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1 Executive Summary
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Reducibilities such as many-one, Turing or polynomial-time reducibility have been an
extraordinarily important tool in theoretical computer science from its very beginning. In
recent years these reducibilites have been transferred to the continuous setting, where they
allow us to classify computational problems on real numbers and other continuous data
types.

In the late 1980s Weihrauch has introduced a reducibility that can be seen as an analogue
of many-one reducibility for (multi-valued) functions on infinite data types. This reducibility,
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now called Weihrauch reducibility, was studied since the 1990s by Weihrauch’s school of
computable analysis and flourished recently when Gherardi and Marcone proposed this
reducibility as a tool for a uniform approach to reverse analysis.

Reverse mathematics aims to classify theorems according to the axioms that are needed
to prove these theorems in second-order arithmetic. This proof theoretic approach yields
non-uniform classifications of the computational content of certain theorems. However, many
of these classifications also have uniform content and Weihrauch complexity allows us to
study this uniform computational content directly using methods of computability theory.

This perspective has motivated Dorais, Dzhafarov, Hirst, Mileti and Shafer, on the one
hand, Hirschfeldt and Jockusch, on the other hand, to study combinatorial problems using this
approach. This research has led to a number of further reducibilities (computable reducibility,
generalized Weihrauch reducibility and others) that can be seen as non-uniform or less
resource sensitive versions of Weihrauch reducibility. Using this toolbox of reducibilities one
can now adjust the instruments exactly according to the degree of uniformity and resource
sensitivity that one wants to capture.

A precursor seminar1 that was also held at Dagstuhl has been instrumental in bringing
together researchers from these different communities for the first time. This has created
a common forum and fostered several research developments in this field. We believe that
the current seminar was very successful in strengthening and deepening the collaborations
between the involved communities. Ample time was left and successfully used for research in
groups. A novelty of the current seminar was a special session at which solutions of open
problems from the previous seminar were presented. To see that several of the major open
problems of the previous meetings were solved in the meantime was inspiring and motivating!
Some of the solutions involve new techniques with a wider applicability. Hopefully, we will
see solutions to some of the open questions presented at the current seminar in the not
too far future! Altogether, the seminar did proceed in a highly productive atmosphere,
thanks to many excellent contributions from participants. Inspired by these contributions
the organizers are planning to edit a special issue of the journal Computability dedicated to
this seminar.

This report includes abstracts of many talks that were presented during the seminar, it
includes a list of some of the open problems that were discussed, as well as a bibliography on
Weihrauch complexity that was started during the previous meeting and that saw significant
growth in the meantime. Altogether, this report reflects the extraordinary success of our
seminar and we would like to use this opportunity to thank all participants for their valuable
contributions and the Dagstuhl staff for their excellent support!

1 15392 Measuring the Complexity of Computational Content: Weihrauch Reducibility and Reverse
Analysis, see https://doi.org/10.4230/DagRep.5.9.77

https://doi.org/10.4230/DagRep.5.9.77
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3 Overview of Talks

3.1 Weihrauch goes Brouwerian
Vasco Brattka (Universität der Bundeswehr – München, DE) and
Guido Gherardi (University of Bologna, IT)

License Creative Commons BY 3.0 Unported license
© Vasco Brattka and Guido Gherardi

Main reference Vasco Brattka, Guido Gherardi: “Weihrauch goes Brouwerian”, CoRR, Vol. abs/1809.00380, 2018.
URL http://arxiv.org/abs/1809.00380

We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the
consecutive application of two closure operators in the appropriate order: first completion
and then parallelization. The closure operator of completion is a new closure operator that
we introduce. It transforms any problem into a total problem on the completion of the
respective types, where we allow any value outside of the original domain of the problem.
This closure operator is of interest by itself, as it generates a total version of Weihrauch
reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of
total realizers. From a logical perspective completion can be seen as a way to make problems
independent of their premises. Alongside with the completion operator and total Weihrauch
reducibility we need to study precomplete representations that are required to describe these
concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer
algebra, we introduce a new multiplicative version of an implication. While the parallelized
total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch
lattice fails to be a model of intuitionistic linear logic in two different ways. In order to
pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch
algebra that allows us to formulate the failure in precise and neat terms. Finally, we show
that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also
implies that the theory of our Brouwer algebra is Jankov logic.

3.2 Effectivity and Reducibility with Ordinal Turing Machines
Merlin Carl (Universität Konstanz, DE)

License Creative Commons BY 3.0 Unported license
© Merlin Carl

Main reference Merlin Carl: “Generalized Effective Reducibility”, in Proc. of the Pursuit of the Universal – 12th
Conference on Computability in Europe, CiE 2016, Paris, France, June 27 – July 1, 2016,
Proceedings, Lecture Notes in Computer Science, Vol. 9709, pp. 225–233, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-319-40189-8_23

By taking Turing computability as its basic notion of effectivity, the study of Weihrauch
reducibility is restricted to realms where objects are countable or can be encoded by countable
objects. By replacing Turing machines with Koepke’s Ordinal Turing Machines (OTMs), we
obtain a notion of effective reducibility that applies to sets of arbitrary size. We can then
ask for arbitrary Π2-statements in the language of set theory whether they are effective or
whether one is effectively reducible to the other. As a sample application, we consider several
variants of the axiom of choice and see that the versions with systems of representations
and choice functions are effectively equivalent, while the well-ordering principle is strictly
stronger.
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By taking OTMs as the underlying concept of effectivity, we can also reinterpret the
realizability interpretation of intutionistic logic, thus obtaining a notion of effectivity for
set-theoretical statements of arbitrary quantifier complexity. In this sense, the axioms of
KP turn out to be effective, while the power set axiom and the axioms of replacement and
separation are not.

3.3 Around finite basis results for topological embeddability between
functions

Raphael Carroy (Universität Wien, AT)

License Creative Commons BY 3.0 Unported license
© Raphael Carroy

We say that a function f embeds (topologically) in a function g when there are two (topolo-
gical) embeddings σ and τ satisfying τ ◦ f = g ◦ σ. This quasi-order is a strengthening of
the topological strong Weihrauch reducibility. In recent years, various subclasses of analytic
functions were shown to admit a finite bases under topological embeddability, including
non-σ-continuous functions (Solecki-Pawlikovski-Sabok) and non-Baire-class-one functions
(in a joint work with Benjamin Miller). In an effort to understand if topological embeddability
could be a well-quasi-order, which would mean that every subclass of functions admits a finite
basis under embeddability, we recently proved a dichotomy for spaces of continuous functions
with compact Polish 0-dimensional domains: embeddability is either analytic complete or a
well-quasi-order.

References
1 Raphaël Carroy, Yann Pequignot and Zoltán Vidnyánszky. Embeddability on functions:

Order and Chaos. To appear in Transactions of the American Mathematical Society. See
also https://arxiv.org/abs/1802.08341

3.4 On the Solvability Complexity Index hierarchy, the computational
spectral problem and computer assisted proofs

Matthew Colbrook (Cambridge University, GB)

License Creative Commons BY 3.0 Unported license
© Matthew Colbrook

Joint work of Matthew Colbrook, Anders Hansen
Main reference Matthew J. Colbrook, Bogdan Roman and Anders C. Hansen: “How to compute spectra with error

control”, submitted, 2018.
Main reference Jonathan Ben-Artzi, Matthew J. Colbrook, Anders C. Hansen, Olavi Nevanlinna and Markus

Seidel: “ On the solvability complexity index hierarchy and towers of algorithms”, 2018.

We will discuss the Solvability Complexity Index (SCI) hierarchy, which is a classification
hierarchy for all types of problems in computational mathematics that allows for classifications
determining the boundaries of what computers can achieve in scientific computing. The SCI
hierarchy captures many key computational issues in the history of mathematics including the
insolvability of the quintic, Smale’s problem on the existence of iterative generally convergent
algorithm for polynomial root finding [1] (and McMullen’s solution [2]), the computational
spectral problem [3], inverse problems, optimisation, PDEs etc., and also mathematical logic.

http://creativecommons.org/licenses/by/3.0/
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Jonathan Ben-Artzi, Matthew J. Colbrook, Anders C. Hansen, Olavi Nevanlinna and Markus Seidel: `` On the solvability complexity index hierarchy and towers of algorithms'', 2018.
Jonathan Ben-Artzi, Matthew J. Colbrook, Anders C. Hansen, Olavi Nevanlinna and Markus Seidel: `` On the solvability complexity index hierarchy and towers of algorithms'', 2018.
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Perhaps surprisingly, many of the classifications in the SCI hierarchy do not depend on the
model of computation used.

The SCI hierarchy allows for solving the long standing computational spectral problem,
and reveals potential surprises. For example, the problem of computing spectra of compact
operators, for which the method has been known for decades, is strictly harder than the
problem of computing spectra of Schrödinger operators with bounded potentials, which
has been open for more than half a century. We also provide an algorithm for the latter
problem, thus finally resolving this issue [4]. Moreover, the SCI hierarchy helps classifying
problems suitable for computer assisted proofs. In particular, undecidable or non-computable
problems are used in computer assisted proofs, where the recent example of the resolution of
Kepler’s conjecture (Hilbert’s 18th problem) is a striking phenomenon [5]. However, only
certain classes of non-computable problems can be used in computer assisted proofs, and the
SCI hierarchy helps detecting such classes. As we will discuss, the problems of computing
spectra of compact operators and Schrödinger operators with bounded potentials are both
non-computable, however, whereas the compact case is in general unsuitable for computer
assisted proofs, the Schrödinger case is indeed suitable. We will also discuss exciting new
algorithms for computing spectra with error control and provide some cutting edge numerical
examples [6].

References
1 Steve Smale. On the complexity of algorithms of analysis, Bull. AMS, 13 (1985), pp 87–121
2 Curt McMullen. Families of rational maps and iterative root-finding algorithms, Annals of

Mathematics. Second Series, 125 (1987), pp 467–493
3 Anders C. Hansen. On the solvability complexity index, the n-pseudospectrum and approx-

imations of spectra of operators, JAMS, 1 (2011), pp 81–124
4 Jonathan Ben-Artzi, Matthew J. Colbrook, Anders C. Hansen, Olavi Nevanlinna and

Markus Seidel. On the solvability complexity index hierarchy and towers of algorithms,
(2018)

5 Thomas C. Hales. A proof of the Kepler conjecture, Annals of Mathematics, (2005), pp
1065–1185

6 Matthew J. Colbrook, Bogdan Roman and Anders C. Hansen. How to compute spectra
with error control, submitted, (2018)

3.5 Some properties of the countable space S0

Matthew de Brecht (Kyoto University, JP)

License Creative Commons BY 3.0 Unported license
© Matthew de Brecht

In a generalization of Hurewicz’s dichotomy theorem, we showed that a countably based
co-analytic space is either quasi-Polish or else it contains a Π0

2 subspace homeomorphic to one
of four particular countable spaces (called S2, S1, SD, and S0). The spaces S2 (the rationals),
S1 (the cofinite topology on the integers), and SD (the Alexandrov topology on the natural
numbers) are relatively well-known spaces and are often used as counter examples to various
completeness properties (such as the Baire category theorem or sobriety).

In this talk we will look more closely at the space S0 (finite sequences of natural numbers
with a very weak topology), which is less well-known. Although S0 does has some nice
completeness properties (it is sober and every closed subset is a Baire space), we will show
that it also resembles the space of rationals in several ways.
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3.6 Ishihara’s Boundedness Principle BD-N and below
Hannes Diener (University of Canterbury – Christchurch, NZ)

License Creative Commons BY 3.0 Unported license
© Hannes Diener

The aim of constructive reverse mathematics (CRM) is to classify theorems and principles
over intuitionistic logic. The resulting hierarchy in many parts resembles parts of (Simpson
style) reverse mathematics and parts of the Weihrauch lattice.

BD-N is one of the weakest principles that is of interest in CRM. It was introduced in
the 1990ies by Hajime Ishihara to find a “logical” counterpart to the analytical statement
that all sequentially continuous functions defined on a separable metric space are point-wise
continuous. That characterisation makes it seem like quite a straightforward principle,
however, from 2010 onward, there have been a number of statements identified that are
all implied by BD-N, but that surprisingly lie strictly below it. Furthermore there is little
understanding between how this statements interact.

This talk tries to present these ideas and hopefully initiate some discussion on whether
this situation is reflected in the Weihrauch lattice or some variation thereof.

3.7 Some results in higher levels of the Weihrauch lattice
Jun Le Goh (Cornell University, US)

License Creative Commons BY 3.0 Unported license
© Jun Le Goh

We present some results regarding higher levels of the Weihrauch lattice. We show that
comparability of well-orderings is Weihrauch equivalent to its weak version, answering a
question of Marcone. The proof proceeds via the ATR-like problem of producing the jump
hierarchy on a given well-ordering. We also formulate a “two-sided” version of ATR: given
a linear ordering L and a set of natural numbers A, produce either a jump hierarchy on L
which starts with A, or an infinite L-descending sequence. We show that this problem is
closely related to Koenig’s duality theorem about countable bipartite graphs.

3.8 Trees Describing Topological Weihrauch Degrees of Multivalued
Functions

Peter Hertling (Universität der Bundeswehr – München, DE)

License Creative Commons BY 3.0 Unported license
© Peter Hertling

We suggest definitions of continuous strong Weihrauch reducibility and of continuous
Weihrauch reducibility on the set of functions mapping a subset of the Baire space to
some quasi-order. Then we present descriptions of the corresponding topological strong
Weihrauch degrees and of the topological Weihrauch degrees of ∆0

2 measurable functions
mapping the Baire space to some better-quasi-order, by suitable trees and forests and suitable
reducibility relations on forests. We also consider Wadge degrees. Furthermore, we show that
this leads to a similar description of the Wadge degrees, the topological strong Weihrauch
degrees and the topological Weihrauch degrees of multivalued functions defined on a subset
of a countably based T0-space with range in a finite discrete space.

http://creativecommons.org/licenses/by/3.0/
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Vasco Brattka, Damir D. Dzhafarov, Alberto Marcone, and Arno Pauly 9

3.9 Leaf management
Jeffry L. Hirst (Appalachian State University – Boone, US)

License Creative Commons BY 3.0 Unported license
© Jeffry L. Hirst

Joint work of Caleb Davis, Jeffry Hirst, Jake Pardo
Main reference Caleb Davis, Jeffry Hirst, Jake Pardo, Tim Ransom: “Reverse mathematics and colorings of

hypergraphs”, Archive for Mathematical Logic, November, 2018.
URL https://doi.org/10.1007/s00153-018-0654-z

We demonstrate a process for transforming trees into trees with sets of leaf nodes. This
process can be used to eliminate bootstrapping in certain reverse mathematics arguments,
and may prove useful in calibrating Weihrauch strength of some statements. This talk
includes joint work with Caleb Davis and Jake Pardo.

3.10 Degrees of randomized computability (Informal talk)
Rupert Hölzl (Bundeswehr University Munich, DE)

License Creative Commons BY 3.0 Unported license
© Rupert Hölzl

Joint work of Rupert Hölzl, Christopher P. Porter

In this survey we discuss work of Levin and V’yugin on collections of sequences that are
non-negligible in the sense that they can be computed by a probabilistic algorithm with
high probability. More precisely, Levin and V’yugin introduced an ordering on collections
of sequences that are closed under Turing equivalence. Roughly speaking, given two such
collections A and B, A is less than B in this ordering if A \ B is negligible. The degree
structure associated with this ordering, the Levin-V’yugin degrees (or LV-degrees) can be
shown to be a Boolean algebra, and in fact a measure algebra.

We demonstrate the interactions of this work with recent results in computability theory
and algorithmic randomness: First, we recall the definition of the Levin-V’yugin algebra and
identify connections between its properties and classical properties from computability theory.
In particular, we apply results on the interactions between notions of randomness and Turing
reducibility to establish new facts about specific LV-degrees, such as the LV-degree of the
collection of 1-generic sequences, that of the collection of sequences of hyperimmune degree,
and those collections corresponding to various notions of effective randomness. Next, we
provide a detailed explanation of a complex technique developed by V’yugin that allows the
construction of semi-measures into which computability-theoretic properties can be encoded.
We provide examples of the uses of this technique by explicating and extending V’yugin’s
results about the LV-degrees of the collection of Martin-Löf random sequences and the
collection of sequences of DNC degree, as well as results concerning atoms of the LV-degrees.

References
1 Leonid A. Levin and Vladimir V. V’yugin. Invariant properties of informational bulks.

Lecture Notes in Computer Science, 53:359–364, 1977.
2 Vladimir V. V’yugin. On Turing-invariant sets. Soviet Mathematics Doklady, 17:1090–1094,

1976.
3 Vladimir V. V’yugin. Algebra of invariant properties of binary sequences. Problemy Pere-

dachi Informatsii, 18(2):83–100, 1982.
4 Vladimir V. V’yugin. On empirical meaning of randomness with respect to parametric

families of probability distributions. Theory of Computing Systems, 50(2):296–312, 2012.
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3.11 Average-case polynomial-time computability of the three-body
problem

Akitoshi Kawamura (Kyushu University, JP)

License Creative Commons BY 3.0 Unported license
© Akitoshi Kawamura

Joint work of Akitoshi Kawamura, Holger Thies, Martin Ziegler
Main reference Akitoshi Kawamura, Holger Thies, Martin Ziegler: “Average-Case Polynomial-Time Computability

of Hamiltonian Dynamics”, in Proc. of the 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, LIPIcs,
Vol. 117, pp. 30:1–30:17, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.30

We apply average-case complexity theory to physical problems modeled by continuous-time
dynamical systems. The computational complexity when simulating such systems for a
bounded time-frame mainly stems from trajectories coming close to complex singularities
of the system. We show that if for most initial values the trajectories do not come close to
singularities the simulation can be done in polynomial time on average. For Hamiltonian
systems we relate this to the volume of “almost singularities” in phase space and give some
general criteria to show that a Hamiltonian system can be simulated efficiently on average. As
an application we show that the planar circular-restricted three-body problem is average-case
polynomial-time computable.

3.12 Weihrauch reducibility for some third order principles
Takayuki Kihara (Nagoya University, JP)

License Creative Commons BY 3.0 Unported license
© Takayuki Kihara

In order to examine the degrees of difficulty of separation principles on topological spaces,
we introduce Weihrauch reducibilty for some third order principles. For instance, in terms of
third order continuous Weihrauch reducibility, we show that (1) LLPO is not reducible to the
closed separation principle on a separable metrizable space; (2) the open separation principle
on a non-discrete second-countable Hausdorff space is equivalent to the uniform-LPO (the
map on 1 returning the Kleene’s type 2 object 2E) which is strictly stronger than lim; and
(3) the coanalytic separation principle on a Polish space is located strictly between (some
versions of) the Borel choice and the analytic choice.

3.13 Cohesiveness in the Tree Ramsey Theorem for Pairs
Wei Li (National University of Singapore, SG)

License Creative Commons BY 3.0 Unported license
© Wei Li

Joint work of C.T. Chong, Wei Li, Wei Wang, Yue Yang
Main reference C.T. Chong, Wei Li, Wei Wang, Yue Yang: “On the strength of Ramsey’s theorem for trees”,

preprint.

In this talk, we present a version of cohesiveness in the setting of the tree Ramsey Theorem.
We prove that the cohesiveness for trees is Pi11 conservative over PΣ1 +BΣ2. It is a joint
work with C. T. Chong, Lu Liu and Yue Yang.
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3.14 Using a Weihrauch degree finitely many times
Arno Pauly (Swansea University, GB)

License Creative Commons BY 3.0 Unported license
© Arno Pauly

The closure operator � introduced in [3] captures the idea of using a Weihrauch degree finitely
many times, without any requirements on a priorily bounding the number of uses:

I Definition 1. f� has instances
A register machine programM using f as a primitive operation (could be non-deterministic!)
An input x for M on which M halts

and provides M(x) as solutions.

It is intimately linked to the generalized Weihrauch reducibility by Hirschfeldt and
Jockusch:

I Observation 1. f ≤W g� iff f ≤gW g.

The following example (jww Kazuto Yoshimura) shows that it does not even have to hold
that the number of oracles uses depends on the input – it can depend on intermediate results
to the oracel calls:

I Example 2. Let (qi)i∈ω be strongly Turing-incomparable. Define F by F (0ω) = {iqi | i ∈
ω}, F (qi+1) = qi. Then q0 ≤W F �, but we have no bounds for the run-time.

Various classifications or stability results for � have been proven. We shall list some of
those:

I Theorem 3. LPO� ≡W CN (Neumann & Pauly [3])
C�{0,1}ω ≡W C{0,1}ω , C�R ≡W CR, C�ωω ≡W Cωω

Sort� ≡W Π0
2CN (Gassner, P. & Steinberg)

(Σ0
αLPO)� ≡W Π0

αCN (Brattka, Gherardi, Hölzl, Nobrega & P.)
C{0,1}ω,]<∞ ≡W C�{0,1}ω<∞ (Pauly & Tsuiki [1])
C�{0,1}ω,]≤2 ≡W

∐
n∈N C{0,1}ω,]≤n ≡W C∗{0,1}ω,]≤2 (Pauly & Tsuiki [1])

C�{0,1}ω,]=2 ≡W
∐
n∈N C{0,1}ω,]=n ≡W C∗{0,1}ω,]=2 (Pauly & Tsuiki [1])

For the last three items, we recall:

I Definition 4 (Le Roux & P. [2]; Tsuiki & P. [1]). Let C{0,1}ω,]=n, C{0,1}ω,]≤n, C{0,1}ω,]<∞
be closed choice on 2ω restricted to sets of cardinality n, at most n, or finite.

References
1 Denis Hirschfeldt & Carl Jockusch: On notions of computability-theoretic reduction

between Π1
2-principles. Journal of Mathematical Logic 2016.

2 Stéphane Le Roux & Arno Pauly: Finite choice, convex choice and finding roots. Logical
Methods in Computer Science 2015.

3 Eike Neumann & Arno Pauly: A topological view on algebraic computations models.
Journal of Complexity 2018.

4 Arno Pauly & Hideki Tsuiki: Tω-representations of compact sets. arXiv:1604.00258
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3.15 Overt choice on CoPolish spaces
Matthias Schröder (Universität der Bundeswehr – München, DE)

License Creative Commons BY 3.0 Unported license
© Matthias Schröder

Choice principles are cornerstones in the Weihrauch lattice, as many important Weihrauch
degrees are characterised by a choice problem. Overt choice means the computational task
of picking a point in a closed set given by positive information. From Computable Analysis
we know that overt choice is computable on computable Polish spaces.

We show that overt choice is discontinuous on CoPolish spaces like the vector space of
polynomials or the space of tempered distributions. The discontinuity is caused by the fact
that these spaces are not Frechet-Urysohn spaces. There is a minimal non-Frechet-Urysohn
CoPolish space Smin which embeds as a closed subspace into every other such space. Overt
choice on Smin turns out to be Weihrauch equivalent to LPO.

On the positive side, we show that overt-compact choice on CoPolish spaces is continuous.
It is even computable, if the CoPolish space meets some reasonable effectivity conditions.
Finally we present a Choice Elimination Theorem for compact choice on CoPolish spaces.

3.16 Q-Wadge degrees as free structures
Victor Selivanov (A. P. Ershov Institute – Novosibirsk, RU)

License Creative Commons BY 3.0 Unported license
© Victor Selivanov

Based on ideas, notions and results of P Hertling, J. Duparc and V. Selivanov, T. Kihara and
A. Montalban have recently characterized up to isomorphism the structure WQ of Wadge
degrees of Borel Q-partitions of the Baire space, for every countable better quasiorder Q.
The characterization is in terms of the so called h-quasiorder on suitably iterated Q-labeled
countable well founded forests. Since the corresponding precise definitions are rather long
and technical, we attempt here to find a clear shorter characterization.

To achieve this goal, we formulate some easy axioms for a theory T in a language
expanding the language of sigma-semilattices. Then we show that many initial segments
of WQ (including WQ itself) are (reducts of) free structures of suitable subtheories of T .
Informally, in this way we obtain a kind of axiomatizations for the initial segments of WQ.

3.17 Polynomial-time Weihrauch reductions
Florian Steinberg (INRIA Sophia Antipolis, FR)

License Creative Commons BY 3.0 Unported license
© Florian Steinberg

Main reference Florian Steinberg: “Computational Complexity Theory for Advanced Function Spaces in Analysis”,
PhD thesis 2017.

The complexity of operators on the real functions has been a topic of interest for some time
(see [1]). However, until fairly recently, complexity theoretical considerations on continuous
strutures where limited by the framework. While complexity theory for function on the the
real numbers worked reasonably well, many function spaces were known to be “to broad” to
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be captured. Thus, complexity considerations about operators were confined to be point-wise.
Nontheless, interesting results were proven in this setting: For instance that the integration
operator preserves the class of polynomial-time computable functions if and only if FP =
#P.

This changed, when in 2012 Kawamura and Cook introduced a framework for complexity
theory for operators from analysis that allowed for a uniform treatment of operators on
real functions by relying on type-two complexity theory. The added uniformity requirement
often removes the dependence of results on separation results about complexity classes. For
instance, within Kawamura and Cooks framework, it is possible to prove that the integration
operator is not polynomial-time computable. In his PhD Thesis and subsequent work,
Kawamura introduced a corresponding notion of reducibility and provides some examples
of uniformizations. This reducibility is a polynomial-time version of Weihrauch reducibility
and can be used to gain further insight in the properties of the operators that are related to
separation of complexity classes.

We give a short introduction to the framework of Kawamura and Cook and an overview
over what is known about polynomial-time Weihrauch reducibility so far. It turns out that
there are some interesting differences to non resource-restricted Weihrauch reducibility. For
instance, strong Weihrauch reducibility may fail not only for information theoretic reasons but
also because the operator to reduce to forgets about the sizes of instances. For illustration we
take a closer look at a uniformization of one of Friedmann and Ko’s results about integration
of real functions that was part of the authors PhD project.

References
1 Ker-I Ko. 1991. Complexity Theory of Real Functions. Birkhauser Boston Inc., Cambridge,

MA, USA.
2 Akitoshi Kawamura and Stephen Cook. 2012. Complexity Theory for Operators in Analysis.

ACM Trans. Comput. Theory 4, 2, Article 5 (May 2012), 24 pages.

3.18 Proof-theoretic characterization of Weihrauch reducibility
Patrick Uftring (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Patrick Uftring

First, we discuss some counterexamples to the theorems of the article [2] by Rutger Kuyper
about the characterization of Weihrauch reducibility in RCA0.

Secondly, we present some results of our own: Affine logic is a refinement of classical logic
that restricts contraction. We define affine Peano arithmetic in all finite types in order to
characterize different formalizations of Weihrauch reducibility for different classes of total
problems. We do this by combining a variation of Gödel’s Dialectica interpretation for
classical affine logic due to Masaru Shirahata [3], a functional interpretation by Benno van
den Berg, Eyvind Briseid, and Pavol Safarik for nonstandard arithmetic [1], and a hereditarily
defined notion of computability for higher types derived from associates.

References
1 Benno van den Berg, Eyvind Briseid, and Pavol Safarik. “A functional interpretation for

nonstandard arithmetic”. Annals of Pure and Applied Logic 163.12 (2012), pp. 1962–1994.
2 Rutger Kuyper. “On Weihrauch reducibility and intuitionistic reverse mathematics”. The

Journal of Symbolic Logic 82.4 (2017), pp. 1438–1458.
3 Masaru Shirahata. “The Dialectica interpretation of first-order classical affine logic”. Theory

and Applications of Categories 17.4 (2006), pp. 49–79.
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3.19 Computable planar curves intersect in a computable point
Klaus Weihrauch (FernUniversität in Hagen, DE)

License Creative Commons BY 3.0 Unported license
© Klaus Weihrauch

Main reference Klaus Weihrauch: “Computable planar paths intersect in a computable point”, CoRR,
arXiv:1708.07460v2, 2017.

URL https://arxiv.org/abs/1708.07460

Consider two paths f, g : [0; 1]→ [0; 1]2 in the unit square such that f(0) = (0, 0), f(1) =
(1, 1), g(0) = (0, 1) and g(1) = (1, 0). By continuity of f and g there is a point of intersection.
We prove that there is a computable point of intersection if f and g are computable.

The article has been accepted by the journal “Computability” and will appear soon.

4 Solved questions

4.1 Joins in the strong Weihrauch degrees
Damir D. Dzhafarov (University of Connecticut – Storrs, US)

License Creative Commons BY 3.0 Unported license
© Damir D. Dzhafarov

The Weihrauch degrees and strong Weihrauch degrees are partially ordered structures
representing degrees of unsolvability of various mathematical problems. Their study has
been widely applied in computable analysis, complexity theory, and more recently, also
in computable combinatorics. We answer an open question about the algebraic structure
of the strong Weihrauch degrees, by exhibiting a join operation that turns these degrees
into a lattice. Previously, the strong Weihrauch degrees were only known to form a lower
semi-lattice. We then show that unlike the Weihrauch degrees, which are known to form a
distributive lattice, the lattice of strong Weihrauch degrees is not distributive. Therefore,
the two structures are not isomorphic.

4.2 Separating products of Weihrauch degrees
Takayuki Kihara (Nagoya University, JP)

License Creative Commons BY 3.0 Unported license
© Takayuki Kihara

Joint work of Takayuki Kihara, Arno Pauly
Main reference Takayuki Kihara, Arno Pauly: “Dividing by Zero – How Bad Is It, Really?”, in Proc. of the 41st

International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August
22-26, 2016 – Kraków, Poland, LIPIcs, Vol. 58, pp. 58:1–58:14, Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.58
Main reference Takayuki Kihara, Arno Pauly: “Finite choice, convex choice and sorting”. Preprint.

We show that the compositional product of LLPO and AoUC is not Weihrauch reducible to
finite parallelization of AoUC [1], and the the compositional product of IVT and AoUC is
not Weihrauch reducible to any finite dimensional convex choice [2]. This solves two open
problems raised at a recent Dagstuhl meeting 15392 on Weihrauch reducibility.
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4.3 ATR0 in the Weihrauch lattice
Alberto Marcone (University of Udine, IT)

License Creative Commons BY 3.0 Unported license
© Alberto Marcone

Joint work of Takayuki Kihara, Alberto Marcone, Arne Pauly

This is a survey on the progress made since the previous Dagstuhl workshop on the study
within the Weihrauch lattice of problems arising from statement lying at the upper levels
of the reverse mathematics hierarchy. In particular, we consider statements equivalent, or
closely related, to ATR0, such as various set-existence axioms, comparability of well-orders,
the perfect tree theorem, and open determinacy. The Weihrauch degrees appearing in this
research include Unique Choice and Choice on Baire space.

The results will be included in a joint paper with Takayuki Kihara and Arno Pauly.

References
1 Takayuki Kihara, Alberto Marcone, and Arno Pauly. Searching for an analogue of ATR0 in

the Weihrauch lattice. In preparation.

4.4 RT2
2 compared to the product of SRT2

2 and COH
Ludovic Patey (University Claude Bernard – Lyon, FR)

License Creative Commons BY 3.0 Unported license
© Ludovic Patey

Joint work of Damir D. Dzhafarov, Jun Le Goh, Denis R. Hirschfeldt, Ludovic Patey, Arno Pauly
Main reference Damir D. Dzhafarov, Jun Le Goh, Denis R. Hirschfeldt, Ludovic Patey, Arno Pauly: “Ramsey’s

theorem and pro ducts in the Weihrauch degrees”, CoRR (2018), arXiv:1804.10968
URL https://arxiv.org/abs/1804.10968

Ramsey’s theorem for pairs and two colors (RT2
2) asserts that every 2-coloring of [N]2 admits

an infinite monochromatic set. RT2
2 can be decomposed into a stable version (SRT2

2) and
the cohesiveness principle (COH). From the viewpoint of Weihrauch reducibility, RT2

2 is a
consequence of the compositional product of SRT2

2 and COH and implies their coproduct. In
a previous Dagstuhl seminar, it was asked which reversals hold.

In this talk, we present a complete overview of the question and show that none of the
reversal holds. In particular, we prove that the cartesian product of SRT2

2 and COH is not
Weihrauch reducible to RT2

2.
This is a joint work with Damir Dzhafarov, Jun Le Goh, Denis Hirschfeldt and Arno

Pauly.
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4.5 Grouping principle
Keita Yokoyama (JAIST – Ishikawa, JP) and Ludovic Patey (University Claude Bernard –
Lyon, FR)

License Creative Commons BY 3.0 Unported license
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Main reference Ludovic Patey and Keita Yokoyama: “The proof-theoretic strength of Ramsey’s theorem for pairs
and two colors, Advances in Mathematics”, 330:1034–1070, 2018.

URL https://doi.org/10.1016/j.aim.2018.03.035

Grouping principle is a technical combinatorial statement which is a direct consequence of
Ramsey’s theorem. In the previous seminar (Dagstuhl seminar 15392), Yokoyama posed a
question “what is the reverse mathematical strength of the grouping principle for pairs and
two colors?” Patey answered this quesiton by showing that any computable instance of the
stable version of the grouping principle for pairs admits has a low solution.

5 Open problems

5.1 Density and minimality properties of the Weihrauch lattice
Vasco Brattka (Universität der Bundeswehr – München, DE)

License Creative Commons BY 3.0 Unported license
© Vasco Brattka

This open problem is related to lattice theoretic properties of the Weihrauch lattice and its
variants. These questions apply to the Weihrauch lattice itself, to the strong Weihrauch
lattice, to the parallelized Weihrauch lattice, the parallelized total Weihrauch lattice and
other variants:
1. What can be said about density properties of the corresponding lattice?
2. Are there regions where the lattice is dense and others where it is not? Can those be

classified?
3. Are there minimal pairs or atoms?

Basically nothing is known about the answers to such questions!

5.2 Ramsey’s theorem: products versus colors
Vasco Brattka (Universität der Bundeswehr – München, DE)

License Creative Commons BY 3.0 Unported license
© Vasco Brattka

We consider Ramsey’s theorem for a fixed cardinality n and k colors. It is easy to see that
the m–fold product of Ramsey’s theorem for k colors is strongly Weihrauch reducible to a
single instance with km colors (all for the fixed cardinality n) [31, Corollary 3.18 (1)]. This
means that colors can make up for products. Does the converse hold true, i.e., can products
make up for colors? More precisely, is there a number m for each k, such that Ramsey’s
theorem for k colors is Weihrauch reducible to the m–fold product of Ramsey’s theorem for
only 2 colors (all for the fixed cardinality n)? (See also [31, Question 3.22].) The answer is
yes for cardinality n = 1 [31, Proposition 3.23], but not known for higher cardinalities n ≥ 2.
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5.3 Weihrauch strength of countable well-orderings
Jeffry L. Hirst (Appalachian State University – Boone, US)

License Creative Commons BY 3.0 Unported license
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What is the Weihrauch strength of various statements about countable well-orderings? In
the reverse mathematics setting, they tend to clump into two groups, one at the ACA0 level
and the other at ATR0. Do they separate in the Weihrauch hierarchy?

Possibly useful resources include the survey of ordinal arithmetic in Reverse Mathematics
2001 [1] and Sierpinski’s text, Cardinal and Ordinal Numbers [2]. Also see the related work
by Jun Le Goh and by Alberto Marcone and his affiliates.
A small subproject: Examine statements related to indecomposable ordinals.

Weak comparability of indecomposable well-orderings.
If α is well-ordered, then ωα is well-ordered. (Consider the contrapositive to formulate
this as a Weihrauch problem.)
If α is indecomposable, then there is a β such that α = ωβ . (Here, the equality could
indicate weak comparability or strong comparability.)

In the subproject, the reverse mathematical analysis of the statements has already been
completed. One could also select a previously unanalyzed statement from Sierpinski [2] and
do both the reverse mathematical analysis and the Weihrauch analysis.

References
1 Jeffry L. Hirst A survey of the reverse mathematics of ordinal arithmetic. In: Reverse Math-

ematics 2001, Lect. Notes Log., Volume 21, editor: Stephen G. Simpson, Assoc. Symbol.
Logic, La Jolla, CA, USA, pages 222-224, 2005.

2 Wacław Sierpiński Cardinal and ordinal arithmetic, Second revised edition, Monografie
Matematyczne, Volume 34, Państowe Wydawnictwo Naukowe, Warsaw, 1965.

5.4 Some questions around Weihrauch counterparts of ATR
Takayuki Kihara (Nagoya University, JP)

License Creative Commons BY 3.0 Unported license
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Main reference Paul-Elliot Anglès D’Auriac and Takayuki Kihara: “A comparison of various analytic choice
principles”, Preprint.

Goh introduced the two-sided version ATR2 of arithmetical transfinite recursion, and Anglès
D’Auriac and Kihara [1] introduced its variant ATR2′ which is shown to be arithmetically
Weihrauch equivalent to the Σ1

1-choice on Cantor space.
Q1. Is ATR2′ arithmetically Weihrauch equivalent to ATR2?
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Anglès D’Auriac and Kihara [1] showed that the Σ1
1-choice on Baire space is not Weihrauch

reducible to the parallelization of the Σ1
1-choice on the natural numbers.

Q2. Is the Σ1
1-choice on Baire space hyperarithmetically Weihrauch reducible to the

parallelization of the Σ1
1-choice on the natural numbers?

References
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5.5 Two open questions from Dagstuhl Seminar 18361
Carl Mummert (Marshall University – Huntington, US)
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These two questions concern the Weihrauch degrees of problems in algebra. The first concerns
vector spaces. The elements of a countable vector space over Q can be identified with elements
of N, so that the elementary diagram can be encoded canonically as an element of 2N. We can
use this representation to ask about the degrees of problems in linear algebra. For example,
the problem of producing a basis for a countable vector space over Q has Weihrauch degree
L̂PO, and in the setting of reverse mathematics the analogous principle of second order
arithmetic is equivalent to ACA0 over RCA0. The first question relates to the problem of
finding a proper finite dimensional subspace of a countable vector space over Q.

Problem: Let P : ⊆ 2N ⇒ 2N be the partial multifuction that, given the atomic
diagram of an infinite dimensional vector space over Q, returns the characteristic
function of a finite dimensional nonzero subspace of the vector space. What is the
Weihrauch degree of P?

Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [1] proved that the principle
of second order arithmetic analogous to P is equivalent to ACA0 over RCA0. Their proof
has an interesting nonuniformity, as it relies on the ability to choose a basis for the finite
dimensional subspace. It follows from their results that WKL ≤W P ≤W L̂PO. We suspect
P ≡W L̂PO, but a new proof method seems to be needed.

The second problem comes from group theory. It is a classical fact that every group with
more than 2 elements has a nontrivial automorphism. We represent countably infinite groups
by identifying their set of elements with N, so that their elementary diagrams can be viewed
as elements of 2N. There is no loss of generality in assuming the identity element is identified
with 0 ∈ N.

Problem: Let A : ⊆ 2N ⇒ NN be the partial multifunction that, given the atomic
diagram of a countably infinite group, produces a nontrivial automorphism of the
group. What is the Weihrauch degree of A?

The known upper bound is A ≤W LPO × LPO. The two particular questions that
LPO is used to answer are whether the group is abelian and whether every element has
order 2. In particular, every computable countably infinite group has a computable nontrivial
automorphism. If the Weihrauch degree of A is nontrivial, this provides another example of
the importance of weak choice principles.
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5.6 Characterizing the diamond-operator
Arno Pauly (Swansea University, GB)
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The �-operator in the Weihrauch lattice captures the idea of making finitely many calls
to an oracle available, without any a priori known bound on the number of calls. See the
abstract “Using a Weihrauch degree finitely many times” abstract for details. It is clear that
if f ≡W f�, then 1 ≤W f and f ≡W f ? f . Our question is whether the converse holds:

Does 1 ≤W f and f ≡W f ? f imply f ≡W f�?
During the seminar, Linda Brown Westrick obtained a positive answer to this question.

5.7 Compact Hausdorff spaces are regular
Arno Pauly (Swansea University, GB)
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It is a well-known result from topology that compact Hausdorff spaces are regular. The
traditional proof proceeds as follows: We are given x ∈ X and A ∈ A(X) with x /∈ A. For
each y ∈ A there are disjoint opens Uy 3 x and Vy 3 y, since X is Hausdorff. Consider the
open cover A ⊆

⋃
y∈A Vy. By compactness of X, there exists some finite I ⊆ A such that

already A ⊆
⋃
y∈I Vy. Now

⋃
y∈I Vy and

⋂
y∈I Uy are disjoint open sets separating x and A.

In computable topology, however, this argument does not go through. In order to
obtain

⋃
y∈A Vy as an open set, we would require A as an overt set, not merely as a closed

set. Restricted to countably-based spaces, a different approach was shown to work in [1].
Here, we ask whether the statement holds in general:

Is every computably Hausdorff computably compact represented spaces already comput-
ably regular?
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5.8 Characterization of overt choice on maximal CoPolish spaces
Matthias Schröder (Universität der Bundeswehr – München, DE)
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It is known that there exist maximal CoPolish spaces X in the sense that any other CoPolish
space is homeomorphic to a closed subspace of X. A CoPolish space is defined to be the
direct limit of an increasing sequence of compact metric spaces. One example of a maximal
CoPolish space is the Hilbert space l2 equipped with the sequentialization of the weak∗
topology on l2. Overt choice is the problem of picking a point in a closed subset given with
positive information.

Question: Characterize the Weihrauch degree of overt choice V (l2) on l2.
Note that overt choice on any CoPolish space is continuously Weihrauch reducible to

V (l2) due to the maximality property.

5.9 Minimal continuous Weihrauch degrees
Matthias Schröder (Universität der Bundeswehr – München, DE)
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Let f 6= 0 be any multifunction, where 0 denotes the nowhere defined problem.
Question: Does there exist a multifunction g 6= 0 such that g is strictly below f in the

continuous Weihrauch lattice?

5.10 When can one step function Weihrauch compute another?
Linda Brown Westrick (Pennsylvania State University – University Park, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Adam Day, Rod Downey, Takayuki Kihara, Linda Westrick

Let ≤ denote the lexicographic order on Cantor space. For A ∈ 2ω, define the step function
sA : 2ω → 2 to be the characteristic function of {X ∈ 2ω : A ≤ X}.

Question: Characterize the pairs (A,B) for which sA ≤W sB .
The little that is known about this is strange. If B is computable and sB is discontinuous,

then sA ≤W sB if and only if A is left-c.e. But if B is not computable and sA ≤W sB , then
A and B are Turing equivalent.
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