies the timing-independent functional behavior of a
computer, while Micro-Architecture is the implementation techniques that improve
performace. What if a computer that is completely correct by Architecture 1.0 can
be made to leak protected information via timing, a.k.a., Micro-Architecture?

4.2 C Semantics in Depth
Discussion led by Peter Sewell (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Peter Sewell

The working group revolved around a discussion of pointer provenance and uninitialised
reads in the C programming language. The attendance included the following participants:

Frédéric Besson
David Chisnall
John T. Criswell
Chung-Kil Hur
Xavier Leroy
Santosh Nagarakatte
Steve Zdancewic
Roberto Blanco
Daniel Patterson
Andrew Tolmach
Peter Sewell
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5 Overview of Talks

5.1 Compositional Compiler Correctness and Secure Compilation:
Where We Are and Where We Want to Be

Amal Ahmed (Northeastern University – Boston, US and INRIA - Paris, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Amal Ahmed, Daniel Patterson
Slides https://github.com/secure-compilation/ds-2018/raw/master/18201.AmalAhmed.Slides.pdf

In this talk, I’ll start with a brief but insightful survey of recent compositional compiler
correctness results. I’ll give a high-level perspective on what is good and bad about each of
the existing compositional compiler correctness results and how their formalisms influence the
required verification effort. I’ll explain why none of the compositional compiler correctness
results to date are where we want to be!

Then I’ll present a generic compositional compiler correctness (CCC) theorem that
abstracts away from existing formalisms. CCC gives us insight on what is required for
modular verification of multi-pass compilers.

I will end with an insight for those working on secure compilation results that require
“weaker” protection of compiled components than fully abstract compilation: when it comes
to proving such compilers correct, truly modular verification of multi-pass compilers seems
impossible.

5.2 Thoughts on Preserving Abstractions
Nick Benton (Facebook Research – London, GB)

License Creative Commons BY 3.0 Unported license
© Nick Benton

The talk discussed the principle that high-level reasoning as performed by a programmer
or a compiler should remain valid when the compiled code runs in a real environment. To
this end, the behavioral characterization of interface contracts should be independent of
the source language and the compiler, modulo calling and linking conventions. It is thus
necessary to agree on a language to express the aforementioned interface contracts. The end
result of a high-level denotational semantics with a low-level operational behavior will be a
proof obligation to show that a piece of code behaves like some given mathematical function.

When reasoning about preservation of abstractions, it was observed that there is always, in
fact, an appeal to some form of denotational semantics, whether this is explicitly acknowledged
or not. In current practice, many such treatments are not fully abstract, but nonetheless,
weaker, “good enough” notions of abstraction are routinely used to good effect, provided
that they offer sufficient abstraction for the task at hand–in fact, some of the finer points of
full abstraction are often not very useful in practice, nor are they well-understood in their
full generality.

Finally, a mixed-language approach to the problem was discussed, noting the risk of
breaking abstractions too severely, and the difficulties and costs incurred by some potential
mitigations to that risk. However, the difficulties of preserving abstractions express themselves
fully in the presence of higher-order and/or fairly strong notions of purity, whereas most
foreign function interfaces are, rather, first-order in nature–and when they are not, the type
system offers assistance in those parts that cross the boundary.
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5.3 Secure Compilation of Safe Erasure
Frédéric Besson (INRIA – Rennes, FR)
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A9ricBesson.Slides.pdf

Secure coding requires erasing secrets to limit the possibility for an attacker to probe the
content of memory. At source level, erasure is typically performed by a memset (secret,0).
Yet, as secret is dead, compiler optimisations may remove this piece of code and therefore
break the security.

In the talk, I tested on the audience a semantics definition of (preservation) of safe erasure
phrased in terms of quantitative information flow. I then sketched how typical compiler
optimisations (DSE, register allocation) need to be modified to preserve this property.

5.4 CompCertSFI
Frédéric Besson (INRIA – Rennes, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Frédéric Besson, Sandrine Blazy, Alexandre Dang, Thomas Jensen

We describe the design, implementation and proof of an efficient, machine-checked CompCert
implementation of Portable Software Fault Isolation. We propose a novel sandboxing
transformation that has a well-defined C semantics and which supports arbitrary function
pointers. Our experiments show that our formally verified technique is a competitive way of
implementing Software Fault Isolation.

5.5 Memory Safety for Shielded Execution
Pramod Bhatotia (The University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
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Joint work of Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod Bhatotia, Pascal
Felber, Christof Fetzer

Main reference Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod Bhatotia, Pascal
Felber, Christof Fetzer: “SGXBOUNDS: Memory Safety for Shielded Execution”, in Proc. of the
Twelfth European Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26,
2017, pp. 205–221, ACM, 2017.

URL http://dx.doi.org/10.1145/3064176.3064192

In this talk, I will first present our work on SGXBounds on how to achieve lightweight
memory safety in the context of SGX Enclaves.

I will conclude the talk with our on-going work on Intel MPX Explained: https://
intel-mpx.github.io/
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5.6 Software Diversity vs. Side Channels
Stefan Brunthaler (Universität der Bundeswehr – Munich, DE)
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Side-Channel Attacks Through Dynamic Software Diversity”, in Proc. of the 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2015, The Internet Society, 2015.
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Slides https://github.com/secure-compilation/ds-2018/raw/master/18201.StefanBrunthaler.Slides.pdf

The past couple of years have seen attacks becoming increasingly sophisticated, primarily
due to the discovery and incorporation of side channels. Among others, Drammer, AnC, and
SPECTRE showed how predictable behavior enables modern side-channel attacks.

Based on my experience with using diversity to counter timing-based side-channel attacks,
I will present new ideas and results of either mitigating or substantially lessening the impact
of these side-channel attacks.

5.7 Preserving High-Level Invariants in the Presence of Low-Level
Code

David Chisnall (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© David Chisnall

Joint work of David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannouand Jonathan
Woodruff, A. Theodore Markettos, J. Edward Maste, Robert Norton, Stacey Son, Michael Roe,
Simon W. Moore, Peter G. Neumann, Ben Laurie, Robert N.M. Watson

Main reference David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou, Jonathan
Woodruff, A. Theodore Markettos, J. Edward Maste, Robert Norton, Stacey D. Son, Michael Roe,
Simon W. Moore, Peter G. Neumann, Ben Laurie, Robert N.M. Watson: “CHERI JNI: Sinking
the Java Security Model into the C”, in Proc. of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017, pp. 569–583, ACM, 2017.

URL http://dx.doi.org/10.1145/3037697.3037725
Slides https://github.com/secure-compilation/ds-2018/raw/master/18201.DavidChisnall.Slides.pptx

Most complex programs contain a mixture of different languages, but the guarantees avail-
able in common implementations are those of the lowest-level language. A typical Java
implementation includes well over a million lines of C/C++ code with no constraints on its
abilities and the same is true for most other high-level languages.

In the CHERI JNI work presented at ASPLOS last year, we demonstrated one possible
way of allowing untrusted native code (including unverified assembly code) to exist in the
same process as Java code, with high performance and preserving all of the invariants on
which the Java security model is built.
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5.8 Teaching a Production Compiler That Integers Are Not Pointers
David Chisnall (University of Cambridge, GB)
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Over the past six years, we have taught the clang front end for [Objective-]C/C++, the
LLVM optimisation pipeline, and the MIPS back end, to understand that pointers are a
distinct type from integers (though memory may contain either). With the CHERI extensions
applied to MIPS, we are able to preserve the distinction between pointers and integers all
of the way from a source language, which supports features such as untagged unions and
untyped memory, all of the way through the compilation pipeline to hardware that can
preserve this distinction at run time.

We support a single-provenance semantics for pointers and can discuss the changes
required to the compiler and our design decisions for concrete choices allowed within the
C/C++ abstract machine that maintain compatibility with large corpora of real-world code
while preserving memory safety.

5.9 Virtual Instruction Set Computing with Secure Virtual Architecture
John Criswell (University of Rochester, GB)

License Creative Commons BY 3.0 Unported license
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This talk will present Secure Virtual Architecture (SVA): a virtual instruction set computing
infrastructure which we have used to enforce security policies on both application and
operating system kernel code. I will present how we have used SVA to enforce traditional
policies like memory safety and control flow integrity as well as newer policies that mitigate
side-channel attacks and Spectre/Meltdown attacks launched by compromised operating
system kernels. I hope to solicit feedback on how to employ secure compilation techniques
into SVA to further reduce its (already small) trusted computing base size and to discuss the
use of secure compilation techniques on operating system kernel code.

5.10 Capability Machines as a Target for Secure Compilation
Dominique Devriese (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
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Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Deepak Garg
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A quick introduction to capability machines, and an overview of ideas about how different
properties can be enforced using different extensions of capability machines
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5.11 Defining Undefined Behavior in Rust
Derek Dreyer (MPI-SWS – Saarbrücken, DE)
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In the RustBelt project, we have been building foundations for understanding the safety
claims of the Rust programming language and for evolving the language safely. In so doing,
we have thus far assumed a memory model in which the only forms of undefined behavior
are data races and memory safety violations. However, this is too simplistic. The Rust
developers would like to support more aggressive compiler optimizations that exploit non-
aliasing assumptions derived from Rust’s reference types, but in order for such optimizations
to be sound, undefined behavior must be expanded to include unsafe code that violates
such non-aliasing assumptions. In this talk, I will report on several avenues currently being
explored for defining undefined behavior in Rust.

5.12 Compiling a Cecure Variant of C to Capabilities
Akram El-Korashy (MPI-SWS – Saarbrücken, DE)
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Capability machines offer architectural support for fine-grained memory separation and
controlled sharing. In this in-progress work, we leverage this support to compile a high-level
data isolation primitive fully abstractly. We start from a safe subset of C extended with
an abstraction for modules that may have private state. The language semantics prevent
a module from accessing an element of another module’s private state, unless it has been
shared explicitly. We then describe a compiler from this language to CHERI, a modern
capability machine. In ongoing work, we are proving that the compiler is fully abstract, i.e.,
it preserves and reflects observational equivalence and, hence, implements the source module
abstraction securely.

5.13 Building Secure SGX Enclaves using F*, C/C++ and X64
Cédric Fournet (Microsoft Research – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
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Intel SGX offers hardware mechanisms to isolate code and data running within enclaves from
the rest of the platform. This enables security verification on a relatively small software
TCB, but the task still involves complex low-level code.

Relying on the Everest verification toolchain, we use F* for developing specifications,
code, and proofs; and then safely compile F* code to standalone C code. However, this
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does not account for all code running within the enclave, which also includes trusted C and
assembly code for bootstrapping and for core libraries. Besides, we cannot expect all enclave
applications to be rewritten in F*, so we also compile legacy C++ defensively, using variants
of /guard that dynamically enforce their safety at runtime.

To reason about enclave security, we thus compose different sorts of code and verification
styles, from fine-grained statically-verified F* to dynamically-monitored C++ and custom
SGX instructions.

This involves two related program semantics: most of the verification is conducted
within F* using the target semantics of Kremlin—a fragment of C with a structured mem-
ory—whereas SGX features and dynamic checks embedded by defensive C++ compilers
require lower-level X64 code, for which we use the verified assembly language for Everest
(VALE) and its embedding in F*.

5.14 How to Define Secure Compilation? (A Property-Centric View)
Deepak Garg (MPI-SWS – Saarbrücken, DE)
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This talk presents a possible approach to defining compiler security as the preservation of
security properties despite adversarial contexts. The talk starts from the idea that compiler
correctness can be defined as preservation of properties (in the absence of adversaries).
Adversarial contexts are then introduced, and a notion of compiler security, parametrized
by a class of security properties, is defined. Particularly interesting classes include safety
properties, hyperproperties (e.g., non-interference), and relational hyperproperties (e.g.,
observational equivalence).

5.15 When Good Components Go Bad: Formally Secure Compilation
Despite Dynamic Compromise

Catalin Hritcu (INRIA – Paris, FR)
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We propose a new formal criterion for evaluating secure compilation schemes for unsafe
languages, expressing end-to-end security guarantees for software components that may
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become compromised after encountering undefined behavior–for example, by accessing an
array out of bounds.

Our criterion is the first to model dynamic compromise in a system of mutually distrustful
components with clearly specified privileges. It articulates how each component should be
protected from all the others–in particular, from components that have encountered undefined
behavior and become compromised. Each component receives secure compilation guarantees–
in particular, its internal invariants are protected from compromised components–up to the
point when this component itself becomes compromised, after which we assume an attacker
can take complete control and use this component’s privileges to attack other components.
More precisely, a secure compilation chain must ensure that a dynamically compromised
component cannot break the safety properties of the system at the target level any more
than an arbitrary attacker-controlled component (with the same interface and privileges, but
without undefined behaviors) already could at the source level.

To illustrate the model, we construct a secure compilation chain for a small unsafe
language with buffers, procedures, and components, targeting a simple abstract machine
with built-in compartmentalization. We give a careful proof (mostly machine-checked in
Coq) that this compiler satisfies our secure compilation criterion. Finally, we show that the
protection guarantees offered by the compartmentalized abstract machine can be achieved at
the machine-code level using either software fault isolation or a tag-based reference monitor.

5.16 Taming Undefined Behavior in LLVM
Chung-Kil Hur (Seoul National University, KR)
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A central concern for an optimizing compiler is the design of its intermediate representation
(IR) for code. The IR should make it easy to perform transformations, and should also afford
efficient and precise static analysis.

In this paper we study an aspect of IR design that has received little attention: the role of
undefined behavior. The IR for every optimizing compiler we have looked at, including GCC,
LLVM, Intel’s, and Microsoft’s, supports one or more forms of undefined behavior (UB), not
only to reflect the semantics of UB-heavy programming languages such as C and C++, but
also to model inherently unsafe low-level operations such as memory stores and to avoid
over-constraining IR semantics to the point that desirable transformations become illegal.
The current semantics of LLVM’s IR fails to justify some cases of loop unswitching, global
value numbering, and other important “textbook” optimizations, causing long-standing bugs.

We present solutions to the problems we have identified in LLVM’s IR and show that most
optimizations currently in LLVM remain sound, and that some desirable new transformations
become permissible. Our solutions do not degrade compile time or performance of generated
code.
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5.17 Taming I/O in Intermittent Computing
Limin Jia (Carnegie Mellon University – Pittsburgh, US)
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Energy harvesting enables novel devices and applications without batteries. However,
intermittent operation under energy harvesting poses new challenges to preserving program
semantics under power failures. I will first discuss unique challenges that existing check-
pointing mechanisms for intermittent computing face in the presence of I/O operations. Then,
I will talk about our ongoing work on developing a static analysis tool for automatically
identifying bugs caused by I/O operations, methods for fixing such bugs, and formal models
for intermittent computing.

5.18 Data Refinement for Cogent
Gabriele Keller (The University of New South Wales – Sydney, AU)

License Creative Commons BY 3.0 Unported license
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COGENT allows low-level operating system components to be modelled as pure mathematical
functions operating on algebraic data types, suitable for verification in an interactive theorem
prover. Further-more, it can compile these models into imperative C programs, and provide
a proof that this compilation is a refinement of the functional model. Currently, however,
there is still a gap between the C data structures used in the operating system, and the
algebraic data types used by COGENT, which force the programmer to write a large amount
of boilerplate marshalling code to connect the two.

In this talk, I’ll outline our current work on adding a data description component to the
framework, which will allow COGENT to be flexible in how it represents its algebraic data
types, enabling models that operate on standard algebraic data types to be compiled into C
programs that manipulate C data structures directly. Once fully realised, this extension will
enable more code to be automatically verified by COGENT, smoother interoperability with
C, and substantially improved performance of the generated code.
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5.19 Secure Compilation of Side-Channel Countermeasures: The Case
of Cryptographic “Constant-Time”

Vincent Laporte (IMDEA Software Institute – Madrid, ES)
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Software-based countermeasures provide effective mitigation against side-channel attacks,
often with minimal efficiency and deployment overheads. Their effectiveness is often amenable
to rigorous analysis: specifically, several popular countermeasures can be formalized as
information flow policies, and correct implementation of the countermeasures can be verified
with state-of-the-art analysis and verification techniques. However, in absence of further
justification, the guarantees only hold for the language (source, target, or intermediate
representation) on which the analysis is performed.

We consider the problem of preserving side-channel countermeasures by compilation for
cryptographic “constant-time,” a popular countermeasure against cache-based timing attacks.
We present a general method, based on the notion of constant-time-simulation, for proving
that a compilation pass preserves the constant-time countermeasure. Using the Coq proof
assistant, we verify the correctness of our method and of several representative instantiations.

5.20 The Formal Verification of Compilers and What It Doesn’t Say
About Security

Xavier Leroy (INRIA – Paris, FR)

License Creative Commons BY 3.0 Unported license
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This talk starts with an overview of the formal verification of compilers, as done in the
CompCert and CakeML projects for example.

Verifying the soundness of a compiler means proving that the generated code behaves as
prescribed by the semantics of the source program. There are many definitions of interest
for “behaves as prescribed.” Observational equivalence is appropriate for well-defined source
languages such as Java. However, for C and C++, observational equivalence cannot be
guaranteed because several evaluation orders are allowed for source programs, while the
compiled code implements one of those evaluation orders. Moreover, C and C++ treat
run-time errors such as integer division by zero or out-of-bound array accesses as undefined
behaviors, meaning that the compiled code is allowed to perform any actions whatsoever,
from aborting the program to continuing with random values to opening a security hole.

The CompCert compiler verification project builds on a notion of program refinement
that enables the compiler to choose one among several possible evaluation orders, making
the program “more deterministic,” and also to optimize source-level undefined behaviors
away, making the program “more defined.” An example of the latter dimension of refinement
is the elimination of an integer division z = x / y if z is unused later: if y is 0, the original
program exhibits undefined behavior (division by zero), but not the optimized program.

18201

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://eprint.iacr.org/2017/1233
http://eprint.iacr.org/2017/1233
http://eprint.iacr.org/2017/1233
https://github.com/secure-compilation/ds-2018/raw/master/18201.VincentLaporte.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://github.com/secure-compilation/ds-2018/raw/master/18201.XavierLeroy.Slides1.pdf


22 18201 – Secure Compilation

As discussed in the second part of the talk, CompCert-style compiler verification shows
the preservation of safety and liveness properties of the source code, but fails to establish
the preservation of many security properties of interest. This is illustrated on two examples:
constant-time code and unwanted optimizations.

Example 1. Cryptographic code is said to be “constant time” if secret data is never
used as argument to conditional branches, memory addressing, or other operations whose
execution time depends on the value of the arguments. This “constant time” property does
not rule out all side-channel attacks, but avoids the most obvious timing attacks. But is the
property preserved by compilation? If the source code is “constant time,” is the compiled
code “constant time” too? Compilers can destroy the property by introducing conditionals
or memory lookups for optimization purposes. This does not invalidate a CompCert-style
semantic preservation proof. To reason about constant-time preservation it seems necessary
to add observable events for non-constant-time operations to the semantic trace, and reason
about the preservation, or removal but not insertion, of such events during compilation.

Example 2. C compilers are allowed to optimize based on the assumption that the
source code does not run into undefined behavior. Sometimes, this leads optimizers to
amplify a programming error, removing security-relevant checks that follow a possibly-
undefined operation. CVE 2009-1879 is an example of such a compiler-amplified security
hole. Such misguided optimizations are hard to control because they are close to other
desirable optimizations, and both fall out naturally from standard compiler passes such as
value analysis and constant propagation. CompCert tries hard to degrade the precision of its
value analysis to be conservative with respect to undefined behavior. However, this is a best
effort and no formal proof is given that the analysis was degraded enough so that subsequent
optimizations preserve security checks.

In conclusion, formal compiler verification in the style of CompCert or CakeML gives
many guarantees relevant to safety, but few guarantees relevant to security beyond safety.
CompCert tries to handle security code with care, but it’s a best effort without confirmation
by the proof. More work is needed to semantically characterize the security properties of
interest and prove their preservation by compilation.

5.21 Verified Compilation of Noninterference for Shared-Memory
Concurrent Programs

Toby Murray (The University of Melbourne, AU)
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Shared-memory concurrency is ubiquitous in modern programming, including in security-
critical embedded devices. Proofs of information flow control (IFC) for the software that
controls such devices have recently become a reality. Yet most of this work to date operates
at the level of the small-step semantics for the source programming language. In reality, such
programs execute atop a thread scheduler (e.g., the OS kernel), executing binary instructions
in fixed slices. We argue that verified noninterference-preserving compilation should be
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employed to bridge this semantic gap, and present a theory for compositionally proving
preservation of timing-sensitive noninterference for concurrent programs under refinement.
We explain how this theory captures the semantics of compiled programs executing under an
instruction-based scheduling discipline, and its instantiation in a verified compiler from a
simple While language to an idealised RISC language. We report on the current state of this
work, which is part of the COVERN project (https://covern.org), and directions for future
research.

5.22 Is the Verified CakeML Compiler Secure?
Magnus Myreen (Chalmers University of Technology – Gothenburg, SE)
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I propose to (1) present the CakeML compiler at a high-level, then (2) zoom in on the exact
details of the compiler correctness theorem, but leave plenty of time for (3) a discussion
on whether the CakeML compiler is secure or not. The CakeML compiler starts from a
safe language (unsafe out-of-bounds accesses are not possible) and compiles it to concrete
machine code (x86, ARM, RISC-V etc.) with a semantics where the OS and other programs
are allowed to interrupt the CakeML machine code. The CakeML compiler is probably safer
than unverified compilers for ML, but is it more secure? In the discussion part of my talk, I’ll
talk about different attacker models and security questions regarding the target semantics
which is at the level of machine code.

5.23 Compiler Optimizations with Retrofitting Transformations: Is
There a Semantic Mismatch?

Santosh Nagarakatte (Rutgers University – New Brunswick, US)
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A retrofitting transformation modifies an input program by adding instrumentation to
monitor security properties at runtime. These tools often transform the input program in
complex ways. Compiler optimizations can erroneously remove the instrumentation added by
a retrofitting transformation in the presence of semantic mismatches between the assumptions
of retrofitting transformations and compiler optimizations. This talk will describe a generic
strategy to ascertain that every event of interest that is checked in the retrofitted program is
also checked after optimizations.
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5.24 Plugging Information Leaks Introduced by Compiler
Transformations

Kedar Namjoshi (Nokia Bell Labs – Murray Hill, US-NJ)
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Some compiler optimizations (e.g., dead store removal, or SSA conversion) can introduce
new information leaks as they transform a program. I will talk about sound–but necessarily
approximate–methods to produce leak-free forms of these optimizations. Not all optimizations
introduce leaks; I will show how one can verify that an implementation of a transformation
is leak-free by checking additional properties of a refinement relation (a “witness”) that is
produced originally to justify correctness.

There are several open questions (e.g., how to establish preservation of security properties
other than information leakage?) which I hope to have the chance to discuss during the talk
and in the seminar.

5.25 Relational Logic for Fine-grained Security Policy and Translation
Validation

David A. Naumann (Stevens Institute of Technology – Hoboken, US)
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Relational Hoare Logics facilitate reasoning about information-flow properties of programs
as well as relations between programs such as observational equivalence. Such logics might
be used to specify sensitive information at source level and to specify what is considered
observable at source and target levels, in order to define security-preserving compilation and
support translation validation.

5.26 Specifications for Dynamic Enforcement of Relational Program
Properties

Max S. New (Northeastern University – Boston, US)

License Creative Commons BY 3.0 Unported license
© Max S. New

Slides https://github.com/secure-compilation/ds-2018/raw/master/18201.MaxS.New.Slides.pdf

Many security and reliability properties are phrased in terms of relations on programs, e.g.,
noninterference and representation independence. While all source-level programs respect
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these relational properties due to syntactic restrictions such as linearity or type checking,
when compiling securely to low-level programs, we need to interpose on the boundary between
compiled code and low-level attackers to maintain our high-level security properties.

In this talk we present a simple specification for the interposition functions between
compiled code and low-level attackers. The basic idea is to first provide a refinement relation
between high level and low level behaviors. Some simple properties must be satisfied to
ensure that the refinement relation is compatible with the relational properties of interest.
Then functions that enforce high-level interfaces on low-level attackers and dually protect
compiled code from low-level attackers can be given two dual specifications with respect
to the refinement relation. An enforcement function is sound if its output refines its input,
and optimal if it has the most behavior of any refinement of the input. Dually, a protection
function is sound if its output is refined by its input, and optimal if it has the least behavior
of any refinement of the input. Finally, to get security/full abstraction we need the protection
function to be injective, which is here equivalent to saying that enforce o protect = id.

This fairly simple spec is the core of “Galois connection”-based approaches to security, but
we argue that by focusing on the refinement relation first, the Galois connection properties
become more intuitive. Furthermore, since the actual implementation of enforce and protect
can be quite complex, it is useful to specify them first in terms of a simple refinement relation.

5.27 Closure Conversion is Safe-for-Space
Zoe Paraskevopoulou (Princeton University, US)
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Compiler transformations may fail to preserve the resource consumption of compiled programs.
A notable example is closure conversion with linked closures which may introduce space
leaks. In this talk I will present a (currently ongoing) proof that closure conversion with flat
closure representation is safe-for-space, meaning that it preserves the space complexity of
the compiled program. We develop a method based on step-indexed logical relations that
allows us to conveniently reason about the resource consumption of the source and target
programs, as well as the functional correctness of the transformation.
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5.28 Linking Types: Bringing Fully Abstract Compilers and Flexible
Linking Together

Daniel Patterson (Northeastern University – Boston, US)
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Fully abstract compilers protect components from target-level attackers by ensuring that any
observations or influence that a target attacker could have can also be done by a source-level
attacker. This means that programmers need only reason about security properties in their
own language, not additional interactions that may happen in lower level intermediate
or target languages. While this is obviously an extremely valuable property for secure
compilers, it rules out linking with target code that has features or restrictions that can not
be represented in the source language that is being compiled.

While traditionally fully abstract compilation and flexible linking have been thought
to be at odds, I’ll present a novel idea called Linking Types that allows them to coexist.
Linking Types enable a programmer to opt in to local violations of full abstraction that
she needs in order to link with particular code without giving up the property globally.
This fine-grained mechanism enables flexible interoperation with low-level features while
preserving the high-level reasoning principles that fully abstract compilation offers.

The talk will give some brief background to the ideas, show how they play out in examples,
and open a broader discussion as to how this idea could influence secure compilers and
language design.

5.29 A Project on Secure Compilation in the Context of the Internet
of Things

Tamara Rezk (INRIA – Sophia Antipolis, FR)
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I will briefly present a new starting project which relies on the idea of using secure compilation
for the Internet of Things (IoT). The talk will present new challenges in the IoT context,
security risks, and speculations on how to address them.
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5.30 A Formal Equational Theory for Call-By-Push-Value
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Establishing that two programs are contextually equivalent is hard, yet essential for reasoning
about semantics preserving program transformations such as compiler optimizations. The
Vellvm project aims to use Coq to formalize and reason about LLVM program transformations
and as part of this project we are using a variant of Levy’s call-by-push-value language. I
will talk about how we establish the soundness of an equational theory for call-by-push-value
and about how we used our equational theory to significantly simplify the verification of
classic optimizations.

5.31 Secure Compilation–Understanding the Endpoints
Peter Sewell (University of Cambridge, GB)
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In this talk I described ongoing work in the REMS and CHERI projects to define the archi-
tecture and C-language abstractions, both for current mainstream architectures (especially
ARMv8-A and RISC-V, with some work also for IBM POWER and x86) and mainstream
ISO / de facto C, and for the research CHERI architecture and CHERI C language. I also
described work on WebAssembly semantics.

5.32 Constant-Time Crypto Programming with FaCT
Deian Stefan (University of California, San Diego, US)
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Implementing cryptographic algorithms that do not inadvertently leak secret information
is notoriously difficult. Today’s general-purpose programming languages and compilers do
not account for data sensitivity; consequently, most real-world crypto code is written in a
subset of C intended to predictably run in constant time. This C subset, however, forgoes
structured programming as we know it–crypto developers, today, do not have the luxury of
if-statements, efficient looping constructs, or procedural abstractions when handling sensitive
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data. Unsurprisingly, even high-profile libraries, such as OpenSSL, have repeatedly suffered
from bugs in such code.

In this talk, I will describe FaCT, a new domain-specific language that addresses the
challenge of writing constant-time crypto code. With FaCT, developers write crypto code
using standard, high-level language constructs; FaCT, in turn, compiles such high-level code
into constant-time assembly. FaCT is not a standalone language. Rather, we designed FaCT
to be embedded into existing, large projects and language. In this talk, I will describe how we
integrated FaCT in several such projects (OpenSSL, libsodium, and mbedtls) and languages
(C, Python, and Haskell).

5.33 C-Level Tag-Based Security Monitoring
Andrew Tolmach (Portland State University, US)
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Recent work on security “micropolicies” uses hardware-level metadata tags to monitor
individual machine operations. This talk will sketch preliminary ideas for how to raise the
definition of tag-based policies to the level of C code. C-level polices should be useful both
to express high-level properties that are tedious or impossible to specify at machine level
(e.g., information flow control or compartmentalization) and to enforce particular variants
of C semantics (e.g., differing flavors of memory safety based on differing pointer aliasing
rules). C-level policies can be (verifiably) compiled to machine-level policies to be enforced
by existing (prototype) hardware.

5.34 Verifying the Glasgow Haskell Compiler Core Language
Stephanie Weirich (University of Pennsylvania – Philadelphia, US)
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John Wiegley

Slides https://github.com/secure-compilation/ds-2018/raw/master/18201.StephanieWeirich.Slides.pdf

Verified compilers are one part of secure compilation. By developing a compiler within
the language of a proof assistant, we can rigorously show that the semantics of the source
language is preserved through compilation to the target. However, what about our existing
compilers?

In this talk, I will present our preliminary work that uses the Coq theorem prover to
reason about the implementation of the GHC Core intermediate language. Our goal is to
show that Core optimization passes are correct: i.e., that these transformations preserve
the invariants of the compiler AST and, ultimately, the semantics of the Core language.
Our work uses the hs-to-coq tool to translate the source code of GHC from Haskell into
Gallina, the language of the Coq proof assistant, taking advantage of the similarity between
the languages. One discussion point is how much our proofs actually apply to GHC–what
can we really prove about compilation and what guarantees can we conclude from our work?
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5.35 Vellvm: Verifying the LLVM
Steve Zdancewic (University of Pennsylvania – Philadelphia, US)
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I will describe the Vellvm project, which seeks to provide a formal framework for developing
machine-checkable proofs about LLVM IR programs and translation passes. I’ll highlight
some of the “good,” the “bad” and the “ugly” things about our prior LLVM developments,
which motivates our ongoing work to re-engineer the Coq formalization.

In the Vellvm (Verified LLVM) project, we have been experimenting with representing
SSA control-flow-graphs using terms of Levy’s call-by-push-value (CBPV) variant of the
lambda calculus. CBPV offers the benefits of a good equational theory based on the usual
notions of beta-equivalence. By relating the operational semantics of the CBPV language to
that of the SSA-control-flow graphs, we can transport reasoning and program transformations
from one level to another, thereby allowing for very simple proofs of the correctness of many
low-level optimizations such as function inlining.

This talk will explain our on-going work in this area and conections to the LLVM IR.
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