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This report documents the program and the outcomes of Dagstuhl Seminar 18381 “Quantum
Programming Languages”.

The aim of the seminar was to bring together researchers from quantum computing—
in particular those focusing on quantum algorithms and quantum error correction—and
classical programming languages. Open questions that were of interest to this group include
new methods for circuit synthesis and optimization, compiler optimizations and rewriting,
embedded languages versus non-embedded languages, implementations of type systems and
error reporting for quantum languages, techniques for verifying the correctness of quantum
programs, and new techniques for compiling efficient circuits and protocols for fault-tolerant
questions and their 2D layout.

Quantum computing is getting real. Several laboratories around the world are implement-
ing hardware platforms. For instance, systems based on superconducting qubits, such as
those at IBM, Google, Intel, the University of Maryland, ionQ, and Rigetti are now scaling
into the 50-150 qubit range.

While research on the theoretical side of the field addressed fundamental questions such
as how to best leverage this new model of computation for algorithmic applications, a topic
that has received significantly less attention is how to actually program quantum computers.
To take advantage of the immense computing power offered by quantum computers as they
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come online in the coming years, software tools will be essential. We want these tools to be
available, efficient and reliable, so that we can quickly and reliably reap the positive benefits
that quantum computers have to offer.

It is clear that quantum programming will require tools for automatically generating
large-scale circuits and for synthesizing circuits from elementary fault-tolerant gates which
then can be carried out by a future quantum computer. However, it is less clear what the
best way will be to go about these challenging issues. Questions that were discussed at the
seminar include the following:

How can we program a quantum computer? What are the basic structures that a language
should support and how can a compiler help a user develop abstract/high-level reasoning
about algorithms?
How do we model the underlying instruction set? As currently the underlying hardware
is quickly evolving, how can we best model a fault-tolerant quantum computer?
How to compile and optimize quantum programs? Automatic translation of high-level
programs into circuits will be key to program quantum computers. How to design good
tools for this?
How to we test and verify quantum programs? Given that it is hard for classical computers
to simulate the time evolution of a quantum computer, how can we ascertain correctness
of a circuit?

The seminar brought together some 44 researchers with diverse skill sets from quantum
computing, mathematical foundations of programming languages, implementation of pro-
gramming languages, and formal verification. The seminar consisted of 23 talks, as well as a
number of vibrant discussion sessions and a software demonstration session. The sessions
where:

Wine Cellar discussion, moderated by Sabine Glesner. This was our first discussion
session. We discussed the questions raised by Sabine Glesner during her talk: Why do we
need quantum programming languages? Which “killer applications” would make quantum
programming languages successful? What are appropriate abstractions from quantum
hardware? What are theoretical models for quantum computing?
Discussion session on Debugging, moderated by Rodney Van Meter. This session focused
on what are appropriate debugging techniques for quantum computing. The issue
arises because the most common classical debugging technique, setting break points and
examining the program state, cannot be applied in the context of quantum computing.
Discussion session on Challenge Problems for Quantum Computing, moderated by Earl
Campbell. In this session, we discussed coming up with well-defined problems with some
success quantifier for quantum computation, similar to the successful SAT competitions.
Group survey session on a Bird’s Eye View on Quantum Languages, moderated by Robert
Rand. In this session, the group compiled a list of all quantum programming languages
and toolkits we are currently aware of, and classified them according to various criteria, for
example, whether the languages are imperative or functional, whether the computational
paradigm is circuit generation or Knill’s QRAM model, whether the language is high-level
or assembly, whether it supports type-safety and/or verification, etc.
Group survey session on Tools for Quantum Optimization, moderated by Matthew Amy.
In this session, the group compiled a list of available tools for optimization of quantum
circuits.
Group discussion on Opportunities for Education and Outreach, moderated by Rodney
Van Meter. The discussion centered on new opportunities for public outreach and
education that are enabled by the emergence of new quantum tools.
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Software demonstration session, moderated by Martin Roetteler. In this session, 10
researchers gave rapid demonstrations, of a about 10 minutes each, of various software
tools they have designed.

Most of the participants rated the seminar as a success. We managed to connect researchers
from different communities, and engaged in a vibrant exchange of novel ideas, and started
to tackle important problems such as the analysis of quantum algorithms for real-world
computational problems, compiler optimizations, reversible computing, and fault-tolerant
quantum computing.
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3 Overview of Talks

3.1 Functional Verification of Quantum Circuits
Matthew Amy (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Matthew Amy

Main reference Matthew Amy: “Towards Large-scale Functional Verification of Universal Quantum Circuits”,
CoRR, Vol. abs/1805.06908, 2018.

URL https://arxiv.org/abs/1805.06908

We introduce a framework for the formal specification and verification of quantum circuits
based on the Feynman path integral. Our formalism, built around exponential sums of
polynomial functions, provides a structured and natural way of specifying quantum operations,
particularly for quantum implementations of classical functions. Verification of circuits over
all levels of the Clifford hierarchy with respect to either a specification or reference circuit is
enabled by a novel rewrite system for exponential sums with free variables.

We evaluate our methods by performing automated verification of optimized Clifford+T
circuits with up to 100 qubits and thousands of T gates, as well as the functional verification
of quantum algorithms using hundreds of qubits. We further show that our method can
perform the simulation of a Hidden Shift algorithm due to Roetteler with 100 qubits in just
minutes on a tablet computer.

3.2 Phase polynomials, T-count optimisation and Lempel’s algorithm
Earl Campbell (University of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
© Earl Campbell

Main reference Luke E Heyfron, Earl T Campbell: “An efficient quantum compiler that reduces T count”, in
Quantum Science and Technology, Vol. 4 (1), p. 015004, 2018.

URL https://doi.org/10.1088/2058-9565/aad604

I review the basics of the phase polynomials and the connection to T-count optimisation,
summarising the work of Amy and Mosca as well as my own work on this with Luke
Heyfron. This leads to a 3-tensor optimisation problem that is hard. But is it closely
related to an easier (relaxed) optimisation problem solved in the 1970s by Lempel (https:
//epubs.siam.org/doi/abs/10.1137/0204014) All of my work on the problem has been based
on modifying Lempel’s algorithm to build a heuristic for the harder quantum problem. Rather
than getting into the details of the hard quantum problem, I sketch Lempel’s method as I
believe it is not well known and could have further applications in the field.

3.3 Low overhead quantum computation using lattice surgery
Austin G. Fowler (Google Research – Mountain View, US)

License Creative Commons BY 3.0 Unported license
© Austin G. Fowler

The surface code is a method of detecting errors in a quantum computer. Many different
methods of computing using this code exist. We fully analyze lattice surgery and show that
this method is unambiguously better than braiding defects, the previous standard method.
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3.4 Dependent types in Proto-Quipper
Frank Fu (Dalhousie University – Halifax, CA)

License Creative Commons BY 3.0 Unported license
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Joint work of Peter Selinger
Main reference Francisco Rios, Peter Selinger: “A categorical model for a quantum circuit description language”,

in Proc. of the 14th International Conference on Quantum Physics and Logic, QPL 2017,
Nijmegen, The Netherlands, 3-7 July 2017., EPTCS, Vol. 266, pp. 164–178, 2017.

URL https://doi.org/10.4204/EPTCS.266.11

Are dependent types useful for quantum circuit programming? In this talk, I will present an
implementation of dependently typed Proto-Quipper, a stand-alone language for quantum
circuit description. I will argue that dependent types are useful in three aspects:
1. Precise types for quantum circuit description functions.
2. Precise notion of boxing a family of circuits.
3. Encapsulating unused wires via existential dependent data types.

3.5 Reflections on what programming languages are good for –
traditionally and in the face of quantum computing

Sabine Glesner (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
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When I first heard about quantum computing, which was in 1994, it was at about the same
time I first heard about internet browsers. At that time, I could not tell which of these
two developments would be faster. Today we know that it was not quantum computing.
Nevertheless, quantum computing has made enormous progress during the last years, so
much that we even have a Dagstuhl seminar on quantum programming languages. In this
talk, I want to sum up what traditional programming languages have been good for and
raise the question of what the situation looks like for quantum computing.

3.6 Reversible Programming Languages – From Classical Results to
Recent Developments

Robert Glück (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
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Joint work of Martin Holm Cservenka, Robert Glück, Tue Haulund, Torben Ægidius Mogensen
Main reference Martin Holm Cservenka, Robert Glück, Tue Haulund, Torben Ægidius Mogensen: “Data

Structures and Dynamic Memory Management in Reversible Languages”, in Proc. of the 10th
International Conference on Reversible Computation, RC 2018, Leicester, UK, September 12–14,
2018, Lecture Notes in Computer Science, Vol. 11106, pp. 269–285, Springer, 2018.

URL https://doi.org/10.1007/978-3-319-99498-7_19

This talk highlighted the principles and main ideas of reversible programming languages with
which we have been working for the past several years (the “Copenhagen Interpretation of
Reversible Computing”). Reversible languages form their own distinct class of programming
languages because they are deterministic in both computation directions. They complement
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the mainstream programming languages like C and Haskell that are backward nondetermin-
istic. Recent developments with dynamic memory management allowed the design and
implementation of reversible object-oriented and functional languages. This enables, for the
first time, the reversible manipulation of high-level dynamic data abstractions such as binary
trees, lists and queues.

3.7 Quantum Linguistic Relativity
Christopher Granade (Microsoft Corporation – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Christopher Granade

In this talk, I will consider a set of goals for new quantum programming languages, motivated
by applications and with an eye to making it easier for new quantum programmers to get
started. To meet these goals, I propose thinking of quantum language design in terms of
linguistic relativity, the hypothesis that the language in which we express an idea affects how
we think about that idea. Finally, I present Q# as a case study for this approach to design,
and discuss how we chose Q# features according to linguistic relativity.

3.8 The OpenQL programming framework
Nader Khammassi (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
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Quantum computing is rapidly evolving, especially after the discovery of several efficient
quantum algorithms solving intractable classical problems. Expressing these quantum al-
gorithms using a high-level programming language and making them executable on a quantum
processor, while abstracting hardware details and targetting different qubit technologies, is
an important problem. After discussing the different compilation challenges, we present the
OpenQL programming framework, and show how its modular design allows the integration
of a full-stack quantum computer architecture for different qubit technologies.

3.9 Cheaper alternative to Euler decomposition for SU(2) gates and
fall-back circuits

Vadym Kliuchnikov (Microsoft Corporation – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Vadym Kliuchnikov

We give an alternative to Euler decomposition that leads to average case circuit complexity
scaling as 7 log5(1/ε) as opposed to 9 log5(1/ε) for Pauli+V gate sets. The idea readily
generalizes to many other gate sets.
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3.10 Operator algebras and their role in quantum programming
languages

Albertus Johannis Lindenhovius (Tulane University – New Orleans, US)

License Creative Commons BY 3.0 Unported license
© Albertus Johannis Lindenhovius

Quantum systems are usually described in the Hilbert space formalism. Operator algebras,
which were introduced by von Neumann, form an alternative formalism with several advant-
ages over the Hilbert space formalism, such as the possibility of describing the interaction
between quantum and classical phenomena in one framework.

We discuss how operator algebras, which are algebras of operators on a Hilbert space, can
be used in the semantics of quantum programming languages. Furthermore, we discuss which
categorical properties of a certain class of operator algebras correspond to what features of
the quantum programming language for which it is used in the semantics. Can we single out
one class of operator algebras that has all categorical properties sufficient for a higher-order
quantum programming language with recursion?

3.11 NISQ optimization for CNOT and CNOT+T circuits
Beatrice Nash (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
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Near-term quantum devices have limited physical qubit connectivity, and performing opera-
tions between non-adjacent qubits can be very expensive. In this talk, I will discuss ways to
extend current circuit optimization methods to take into account these restrictions.

3.12 Verified Quantum Programming in QWIRE: Optimization and
Error Correction

Robert Rand (University of Maryland – College Park, US)

License Creative Commons BY 3.0 Unported license
© Robert Rand

Joint work of Robert Rand, Jennifer Paykin, Dong-Ho Lee, Steve Zdancewic, Kesha Hietala, Michael Hicks,
Xiaodi Wu

Main reference Jennifer Paykin, Robert Rand, Steve Zdancewic: “QWIRE: a core language for quantum circuits”,
in Proc. of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pp. 846–858, ACM, 2017.

URL https://doi.org/10.1145/3009837.3009894

We present QWIRE, a quantum circuit language and formal verification tool. QWIRE
possesses a denotational semantics in terms of density matrices and is embedded in the
Coq proof assistant, allowing us to check our quantum circuits against their mathematical
specifications. In this talk, we look at a variety of proofs of circuit specifications in Coq.
We then examine two pressing issues for quantum programming: Verified optimization and
error-aware semantics and the challenges of incorporating them in QWIRE.
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3.13 Proto-Quipper-M: A Categorically Sound Quantum Circuit
Description Language.

Francisco Rios (Dalhousie University – Halifax, CA)

License Creative Commons BY 3.0 Unported license
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in Proc. of the 14th International Conference on Quantum Physics and Logic, QPL 2017,
Nijmegen, The Netherlands, 3-7 July 2017., EPTCS, Vol. 266, pp. 164–178, 2017.

URL https://doi.org/10.4204/EPTCS.266.11

Quipper is a practical programming language for describing families of quantum circuits.
In this talk, we formalize a small, but useful fragment of Quipper called Proto-Quipper-M.
Unlike its parent Quipper, this language is type-safe and has a formal denotational and
operational semantics. Proto-Quipper-M is also more general than Quipper, in that it can
describe families of morphisms in any symmetric monoidal category, of which quantum
circuits are but one example. We design Proto-Quipper-M from the ground up, by first
giving a general categorical model of parameters and states. After finding some interesting
categorical structures in the model, we then define the programming language to fit the
model. We cement the connection between the language and the model by proving type
safety, soundness, and adequacy properties.

3.14 Toward the first quantum simulation with quantum speedup
Neil Julien Ross (Dalhousie University – Halifax, CA)

License Creative Commons BY 3.0 Unported license
© Neil Julien Ross

Joint work of Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, Yuan Su

As we approach the development of a quantum computer with tens of well-controlled qubits,
it is natural to ask what can be done with such a device. Specifically, we would like to
construct an example of a practical problem that is beyond the reach of classical computers,
but that requires the fewest possible resources to solve on a quantum computer. We address
this problem by considering quantum simulation of spin systems, a task that could be applied
to understand phenomena in condensed matter physics such as many-body localization. We
synthesize explicit quantum circuits for three leading quantum simulation algorithms, one
based on product formulas (PF), one based on implementing the Taylor series as a linear
combination of unitaries (TS), and another using the recent quantum signal processing
approach (QSP). We employ a wide range of techniques to develop tighter error bounds and
optimize gate-level implementations. Surprisingly, even for simulations of small systems,
we find that the fourth-order PF algorithm outperforms lower-order PF algorithms and
that the TS and QSP algorithms require even fewer gates (although at the cost of requiring
more qubits). However, the cost of PF algorithms can be reduced significantly by using
empirical error bounds, so that PF algorithms remain competitive in contexts where a
rigorous guarantee on the accuracy of the simulation is not essential. Our circuits are smaller
by several orders of magnitude than those for the simplest classically-hard instances of
problems such as factoring and quantum chemistry, and we hope they will pave the way
toward the first practical application of a quantum computer.
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3.15 Automatic Synthesis in Quantum Programming Languages
Mathias Soeken (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
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Joint work of Mathias Soeken, Bruno Schmitt, Giulia Meuli, Fereshte Mozafari, Giovanni De Micheli, Martin
Roetteler, Thomas Häner

Main reference Mathias Soeken, Thomas Häner, Martin Roetteler: “Programming quantum computers using
design automation”, in Proc. of the 2018 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2018, Dresden, Germany, March 19-23, 2018, pp. 137–146, IEEE, 2018.

URL https://doi.org/10.23919/DATE.2018.8341993

When translating quantum programs into (technology-dependent) quantum circuits, we
are often confronted with translating conventional classical logic in forms of permutations,
Boolean functions, or logic networks. RevKit is a toolkit that combines several state-of-the-art
approaches for synthesis, optimization, and mapping. RevKit is powered by the EPFL logic
synthesis libraries, such as tweedledum, alice, mockturtle, and kitty.

In the presentation, we showcase several applications of RevKit in modern quantum
programming flows. The examples include integrations with Qiskit, ProjectQ, pyQuil, Q#,
and Cirq.

3.16 Representing quantum control
Benoit Valiron (Centrale Supelec – Orsay, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Amr Sabry, Benoît Valiron, Juliana Kaizer Vizzotto
Main reference Amr Sabry, Benoît Valiron, Juliana Kaizer Vizzotto: “From Symmetric Pattern-Matching to

Quantum Control”, in Proc. of the 21st International Conference on the Foundations of Software
Science and Computation Structures, FOSSACS 2018, Thessaloniki, Greece, April 14–20, 2018,
Lecture Notes in Computer Science, Vol. 10803, pp. 348–364, Springer, 2018.

URL https://doi.org/10.1007/978-3-319-89366-2_19

One perspective on quantum algorithms is that they are classical algorithms having access to
a special kind of memory with exotic properties. This perspective suggests that, even in the
case of quantum algorithms, the control flow notions of sequencing, conditionals, loops, and
recursion are entirely classical. There is however, another notion of control flow, that is itself
quantum. The notion of quantum conditional expression is reasonably well-understood: the
execution of the two expressions becomes itself a superposition of executions. The quantum
counterpart of loops and recursion is however not believed to be meaningful in its most
general form. In this talk (based on [1]), we discuss how, under the right circumstances, a
reasonable notion of quantum loops and recursion is possible. To this aim, we first propose a
classical, typed, reversible language with lists and fixpoints based on Theseus [2]. We then
extend this language to the closed quantum domain (without measurements) by allowing
linear combinations of terms and restricting fixpoints to structurally recursive fixpoints whose
termination proofs match the proofs of convergence of sequences in infinite-dimensional
Hilbert spaces. We additionally give an operational semantics for the quantum language in
the spirit of algebraic lambda-calculi. This permits to reconciliate several approaches, such as
the quantum tests of QML [3], Ying’s quantum loops [4] and linear algebraic approaches [5]
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3.17 Error-aware compilation for the IBM 20-qubit machine
Rodney Van Meter (Keio University – Fujisawa, JP)
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Joint work of Yulu Pan, Shin Nishio, Takahiko Satoh, Rodney Van Meter

Roughly, our first project [1] is to characterize qubits, operation fidelity, and path fidelity for
moving qubits (or doing long-distance gates), and the second [2] is to take that information
and place qubits on processor and plan their movement.

While various projects have worked on compiling programs to meet the constraints of
small quantum processors, we believe this is the first work to focus on the inhomogeneity
in actual gate errors due to minor differences between qubits as the key metric for placing
variable qubits on the physical qubits on the processor.

The error rates for qubits and gates are measured using random benchmarking. For the
placement phase, we are using beam search combined with a modified form of Dijkstra’s
shortest path first, and using the product of gate fidelities as our prediction for success
probability on complex circuits. We use the Cuccaro adder circuit as our application for
testing the compilation, and KL-divergence as a measure of the quality of circuits. We
compared the existing QISkit compiler with QOPTER.

Our work, while not yet complete, suggests that the single number of gate fidelity is not
an adequate measure of success rate. We matched the QISkit success probability while using
minimal computational resources in the compilation phase for a 5-qubit adder circuit, but
the actual success probability is still low, and the estimated success probability actually far
lower. The relative ranking of choice of circuit shows an intermediate level of correlation
with the ordering of success probability in circuits. Thus, this complex problem is still ripe
for new approaches and hard work, and our future work includes continuing development of
these tools.
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3.18 Data-structures and Methods for the Design of Quantum
Computations

Robert Wille (Johannes Kepler Universität Linz, AT)
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In the past decades, the Computer-Aided Design (CAD) community was frequently faced with
tremendously complex challenges that often required the efficient consideration of problems
of exponential (or even greater) size. In order to tackle these, researchers and engineers
developed sophisticated CAD methods employing, e.g., decision diagrams or sophisticated
reasoning engines. In contrast, many design problems in the quantum domain are still
addressed in a rather straight-forward fashion, e.g., by exponential array-based descriptions
or enumerative search algorithms. This talk illustrates how established concepts from the
conventional design of circuits and systems can be applied to improve the design of quantum
computations. By this, the talk will “bridge” the CAD and the quantum communities by
showing how the combination of expertise from both domains eventually yields efficient
design methods for quantum computation. The application of those data-structures and
methods is exemplarily demonstrated by means of simulation of quantum computation.

3.19 Logic level circuit optimization for topological quantum
computation

Shigeru Yamashita (Ritsumeikan University – Shiga, JP)
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The TQC (Topological Quantum Computing) model has been receiving a lot of attention
because it has proven to be one of the most promising fault-tolerant quantum computation
models. In the TQC conceptual model, we arrange physical measurement sequences cor-
responding to computational steps of quantum computation in a three-dimensional space.
While some transformation rules for this arranged three-dimensional space have been known,
there was no known systematic way to use the rules to optimize the arranged space. This talk
proposes an efficient systematic way to use the known transformation rules by considering
the arranged space as a set of loops.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Michele Mosca, Martin Roetteler, and Peter Selinger 125

3.20 Reasoning about Parallel Quantum Programs
Mingsheng Ying (University of Technology – Sydney, AU)
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We initiate the study of parallel quantum programming by defining the operational and
denotational semantics of parallel quantum programs. The technical contributions include:
(1) finding a series of useful proof rules for reasoning about correctness of parallel quantum
programs; and (2) proving a strong soundness theorem of these proof rules, showing that
partial correctness is well maintained at each step of transitions in the operational semantics of
a parallel quantum program. This is achieved by partially overcoming the following conceptual
challenges that are never present in classical parallel programming: (i) the intertwining
of nondeterminism caused by quantum measurements and introduced by parallelism; (ii)
entanglement between component quantum programs; and (iii) combining quantum predicates
in the overlap of state Hilbert spaces of component quantum programs with shared variables.
It seems that a full solution to these challenges and developing a (relatively) complete proof
system for parallel quantum programs are still far beyond the current reach.

3.21 Recursive types for linear/non-linear quantum programming
Vladimir Zamdzhiev (LORIA – Nancy, FR)

License Creative Commons BY 3.0 Unported license
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Linear/non-linear lambda calculi provide a natural framework for quantum programming.
By making a distinction between intuitionistic (non-linear / classical) and linear types, we
may model classical data and quantum data. The latter cannot be copied or deleted, which
is conveniently ensured by the linearity of the type system, whereas the former may be freely
copied and discarded, which is also conveniently allowed by the non-linear part of the type
system.

In this talk, we consider the problem of extending such a lambda calculus with recursive
types. We design the type system such that we may distinguish between intuitionistic
recursive types and linear recursive types. We also describe some work in progress on a
conjectured denotational model that soundly models our lambda calculus.

3.22 Quantum Calculi: from theory to language design
Margherita Zorzi (University of Verona, IT)
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In the last 20 years several approaches to quantum programming have been introduced. In
this report we will focus on functional calculi and in particular on the QRAM architectural
model. We explore the twofold perspective (theoretical and concrete) of the approach and
we will list the main problems one has to face in quantum language design.
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3.23 Compiling Quantum Circuits to NISQ Devices
Alwin Zulehner (Johannes Kepler Universität Linz, AT)
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The Noisy Intermediate-Scale Quantum (NISQ) technology is currently investigated by
major players in the field to build the first practically useful quantum computer. IBM QX
architectures are the first ones which are already publicly available today. However, in order
to use them, the respective quantum circuits have to be compiled for the respectively used
target architecture. This demands solutions for automatically and efficiently conducting
this compilation process. In this work, we offer solutions to this problem that satisfy all
constraints given by the architecture and, at the same time, aim to keep the overhead in
terms of additionally required quantum gates minimal. Our experimental evaluation shows
that the proposed approach significantly outperforms IBM’s own solution regarding fidelity
of the compiled circuit as well as runtime. Moreover, to emphasize development, IBM
launched a challenge with the goal to optimize such compilers for a certain set of random
quantum circuits. Since these circuits represent a worst case scenario for our approach,
we developed a correspondingly adjusted version. It has been declared the winner of this
so-called QISKit developer challenge, since it yields compiled circuits with at least 10%
better costs than the other submissions, while generating them at least 6 times faster
(according to IBM). Implementations of the proposed methodologies are publicly available at
http://iic.jku.at/eda/research/ibm_qx_mapping.

4 Working groups

4.1 Tools for Quantum Optimization
Matthew Amy (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
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In this session, the group compiled a list of available tools for optimization of quantum
circuits. We came up with the following list of tools. While the list is probably highly
incomplete, we hope that it is a useful starting point.

Feynman, by Matthew Amy. Optimizations: z-rotation optimization, CNOT-count
optimization, T -depth optimization. Language: Haskell library, command-line interface.
License: BSD-2. Availability: Github.
Newsynth/Gridsynth, by Neil J. Ross and Peter Selinger. Optimizations: single-qubit
Z-rotations to Clifford+T . Language: Haskell library, command-line interface. License:
GPL-3. Availability: Hackage.
TOpt, by Earl Campbell. Optimizations: Clifford+T to Clifford+T , T -gate minimization.
Language: C++, command-line interface. License: GPL-3. Availability: Github.
IonQ’s tool, by IonQ. Optimizations: Clifford+z-rotations+Toffoli to Clifford+z-
rotations. Language: Fortran. License: Proprietary.
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RevKit, by Mathias Soeken. Optimizations: Look-up table hierarchical reversible syn-
thesis (LHRS). CNOT minimization. Produces Clifford+T . Language: C++, command-
line interface. Python bindings. License: MIT.
pQCS, by Olivia Di Matteo and Michele Mosca. Optimizations: Multi-qubit unitary
to Clifford+T . Availability: from https://qsoft.iqc.uwaterloo.ca/. License: For research
only.
IBM QX mapping SU(4), by Alwin Zulehner and Robert Wille. Optimizations: SU(4)
to CNOT+SWAP+1-qubit gates. Availability: Github. License: Non-commercial use
only.

4.2 Challenge problems in quantum computation
Earl Campbell (University of Sheffield, GB)
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We discussed possible “challenge problems” in the optimisation of quantum circuits. The
idea was to come up with very well defined problems with some success quantifer, similar
to the successful SAT competitions. The most popular idea was to consider Hamiltonian
simulation of small systems of 10–20 qubits and minimise the number of gates required to
achieved a precision of 10−3. Suggested Hamiltonians included:
1. The 1D Heisenberg chain;
2. Jellium;
3. Quantum chemistry hamiltonians available in the openFermion packages.

Given a Hamiltonian, one could consider implementing the operator eiHt, but an additional
interesting problem is phase estimation, where one implemented a controlled eiHt. Here, t and
the number of circuit repetitions ought to be optimised to minimise the Fisher information
of the parameter estimated.

4.3 Wine Cellar Discussion on Quantum Programming Languages
Sabine Glesner (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of all the participants of the Dagstuhl seminar 18381

This is an abbreviated summary of a discussion in the Dagstuhl wine cellar that took
place during the Dagstuhl seminar 18381 on Quantum Programming Languages on Monday,
September 20, 2018. The starting point for the discussion was the list of questions raised in
Sabine Glesner’s talk.

4.3.1 What are programming languages good for, classically?

Programming languages are central in computer science. Already a brief look at the Turing
award winners and their research areas reveals that programming languages never go out
of date. In the past, programming languages have been helpful to abstract from hardware
details, which gives more programming comfort to software developers. Type systems
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have been developed to enhance program correctness by allowing programmers to detect
misfittings statically before the program is executed. Also, data management is important
and programming languages offer a rich variety of structured data mechanisms, e.g., via
class hierarchies. There are many programming language paradigms around (e.g., functional,
imperative, object-oriented, logical, etc., as well as combinations thereof). It turns out that
each of them supports a certain class of problems. A definite achievement in the area of
programming languages is program analyses. They analyse programs statically, and are
usually conservative. For example, live variables analysis will find variables that are definitely
no longer used, but might err on the side of marking a variable as live when it might be live.

4.3.2 What are killer applications for quantum computing?

History has shown that new technologies are usually only successful if they are necessary
to accomplish something new (a “killer application”). We brainstormed on what the likely
killer applications for quantum computing would be. It was suggested that the field of
quantum chemistry has many well-formulated and ready-made problems for which quantum
computing will be very helpful, and that this will be one of the first “real” applications
of quantum computing. Solving problems in quantum chemistry has potential real-world
applications, such as the discovery of new catalysts to make chemical reactions more efficient
(e.g., carbon capture, the production of fertilizers, or the conversion of solar energy into
fuel). Also, physical qubits can be used to build up quantum sensors, which may be another
early application. The participants generally agreed that cryptanalysis is not likely to be a
killer application for quantum computing, both because it requires a relatively large number
(compared to quantum chemistry) of fault-tolerant qubits, and also because the world will
switch to post-quantum cryptography as soon as current protocols become insecure.

4.3.3 Quantum hardware

We discussed the size of current actual quantum hardware, the difference between physical
and logical qubits, and their respective error rates, which are significantly higher for qubits
(10−3) compared to classical transistors (10−14).

4.3.4 Quantum programming languages

Quantum programming languages are not necessarily complete stand-alone languages but
often libraries or packages built on top of classical languages. OpenFermion is an example
for such a package which is itself implemented in Python. The focus in the development of
programming languages is often on the translation, which is often targeted to quantum circuits.
A major concern when running quantum programs is the appearance and accumulation
of errors. The longer quantum hardware runs, the higher the error rate is. Hence, it is
important to understand how error correction can be done. It would be very helpful if such
analyses could be done automatically. While there are lots of analyses around, still a major
amount of uncertainty comes from the inputs. It is also an interesting question what level of
error is tolerable.

It would be good to have benchmarks so that optimizations could be developed (see the
analogy for SAT/SMT solvers for which also benchmarks exist). We pursued this question
further in a separate working group “Challenge problems in quantum computation”.

Debugging is another important and very difficult issue in quantum programming lan-
guages, as there are no checkpoints available. We pursued this question further in a separate
working group on “Debugging”.
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4.3.5 Theoretical Models for Quantum Computing

This point did not receive much discussion, as it was generally agreed that Quantum Turing
Machines are considered to be too cumbersome to work with, while quantum circuits are
typically the formalism of choice, at least during our discussion.

4.4 Survey of Quantum Languages
Robert Rand (University of Maryland – College Park, US)

License Creative Commons BY 3.0 Unported license
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The purpose of this session was to compile a list of quantum programming languages and
toolkits of interest, and to classify them according to various criteria. We considered the
following languages:

Proto-Quipper F C H Ac T/L As St V (partial) O/D/K —
QWIRE F CF H Ac T/L As E V D/K —
Quipper F CF H G T (partial) As E — — In
ProjectQ I N H G — ? E — — In/De (partial)
Q# I/F N H G T (partial) As St — — —
PyQuil I N H G — — E — — De
Cirq I C H S — ? E — — —
QISKit I CL H G — — E — — In/De
Scaffold I ? H G — — St — — In
(Open)QASM I CL A G — — Ta — — —
Quil I N A G — — Ta — O —

The letters after each language mean the following:
Language paradigm: Functional (F), imperative (I).
Target: Circuit based (C), circuits with feedback from measurements (CF), circuits with
limited feedback (CL), or not circuit based (N).
Abstraction: High-level language (H) or assembly-type language (A).
Intended audience: General public (G), academic research (Ac), or special-purpose (S).
Safety: type-safety (T), linearity (L).
Run-time checks: assertions (As).
Implementation: embedded language (E), standalone language (St), or target language
(Ta).
Support for verification (V).
Semantics: operational (O), denotational (D), and/or categorical (K).
Support for optimization: machine dependent (De) or machine independent (In).
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4.5 Software demonstration session
Martin Roetteler (Microsoft Corporation – Redmond, US)

License Creative Commons BY 3.0 Unported license
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In this session, researchers gave rapid demonstrations of various software tools they have
designed. The following is a list of the presentations, which lasted about 10 minutes each.

Vadym Kliuchnikov: Asserts, unit tests, and Q# tracer tool
Damian Steiger: ProjectQ: Shor’s algorithm, quantum chemistry, rendering
Frank Fu: Dependent types in Proto-Quipper
Nader Khammassi: QASM generator
Chris Granade: Quantum Katas in Q#
Matt Amy: Feynman tool to optimize and verify quantum circuits
Andrew Cross: IBM Quantum Experience demo
Bruno Schmitt: Tweedledee and tweedledum: IRs for RevKit
Robert Rand: QWIRE proofs in Coq
Alwin Zulehner: Simulation with QMDDs

4.6 Debugging of Quantum Programs
Rodney Van Meter (Keio University – Fujisawa, JP)

License Creative Commons BY 3.0 Unported license
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This session focused on identifying appropriate debugging techniques for quantum computing.
The issue arises because the most common classical debugging technique, setting break points
and examining the program state, cannot be used in the context of quantum computing.

It was suggested that we must draw a distinction between debugging and program
verification. In fact, debugging may potentially be used to answer three different questions:

Specification: did we define the algorithm correctly?
Code: have we correctly translated the specification to working, bug-free code?
Runtime: does the simulator or real quantum computer execute the program as expected?

According to the experience of some former members of the IARPA QCS program, typical
quantum circuits contain large classical subcircuits (usually oracles, sometimes more than
100× the size of the quantum portion). It may be beneficial to debug these parts separately,
as they can be simulated efficiently.

Here is an incomplete list of classical debugging techniques. Some of these may be
applicable to quantum programming, although others will not be.

assertions (invariants in the program)
interactive debugging (breakpoints)
time travel debuggers (those that can step backwards in time from a crash)
inserting print statements (all too common)
unit testing (e.g., establishing whether executed gate count matches expected gate count)
static analysis (including type checking)
dynamic analysis (memory leaks?)
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code review
testing with random instances
post-mortem (what is a “quantum crash dump”?)

Additional discussion focused on the distinction between regression testing and perform-
ance testing, and on the difficulty of discriminating between hardware bugs and software
bugs. The group identified the following research questions and directions:

How applicable are probabilistic techniques? Is probabilistic model checking applicable?
How do we debug on logical qubits, as opposed to physical qubits?
Checking if a circuit is the identity is QMA-hard; is checking it up to ε still QMA-hard?
What classes of properties do we want to check?
How can we make verification tools useful to programmers?
What concrete tools can we develop?

4.7 Opportunities for Education and Outreach
Rodney Van Meter (Keio University – Fujisawa, JP)

License Creative Commons BY 3.0 Unported license
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The discussion centered on new opportunities for public outreach and education that are
enabled by the emergence of new quantum tools. In general, the audience for quantum tools
can be divided into three categories:

The general public, e.g., popular science enthusiasts (learners we hope to attract), who
just want to learn the key ideas.
Black box library users, who don’t care how it works.
Algorithmists, who will need to learn how to create new interference patterns.

The first group is the most difficult to reach. It was suggested that people in this group
generally have three questions, in this order:

What does it do?
When will I have it?
How does it work?

Physicists tend to answer the questions in exactly the opposite order.
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