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Abstract
From the 8th of July 2018 to the 13th of July 2018, a Dagstuhl Seminar took place with the
topic “Synergies between Adaptive Analysis of Algorithms, Parameterized Complexity, Com-
pressed Data Structures and Compressed Indices”. There, 40 participants from as many as 14
distinct countries and four distinct research areas, dealing with running time analysis and space
usage analysis of algorithms and data structures, gathered to discuss results and techniques to
“go beyond the worst-case” for classes of structurally restricted inputs, both for (fast) algorithms
and (compressed) data structures. The seminar consisted of (1) a first session of personal in-
troductions, each participant presenting his expertise and themes of interests in two slides; (2)
a series of four technical talks; and (3) a larger series of presentations of open problems, with
ample time left for the participants to gather and work on such open problems.
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Seminar 18281, about the “Synergies between Adaptive Analysis of Algorithms, Parameterized
Complexity, Compressed Data Structures and Compressed Indices”, gathered researchers
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from four distinct research areas (with some researchers having results in up to three such
areas, but none in all four):
1. the area of adaptive analysis of algorithms;
2. the study of parameterized complexity of NP-hard problems;
3. the area focused on compressed data structures; and
4. the area concerned with the study of compressed indices.

Goals

The intuition behind gathering people from such diverse communities was that while all of
these subareas of algorithms and data structures focus on “going beyond the worst-case”
for classes of structurally restricted inputs, there has been a limited amount of interactions
between them, and some results have been “discovered” twice. Therefore, the main goal of
the seminar was to share knowledge and make joint progress through dedicated survey talks
and plenty of time for discussions and work on open problems.

Structure

The seminar consisted of
1. a first session of personal introductions, each participant presenting his expertise and

themes of interests in two slides;
2. a small series of technical talks, some organized a long time in advance, and some

improvised “on demand”; and
3. a larger series of presentation of open problems, with ample time left for the participants

to gather and work on such open problems.

Conclusion

Most participants concurred that they learned a lot from the seminar, and acquired new
contacts to foster further collaborations. In particular, interactions between the adaptive
analysis of algorithms and the study of the parameterized complexity of NP-hard problems
seemed relevant to the recent development of conditional lower bounds for problems classically
solved in polynomial time, an approach referred to as “Fine Grained Analysis” or “FPT in P”.

Generally, it appears that the seminar struck a good balance between scheduled sessions
for survey talks and presentation of open problems as well as free time for discussion and
interaction. During the free time, many smaller groups got together for work on open
problems or for informal presentations of more specialist topics with a smaller audience. We
think that this setup, along with the longer than usual round of introductions on the first
day, was very successful at bringing together the different research areas.
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3 Overview of Talks

3.1 An Introduction to the Adaptive Analysis of Algorithms
Jérémy Barbay (University of Chile – Santiago de Chile, CL)

License Creative Commons BY 3.0 Unported license
© Jérémy Barbay

Traditionally, algorithmic theory measures the complexity of a problem or algorithm in
terms of the worst-case behavior over all inputs of a given size. However, in certain cases an
improved algorithm can be obtained by considering a finer partition of the input space by
a difficulty measure, sometimes down to the instance itself. This finer partition is defined
through a difficulty measure, which groups the instances both by their size and by their
difficulty, in order to refine the worst case analysis for both upper and lower bounds on the
complexity of the instance.

This approach has been the subject of extensive work, on one hand on problems which can
be solved in polynomial time, and on the other hand on NP-hard problems, which solutions
are checkable in polynomial time but for which no polynomial time algorithm has been found
so far. Example of such results include, for polynomial time problems, Searching in a sorted
array [11, 30, 10, 31], computing the Intersection [6, 5, 4, 16, 19, 18] of sorted arrays,
Merging [16, 18] sorted arrays, Sorting permutations [21, 29, 7, 3, 25, 26, 27, 17, 13] and
multisets [28, 9], computing Maxima Sets [15, 22, 1, 8] and Convex Hulls [12, 24, 15, 14,
20, 2, 23, 1, 8].

References
1 P. Afshani, J. Barbay, and T.M. Chan. Instance-optimal geometric algorithms. Journal of

the ACM (JACM), 64(1):3:1–3:38, Mar. 2017.
2 A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information

Processing Letters (IPL), 9:216–219, 1979.
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4 J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive searching in succinctly

encoded binary relations and tree-structured documents. Theoretical Computer Science
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tern Matching (CPM 2017), volume 78 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 31:1–31:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum
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10 R. Beigel. Unbounded searching algorithms. SIAM Journal of Computing (SJC), 19(3):522–
537, 1990.
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METRY: Discrete and Computational Geometry, 16, 1996.
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M. Yung, editors, Proceedings of the International Conference on Automata, Languages,
and Programming (ICALP), volume 3580 of Lecture Notes in Computer Science, pages
179–190. Springer, 2005.

17 C. Cook and D. Kim. Best sorting algorithm for nearly sorted lists. Communication of the
ACM (CACM), 23:620–624, 1980.

18 E.D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and
differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 743–752, 2000.

19 E.D. Demaine, A. López-Ortiz, and J. I. Munro. Experiments on adaptive set intersections
for text retrieval systems. In Proceedings of the 3rd Workshop on Algorithm Engineering
and Experiments (ALENEX), Lecture Notes in Computer Science, pages 5–6, Washington
DC, 2001.

20 H. Edelsbrunner and W. Shi. An O(n log2 h) time algorithm for the three-dimensional
convex hull problem. SIAM Journal of Computing (SJC), 20:259–277, 1991.

21 V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM Computing
Surveys (ACMCS), 24(4):441–476, 1992.

22 D.G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding maximal
vectors. In Proceedings of the Annual Symposium on Computational Geometry (SoCG),
pages 89–96, New York, NY, USA, 1985. ACM.

23 D.G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM Journal
of Computing (SJC), 15(1):287–299, 1986.

24 C. Levcopoulos, A. Lingas, and J. S. B. Mitchell. Adaptive algorithms for constructing
convex hulls and triangulations of polygonal chains. In Proceedings of the Scandinavian
Workshop on Algorithm Theory (SWAT), pages 80–89, London, UK, 2002. Springer-Verlag.

25 C. Levcopoulos and O. Petersson. Sorting shuffled monotone sequences. Inf. Comput.,
112(1):37–50, 1994.

26 H. Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Trans.
Computers, 34(4):318–325, 1985.

27 K. Mehlhorn. Sorting presorted files. In Springer, editor, Proceedings of the 4th GI-
Conference on Theoretical Computer Science, volume 67 of Lecture Notes in Computer
Science, pages 199–212, 1979.

28 J. I. Munro and P.M. Spira. Sorting and searching in multisets. SIAM Journal on Com-
puting (SICOMP), 5(1):1–8, 1976.

29 O. Petersson and A. Moffat. A framework for adaptive sorting. Discrete Applied Mathem-
atics (DAM), 59:153–179, 1995.
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30 J.-C. Raoult and J. Vuillemin. Optimal unbounded search strategies. In Proceedings of the
7th Colloquium on Automata, Languages and Programming, pages 512–530. Springer-Verlag,
1980.

31 E.M. Reingold and X. Shen. More nearly optimal algorithms for unbounded searching,
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3.2 A Little About “FPT-in-P”
Till Fluschnik (TU Berlin, DE)
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We give a brief introduction into the world of FPT-in-P. First, we discuss how the concepts
running-time lower bounds, fixed-parameter tractability, and kernelization (lower bounds)
translate from the world of NP-hard problems into the world of polynomial-time solvable
problems. Herein, we give some examples known from the lecture for the successful application
of the former two concepts, or, more precisely, of polynomial-linear fixed-parameter algorithms
(PL-FPT) and polynomial-size linear-time kernelizations. We then study the polynomial-time
solvable Negative Weight Triangle problem. The problem does not admit a truly subcubic
algorithm unless the APSP-conjecture breaks, and hence, we elaborate easy-to-get polynomial-
linear fixed-parameter algorithms regarding the graph parameters maximum degree and
degeneracy of the graph. Along the graph parameter hierarchy we discuss on the possibilities
of other parameterizations for polynomial-linear fixed-parameter algorithms. Lastly, we
discuss the Graph Diameter problem. This problem, assuming the Strong Exponential Time
Hypothesis (SETH), does not admit a truly subquadratic algorithm. We discuss Graph
Diameter when parameterized by the vertex cover number–from both upper and lower
bounds.

References
1 Archontia C. Giannopoulou, George B. Mertzios, Rolf Niedermeier: Polynomial fixed-

parameter algorithms: A case study for longest path on interval graphs. Theor. Comput.
Sci. 689: 67–95 (2017)

2 Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf Nie-
dermeier, Nimrod Talmon: When Can Graph Hyperbolicity Be Computed in Linear Time?
WADS 2017: 397–408

3 Till Fluschnik, George B. Mertzios, André Nichterlein: Kernelization Lower Bounds for
Finding Constant-Size Subgraphs. CiE 2018: 183–193

4 Matthias Bentert, Till Fluschnik, André Nichterlein, Rolf Niedermeier: Parameterized As-
pects of Triangle Enumeration. FCT 2017: 96–110

5 George B. Mertzios, André Nichterlein, Rolf Niedermeier: The Power of Linear-Time Data
Reduction for Maximum Matching. MFCS 2017: 46:1–46:14

6 Virginia Vassilevska Williams, Ryan Williams: Subcubic Equivalences between Path, Mat-
rix and Triangle Problems. FOCS 2010: 645–654

7 Liam Roditty, Virginia Vassilevska Williams: Fast approximation algorithms for the dia-
meter and radius of sparse graphs. STOC 2013: 515–524

8 Manuel Sorge, Mathias Weller: The Graph Parameter Hierarchy.
https://manyu.pro/assets/parameter-hierarchy.pdf
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3.3 Gems in Kernelization
Bart Jansen (TU Eindhoven, NL)
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When solving a hard computational problem, the running time can often be reduced by using
a preprocessing step that throws away irrelevant parts of the data which are guaranteed not
to affect the final answer. Until recently, there was no good explanation for the effectiveness
of preprocessing. This changed when the notion of kernelization was developed within the
field of parameterized complexity. It has been called ”the lost continent of polynomial time”,
since the exploration of the formal model of preprocessing captured by kernelization has led
to a surprisingly rich set of techniques that can reduce the size of NP-hard problem inputs in
polynomial time, without changing the answer. Using a user-defined complexity-parameter,
one can also give theoretical guarantees on the amount of data reduction that is achieved.
This talk gives an introduction to kernelization by showcasing some of the gems of the area:
elegant preprocessing schemes built on nontrivial mathematical insights. The presented gems
deal with Edge Clique Cover, Vertex Cover, and Graph Coloring.

3.4 Tutorial: Introduction to Parameterized Algorithms
Bart Jansen (TU Eindhoven, NL)
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This tutorial introduces the main concepts in fixed-parameter tractability. It treats both the
positive toolkit (techniques for algorithms) and the negative toolkit (techniques for hardness
proofs). Examples from the positive toolkit include bounded-depth search trees, kernelization,
color coding, and treewidth-based dynamic programming. When it comes to hardness proofs
it covers W[1]-hardness and some kernelization lower bounds.

3.5 Adaptive Algorithms (a personal view)
Ian Munro (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
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Joint work of Ian Munro, Sebastian Wild

We say an adaptive algorithm is one that does well in the worst case but much better on
specific classes of inputs. The one pass “Huffman codes” of Knuth et al. and of Vitter, from
the 1970’s and 80’s are examples of this. They modify the code for characters “on the fly”,
making it shorter for frequently occurring terms as their relative frequency increases. Indeed,
one can view Lempel-Ziv compression schemes as a similar example. Another frequently
studied problem under an adaptive model has been sorting sequences which contain some
ordered runs. The work of Wood et al., also from the ‘80’s provide well-known examples. A
more recent example of such a technique is Timsort, due to Tim Peters in 2002. This talk
focuses primarily on this and recent improvements due to the author and Wild (ESA 2018).
The problem is to stably sort a file that contains a substantial amount of already sorted runs.
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The main model of computation is a PC running Linux, though theorems are also proven.
The stability constraint essentially restricts one to merging consecutive segments of the input.
Timsort works by keeping a stack of (references to) segments (from left to right). Depending
on their relative lengths, one either merges an adjacent pair of such segments among the 4
(or so) most recently processed, or pushes a new run onto the stack. Clearly the stack is of
height at most lg n. While it was originally claimed that the method took time O(n lg n) in
the worst case, it took close to a decade for a real (and complex) proof of this statement.

We give a couple of other algorithms, both based on near optimal binary search trees
(with elements only at the leaves), both based on the work of Mehlhorn from the ‘70’s. The
first has the general approach of looking at the middle of the file and determining the closest
sorted run. One makes the split between the left and right subtrees of the root of a near
optimal binary search tree either before or after this run. Then we can simply recurse on both
sides of the root and create a tree with the runs at the leaves. For sorting, we recurse to the
left, merging whenever possible the leftmost pair of adjacent runs (either original or created),
then sort the right subtree in the same way, before doing a final merge. (The second method
is similar though it avoids the “cache unfriendly” jumping about.) The methods are shown to
involve a number of moves and comparisons that are essentially n times the “entropy” of the
original run lengths, which matches the lower bound (at least for comparisons). Experiments
show the methods perform better than others for the problem.

3.6 Introduction to Fine-grained Complexity
Ramamohan Paturi (University of California – San Diego, US)
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This talk is a brief introduction to fine-grained complexity. The talk delineates the ingredi-
ents of the fine-grained complexity theory including the notion of fine-grained reductions,
complexity conjectures, ETH and SETH and presents a sample of reductions among problems.

3.7 String Attractors
Nicola Prezza (University of Pisa, IT)

License Creative Commons BY 3.0 Unported license
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Joint work of Dominik Kempa, Gonzalo Navarro, Alberto Policriti, Nicola Prezza, Eva Rotenberg
Main reference Dominik Kempa, Nicola Prezza: “At the roots of dictionary compression: string attractors”, in

Proc. of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pp. 827–840, ACM, 2018.

URL http://dx.doi.org/10.1145/3188745.3188814

In the field of lossless text compression, it is known that high-order entropy is a weak model
when the input contains long repetitions. Motivated by this fact, decades of research have
generated myriads of so-called dictionary compressors: algorithms able to reduce the text’s
size by exploiting its repetitiveness (Lempel-Ziv 77 and the run-length Burrows-Wheeler
transform are probably the most successful and known tools of this kind). In this (still at
its outset) work, described in a preliminary series of papers [1, 2, 3], we introduce a new
combinatorial object unifying dictionary compression techniques under a single theory. Our
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core result is that dictionary compressors are different approximations to the same, elegant,
combinatorial problem: to find a small set of positions capturing all distinct text’s substrings.
We call such a set a string attractor. String attractors raise a number of very interesting
algorithmic and combinatorial questions. In this talk we give the answer to some of these
questions and present a (partial) list of exciting open problems to encourage further research
on this new promising topic.

To start with, we show reductions between dictionary compressors and string attractors.
This gives us the approximation ratios of dictionary compressors with respect to the smallest
string attractor and allows us to solve several open problems related to the asymptotic
relations between the output sizes of different dictionary compressors. We then show that
k-attractor problem – that is, deciding whether a text has a size-t set of positions capturing all
substrings of length at most k – is NP-complete for k ≥ 3. We provide several approximation
techniques for the smallest k-attractor, show that the problem belongs to the APX class for
constant k, and give strong inapproximability results.

From the algorithmic side, we first show that string attractors provide a universal
framework for compressed computation: we can design compressed data structures based on
string attractors that are universal in the sense that, as implied by our reductions, can be
built on top of any dictionary compressor. In particular, we give an optimal random-access
data structure [1] and a universal compressed self-index [3]. We also provide an elegant
characterization of string attractors based on suffix trees [2]. This characterization leads to
very efficient algorithms for a range of problems: we show how to check the validity and
minimality of a k-attractor in near-optimal time and how to quickly compute exact and
approximate solutions. For example, we prove that a minimum 3-attractor can be found in
optimal linear time on small (yet super-constant) alphabets, and a 2.45-approximation can
be computed in linear time on general alphabets.

Our preliminary work leaves plenty of exciting open problems. We still do not know
whether a constant approximation to the smallest k-attractor can be computed in polynomial
time for general k, or what is the best approximation rate computable in polynomial time
for the 3-attractor problem (in [1] we give a lower bound of 11809/11808 and an upper
bound of 1.95). Moreover, we have not yet been able to assign the 2-attractor problem
its complexity class (although we suspect it to be in P). Perhaps the most interesting
information-theoretic question is the relation between the smallest attractor’s size γ∗ and
the Kolmogorov complexity of the string: can we represent the string within O(γ∗) space?
can we design better compressors based on string attractors? Finally, it would be interesting
to extend the concept of string attractor to infinite strings and to more complex objects such
as multi-dimensional grids and graphs.

References
1 Dominik Kempa and Nicola Prezza. At the Roots of Dictionary Compression: String At-

tractors. Proceedings of the 50th Annual ACM Symposium on the Theory of Computing
(STOC) June 25-29, 2018 in Los Angeles, CA.

2 Dominik Kempa, Alberto Policriti, Nicola Prezza, and Eva Rotenberg. String Attractors:
Verification and Optimization. To appear in Proceedings of ESA 2018.

3 Gonzalo Navarro and Nicola Prezza. Universal Compressed Text Indexing. arXiv preprint
arXiv:1803.09520 (2018).
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3.8 Introduction to Generating Functions
Mireille Regnier (Ecole Polytechnique – Palaiseau, FR)
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Main reference Philippe Flajolet, Robert Sedgewick: “Analytic Combinatorics”, Cambridge University Press, 2009
URL https://doi.org/10.1017/CBO9780511801655

This talk presented a short introduction to «Analytic combinatorics» with a focus on the
algebraic methods. The principle is to translate automatically a recursive definition of a
combinatorial data structure into a functional equation satisfied by the so-called generating
functions. In his seminal talk at ICALP, Ph. Flajolet compared the method to a train
organisation, but a comparison with a Lego construction was made as well.

A few examples are given. Besides the classical word or binary tree enumeration, the
prefix normal words example arose from the open problem introduced by Z. Lipták during
the Dagstuhl seminar.

4 Working groups

4.1 BIRT – Binary IRTs for Genome String Compression
Stefan Böttcher (Universität Paderborn, DE)
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The Burrows-Wheeler Transform (BWT) is one of the preferred data structures to store
and search huge amounts of string data – as it is e.g. the case for genome data. However,
genome data can become so huge that the space consumed by a BWT of that data becomes
a bottleneck for efficient in-memory search of the BWT. A possible way out could be to find
a highly compressed representation of such a BWT that can be constructed and searched in
smaller memory.

The genome data sets that we want to compress consist of a huge amount of very long
strings consisting of just the 4 letters ‘A’,‘C’,‘G’, and ’T’ plus a small amount of escape
characters ‘$’. We expect to have a high repetition rate of long string patterns in our genome
data. Therefore, we also expect to have extremely long runs in the BWT of this genome data.
As a consequence, the number of runs is significantly smaller than the length of the BWT.
That is why it is desirable to design a compressed encoding of a genome data BWT that
has a size in the order of the number of runs, instead of a BWT that has a size in the order
of the BWT. This problem description has been given by Travis Gagie [1]. Furthermore, if
it is possible to encode a BWT in a compressed data structure that has a size in the order
of the number of runs, such a compressed BWT is likely to fit into the main memory – in
comparison to the complete genome data set which exceeds main memory space.

Inspired by this problem description, we have developed BIRT (=Binary Indexed Revers-
ible Transformation) an approach of how to reduce the BWT size. Our starting point is a
sequence of given strings of the alphabet {A,C,G,T,$}. The key compression idea of BIRT
consists of a number of lossless mapping steps, where each mapping step transforms one
representation of the given string sequence into an equivalent representation of the same
string sequence, finally yielding a compressed data structure.
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First, BIRT transforms a set of given strings of the alphabet {A,C,G,T,$} into a set of
strings of the alphabet {A,C,G,T} plus an extra index for the string delimiters (i.e., the
$-symbols) – assuming that there is just a small number of string delimiters in comparison
to the total length of the strings.

Second, BIRT transforms strings of the smaller alphabet {A,C,G,T} into binary strings
of the alphabet {0,1}. For example, a sub-string CATG can be encoded as 01 00 11 10.

Third, BIRT transforms these binary strings into an IRT [2] [3], a variant of the BWT.
Thereby, the IRT of these binary strings is also a binary string only. Furthermore, BIRT
uses an external index to store the positions of the $-symbols in the IRT, or the end of the
encoded strings respectively. In comparison to a direct encoding of an ACGT-string into a
BWT, this binary encoding induces the following challenges. It does not only lead to a binary
IRT being twice as long as the previously given ACGT-IRT which doubles the number of LF
mapping steps needed for decoding. It also requires an additional technique to distinguish
the valid rotations in the IRT from the non-valid rotations.

Fourth, BIRT includes such an additional technique that distinguishes the valid rotations
in the IRT from the non-valid rotations. For example, it guarantees that a rotation ... 01 00
11 10... can only be interpreted as ...CATG..., and avoids an interpretation of a rotation ... 0
10 01 11 0 ... as ...GCT... .

Fifth, BIRT maps the binary IRT representation to a run length encoding plus a shorter
binary IRT representation, encoding just one bit per run.

Sixth, as the shorter binary IRT representation only alternates 0-runs and 1-runs, it has
no essential information and can be deleted without loss of information. To simplify the
remaining mapping and encoding, BIRT assumes that the first run of the shorter binary
IRT representation always is a 0-run – which has the length 0 if the shorter binary IRT
representation starts with a 1-bit.

As a consequence of BIRT’s six mapping steps, the encoding of a sequence of extremely
long genome strings can be reduced to storing two data structures: an index for the positions
of string delimiters $, and the run-length encoding of the binary IRT representation. Both
data structures should be very small in comparison to the given genome data, as we expect
to have few word delimiters ($) in comparison to letters (A,C,G,T) and as we expect to have
very long runs. For the given reasons, we expect that BIRT’s compression approach provides
a huge possible compression ratio for genome data. We are currently implementing the BIRT
compression approach and plan to evaluate it thereafter.
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4.2 Conditional Lower Bounds for Adaptive (Analysis of) Algorithms
Jérémy Barbay (University of Chile – Santiago de Chile, CL)
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The Adaptive (analysis of) Algorithms traditionally deals with problems for which solid lower
bounds are known on the computational complexity (e.g. sorting), if only because, given the
freedom given by the choice of the parameters of the analysis, it is important to be able to
show that one algorithm “optimally” takes advantage of the parameter.

Yet, recently the Computational Complexity of problems (such as Orthogonal Vectors,
Frechet Distance, Edit Distance which do not have such “solid” lower bounds so far) was
given some conditional lower bound by reducing some NP-hard problems to exponentially
long instances of such problems; and one has been able to show “adaptive” results on such
problems (again, Orthogonal Vectors, Frechet Distance, various types of Edit Distance) by
adding parameters to the analysis of dynamic programs resolving them.

This yields the following open questions:
1. Can one refine the conditional lower bound on the complexity of Insert Swap Edit Distance

(IS) to the worst case for n and k fixed, where k is one parameter which can make instances
easier?

2. Can one refine the conditional lower bound on the complexity of Delete Insert Replace
Edit Distance (DIR) to the worst case for n and k fixed, where k is one parameter which
can make instances easier?

3. Can one refine the conditional lower bound on the complexity of Delete Insert Edit
Distance (DI) to the worst case for n and k fixed, where k is one parameter which can
make instances easier?

4. Can one refine the conditional lower bound on the complexity of Delete Replace Edit
Distance (DR) to the worst case for n and k fixed, where k is one parameter which can
make instances easier?

5. Can one refine the conditional lower bound on the complexity of Discrete Frechet Distance
to the worst case for n and k fixed, where k is one parameter which can make instances
easier?

6. Can one refine the conditional lower bound on the complexity of Frechet Distance to the
worst case for n and k fixed, where k is one parameter which can make instances easier?

7. Can one refine the conditional lower bound on the complexity of Orthogonal Vectors to
the worst case for n and k fixed, where k is one parameter which can make instances
easier?

The discussion yielded various references, in particular one with a conditional lower
bound on the computational complexity of deciding whether a set of vectors contains two
orthogonal vectors, which is parameterized by the sum of the hamming weights of the vectors
(in addition to usual parameters such as the number of vectors and the dimension).
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4.3 Open Problems about Adaptive Dynamic Programming
Jérémy Barbay (University of Chile – Santiago de Chile, CL)
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Until recently, there were some problems (e.g. Edit Distances, Discrete Frechet
Distance, etc.) whose computational complexity was known to be polynomial (e.g. within
O(n2)), but for which no matching lower bound was known (e.g. the best known lower
bound was Ω(n), arguing that any exact algorithm must read the whole input). In 2004,
Ryan Williams [16, 17] proved the first conditional lower bound for such a problem, by
reducing Satisfiability to deciding if a set contains two Orthogonal Vectors on an
exponentially long instance. Since then, similar results have been proven for the computation
of the Discrete Frechet Distance [7], of various Edit Distances between strings [2], of
the Longest Common Subsequence [1] etc. On the other hand, recently Barbay and Pérez-
Lantero proved some new parameterized results on the computation of the Insert Swap
Edit Distance [5, 6] between strings, and Barbay proved some preliminary results pointing
to similar parametrization for the computation of the Discrete Frechet Distance [3]
between sequences of points, and of various other Edit Distances between strings [4].
This combination of results suggests the possibility of adding parameters to the analysis of
the computational complexities of such problems as Orthogonal Vectors, Discrete
Frechet Distance, Edit Distance, Longest Common Subsequence, which are all
within O(n2), but for which matching conditional lower bounds have been shown only recently,
and to measure the practicality of each such parametrization, for each problem.
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4.4 Parameterized Complexity Methodology applied to Compressed
Data Structures

Jérémy Barbay (University of Chile – Santiago de Chile, CL)
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Algorithms”, CoRR, Vol. abs/1406.2587, 2014.

URL http://arxiv.org/abs/1406.2587

One of many problems used to illustrate the technique of Kernelisation in the area of
Parameterized Complexity is Clique Partition, where given a graph G = (V,E) one aims to
partition G into a minimum number of cliques.

Given that a single clique is eminently compressible, one technique to compress a graph
of user relationships (Webgraph, facebook graph, etc.) used by Navarro and Hernandez is
to find an approximation of clique partition and compress the cliques independently. Not
only did this lead to an efficient compression, the relatedness to cliques of the compression
scheme allowed to support clique related operators (i.e. network for friends of a user).

This yields the following open questions:
What other similar problems (Clique edit, Clique add, Clique Remove, etc.) can lead to
good compression of practical graphs?
Can polynomial parameterized algorithm be used in practice to partition optimally
practical graphs?

We observed that the FPT complexities for problems on graphs are not promising: Cluster
Edit has FPT complexity O(3kf(n)), and Clique Partition has FPT complexity O(22k

f(n)).
It is not clear if the benefits of an optimal partition/solution outweighs the costs compared
to heuristics. It might be interesting to study FPT for partition editing in larger classes
of subgraphs than Cliques (e.g. bicliques), but it is unlikely to have applications to graph
compression, and a key observation might be that FPT approaches with a potential for graph
compression should take advantage of specifics of the graphs considered (e.g. power laws,
graphs with bounded expansion).

On the other hand, there is a hierarchy of properties on graphs already considerd in the
context of FPT: bounded expansion, H-minor-free, planar graphs, graphs of bounded tree
width, outerplanar graphs, forests, stars, forests and linear forests. The notion of ’graphs of
bounded expansion’ may be relevant to rigorously model social networks, and how algorithms
can exploit the structure of social networks to provably work faster.

4.5 Adaptive Algorithms for Optimal Alphabetic Codes
Johannes Fischer (TU Dortmund, DE) and Jérémy Barbay (University of Chile – Santiago
de Chile, CL)
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The well-known Garsia-Wachs-algorithm [1] for computing the optimal alphabetic code for
a given distribution on n letters takes O(n logn) time. We asked whether it is possible to
identify ’structure’ in the input that would lead to a faster running time, ideally O(n).
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4.6 Open problems on prefix normal words
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A binary word is called prefix normal if no substring has more 1s than the prefix of the
same length. For example, 1101010110 is prefix normal but 1100110110 is not, because the
substring 1101 has too many 1s. These words are the sequences of the first differences of the
function F (w, k) = max{d(u) | u is a substring of w of length k}, where d(u) denotes the
number of 1s in the binary word u. For example, for the word w = 1100110110, we get:

k 0 1 2 3 4 5 6 7 8 9 10
F (w, k) 0 1 2 2 3 4 4 4 5 6 6

The sequence of the first differences is w′ = 1101100110 =: PNF(w). We call this
(necessarily binary) word the prefix normal form of w. It is prefix normal by construction,
and it is the only prefix normal word in the equivalence class of w w.r.t. the equivalence
w ≡ v iff F (w, ·) = F (v, ·).

Prefix normal words are motivated by Binary Jumbled Pattern Matching (BJPM): Given
a binary string T and a query (x, y), does T contain a substring with x zeros and y ones?
BJPM can be solved by a linear scan of T in time O(n). For the indexing variant (IBJPM),
define f(w, k) as the minimum number of 1s in a substring of w of length k. Then the answer
to query (x, y) is YES if and only if f(T, x+ y) ≤ y ≤ F (T, x+ y). Thus the problem can
be solved by storing F (w, ·) and f(w, ·) in O(n) space; this is a linear size index, with O(1)
query time. The current fastest computation of these functions F and f is given by Chan
and Lewenstein, in O(n1.89) time [4].

1. Expected critical prefix length of a random prefix normal word of length n.
Let the critical prefix of a binary word be defined as the sum of the lengths of the first run
of 1s (possibly empty) plus the first run of 0s, and cr(w) be the length of w’s critical prefix.
E.g. cr(1110001010) = 6, cr(0001100101) = 3, cr(1110000000) = 10, cr(1n) = cr(0n) = n.
Conjecture: The expected critical prefix length of a prefix normal word of length n is
O(logn) [2].
We can prove that Exp(cr(w)) < 3 if taken over all words of length n (for infinite words
w, it is exactly 3). We can also prove that Exp(PNF(w)) = O(logn), taken over all
binary words of length n. The paper [5] contains a table with numbers of prefix normal
words for n = 32 and each combination of s, t, for s = 1, ..., 7 and 1 ≤ t ≤ n.

2. Equivalence class sizes. Some equivalence classes are singletons (e.g. 1n, 0n, 1001, . . .;
this implies that the word is a palindrome, since F (w, ·) = F (wrev, ·) always), some
are much larger. The OEIS sequence number A238110 [6] lists the size of the largest
equivalence class for n up to 50. This question is the same as asking how many distinct
words can have the same function F .
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3. Enumeration of prefix normal words. Let pnw(n) denote the number of prefix
normal words of length n. It is easy to see that pnw grows exponentially. No closed form
is known for pnw(n); OEIS sequence number A194850 [6] lists pnw(n) up to n = 50. We
have generating functions for some (few) subsets, but not for pnw(n). Asymptotic bounds
exist, which seem to imply pnw(n) = 2n−Θ(log2 n) [3].
The question can be rephrased as: How many different functions F can exist, where a
necessary and sufficient condition for a 0-1 step function F to be the F (w, ·) of some
word w is that for all i < j, F (i+ j) ≤ F (i) + F (j).

4. Testing. The best algorithm to decide whether a string w is prefix normal is: Compute
PNF(w); w is prefix normal iff PNF(w) = w. The fastest algorithm for doing this is given
in [4]. However, it is not clear that recognition is as hard as computing the F -function.

5. Which prefix normal forms w.r.t. 1 can be combined with which prefix normal
forms w.r.t. 0? Define F0(w, ·) and PNF0(w) analogously to above, but w.r.t. 0 instead
of 1. (For constructing PNF0(w), we put a 0 when F0 increases, and a 1 otherwise.)
Then the two prefix normal forms of w encode the index for BJPM. These can be used to
answer BJPM queries as follows:

(x, y) is a YES-query⇔ rank1(PNF0(w), x+ y) ≤ y ≤ rank1(PNF1(w), x+ y).

Prefix normal words w.r.t. 0 are defined analogously to prefix normal words w.r.t. 1.
Given w, a prefix normal word w.r.t. 1, and w′, a prefix normal word w.r.t. 0, we call w
and w′ compatible if there exists a binary word v s.t. w = PNF1(v) and w′ = PNF0(v).
The open problem is: Which prefix normal words w.r.t. 1 are compatible with which
prefix normal words w.r.t. 0?

6. How big are the Parikh-equivalence classes? Another equivalence relation is given
by: w Parikh-equivalent to v iff PNF1(w) = PNF1(v) and PNF0(w) = PNF0(v). Note
that this holds iff the Parikh sets of w and v are the same, where the Parikh set of a
string is the set of Parikh vectors of its substrings. How big are these equivalence classes?
That is, how many different strings can have the same Parikh set?
Similar results about the multiset (not set) of Parikh vectors of substrings can be found
in [1].

4.6.1 Progress during workshop

During the workshop, we showed that Exp(cr(w)) = o(n), where w is a randomly chosen
prefix normal word of length n, in particular that Exp(cr(w)) = O(

√
n logn) (Rajeev Raman,

Travis Gagie, Pat Nicholson).
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