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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 18421 “Algorithmic
Enumeration: Output-sensitive, Input-Sensitive, Parameterized, Approximative”.

Enumeration problems require to list all wanted objects of the input as, e.g., particular
subsets of the vertex or edge set of a given graph or particular satisfying assignments of logical
expressions. Enumeration problems arise in a natural way in various fields of Computer Science,
as, e.g., Artificial Intelligence and Data Mining, in Natural Sciences Engineering, Social Sciences,
and Biology. The main challenge of the area of enumeration problems is that, contrary to decision,
optimization and even counting problems, the output length of an enumeration problem is often
exponential in the size of the input and cannot be neglected. This makes enumeration problems
more challenging than many other types of algorithmic problems and demands development of
specific techniques.

The principal goals of our Dagstuhl seminar were to increase the visibility of algorithmic
enumeration within (Theoretical) Computer Science and to contribute to establishing it as an
area of “Algorithms and Complexity”. The seminar brought together researchers within the
algorithms community, other fields of Computer Science and Computer Engineering, as well as
researchers working on enumeration problems in other application areas, in particular Biology.
The aim was to accelerate developments and discus new directions including algorithmic tools
and hardness proofs.
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1 Executive Summary

Marie-France Sagot (University Claude Bernard – Lyon, FR)
Dieter Kratsch (Université de Lorraine, FR)
Henning Fernau (Universität Trier, DE)
Petr A. Golovach (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Marie-France Sagot, Dieter Kratsch, Henning Fernau, and Petr A. Golovach

About fifty years ago, NP-completeness became the lens through which Computer Science
views computationally hard (decision and optimization) problems. In the last decades various
new approaches to solve NP-hard problems exactly have attracted a lot of attention, among
them parameterized and exact exponential-time algorithms, typically dealing with decision
and optimization problems.

While optimization is ubiquitious in computer science and many application areas, relat-
ively little is known about enumeration within the “Algorithms and Complexity” community.
Fortunately there has been important algorithmic research dedicated to enumeration prob-
lems in various fields of Computer Science, as, e.g., Artificial Intelligence and Data Mining,
in Natural Sciences Engineering and Social Sciences.

Enumeration problems require to list all wanted objects of the input as, e.g., particular
subsets of the vertex or edge set of a given graph or particular satisfying assignments of logical
expressions. Contrary to decision, optimization and even counting problems, the output
length of enumeration problems is often exponential in the size of the input and cannot be
neglected. This motivates the classical approach in enumeration, now called output-sensitive,
which measures running time in (input and) output length, and asks for output-polynomial
algorithms and algorithms of polynomial delay. This approach has been studied since a long
time and has produced its own important open questions, among them the question whether
the minimal transversals of a hypergraph can be enumerated in output-polynomial time.
This longstanding and challenging question has triggered a lot of research. It is open for more
than fifty years and most likely the best known open problem in algorithmic enumeration.

Recently as a natural extension on research in exact exponential-time algorithms, a new
approach, called input-sensitive, which measures the running time in the input length, has
found growing interest. Due to the number of objects to enumerate (in the worst case), the
corresponding algorithms have exponential running time. So far branching algorithms are a
major tool. Input-sensitive enumeration is strongly related to lower and upper combinatorial
bounds on the maximum number of objects to be enumerated for an input of given size.
Such bounds can be achieved via input-sensitive enumeration algorithms but also by the use
of combinatorial (non-algorithmic) means.

The area of algorithmic enumeration is in a nascent state, though it has a huge potential
due to theoretical challenges and practical applications. While output-sensitive enumeration
has a long history, input-sensitive enumeration has been initiated only recently. Natural and
promising approaches like using parameterized or approximative approaches have not been
explored yet in their full capacities.

The principal goals of our Dagstuhl seminar were to increase the visibility of algorithmic
enumeration within (Theoretical) Computer Science and to contribute to establishing it as
an area of “Algorithms and Complexity”. The seminar brought together researchers within
the algorithms community, other fields of Computer Science and Computer Engineering, as
well as researchers working on enumeration problems in other application areas, in particular,
in Biology. Besides the people already working with enumeration, researchers from other

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Henning Fernau, Petr A. Golovach, and Marie-France Sagot 65

fields of Computer Science were invited. In particular, researchers who are interested in
Parameterized Complexity and different aspects of counting problems were participating in
the seminar. The aim was to accelerate developments and discuss new directions including
algorithmic tools and hardness proofs.

The seminar collected 44 participants from 13 countries. The participants presented their
recent results in 18 invited and contributed talks. Open problems were discussed in several
open problem and discussion sessions.
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3 Overview of Talks

3.1 Modular counting of directed Hamiltonian cycles by enumerating
solutions to quadratic equations

Andreas Björklund (Lund University, SE)

License Creative Commons BY 3.0 Unported license
© Andreas Björklund

We show that the number of Hamiltonian cycles in an n-vertex directed graph can be counted
modulo 2k in expected time O(1.619n

(
n
k

)
) for constant k. Our approach is based on an

inclusion–exclusion formula over 2n n× n matrix determinants. The speedup is obtained by
observing that many of the determinants will be zero for the trivial reason of having k or
more columns with every element even. We note that the determinants that are not trivially
zero in the above sense can be seen as solutions to a special kind of quadratic equation
system modulo 2. We show how to list the solutions in expected time O(1.619n

(
n
k

)
).

3.2 Ideal-preferred Enumeration of Minimal Dominating Sets in Graphs
Oscar Defrain (Université Clermont Auvergne – Aubiere, FR)

License Creative Commons BY 3.0 Unported license
© Oscar Defrain

Joint work of Oscar Defrain, Lhouari Nourine, Takeaki Uno

Due to its equivalence with the two problems of enumerating minimal transversals of
a hypergraph, and minimal dominating sets of a graph, the dualization of a Boolean
lattice is, in disguise, one of the most studied problem in algorithmic enumeration [1, 2, 3].
Its generalization to distributive lattices, however, is little-understood. In this work, we
investigate ideal-preferred enumeration of minimal dominating sets in graphs, toward such
a generalization, based on the recent framework of Staworko et al. on preferred consistent
query answering in databases. We show that this problem is equivalent to the dualization of
a distributive lattice, even when considering various combined restrictions on graphs classes
and posets, including bipartite, split and co-bipartite graphs, and variants of neighborhood
inclusion posets.

References
1 Fredman, M. L., Khachiyan, L. (1996). On the complexity of dualization of monotone dis-

junctive normal forms. Journal of Algorithms, 21(3).
2 Staworko, S., Chomicki, J., Marcinkowski, J. (2012). Prioritized repairing and consistent

query answering in relational databases. Annals of Mathematics and Artificial Intelligence,
64(2-3), 209–246.

3 Babin, M.A., Kuznetsov, S.O. (2017). Dualization in lattices given by ordered sets of
irreducibles. Theoretical Computer Science, 658, 316–326.
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3.3 Enumerating Vertices of Covering Polyhedra with Totally
Unimodular Constraint Matrices

Khaled M. Elbassioni (Masdar Institute – Abu Dhabi, AE) and Kazuhisa Makino (University
of Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Khaled M. Elbassioni and Kazuhisa Makino

Main reference Khaled M. Elbassioni, Kazuhisa Makino: “Enumerating Vertices of 0/1-Polyhedra associated with
0/1-Totally Unimodular Matrices”, in Proc. of the 16th Scandinavian Symposium and Workshops
on Algorithm Theory, SWAT 2018, June 18-20, 2018, Malmö, Sweden, LIPIcs, Vol. 101,
pp. 18:1–18:14, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.18

We give an incremental polynomial time algorithm for enumerating the vertices of any
polyhedron P = P (A, 1) = {x ∈ Rn | Ax ≥ 1, x ≥ 0}, when A is a totally unimodular
matrix. Our algorithm is based on decomposing the hypergraph transversal problem for
unimodular hypergraphs using Seymour’s decomposition of totally unimodular matrices, and
may be of independent interest.

3.4 The Minimal Extension of a Partial Solution
Henning Fernau (Universität Trier, DE)

License Creative Commons BY 3.0 Unported license
© Henning Fernau

Joint work of Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, Florian Sikora
Main reference Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, Florian Sikora:

“On the Complexity of Solution Extension of Optimization Problems”, CoRR, Vol. abs/1810.04553,
2018.

URL http://arxiv.org/abs/1810.04553

The very general problem of determining the quality of a given partial solution occurs basically
in every algorithmic approach which computes solutions in some sense gradually. Pruning
search-trees, proving approximation guarantees or the efficiency of enumeration strategies
usually requires a suitable way to decide if a partial solution is a reasonable candidate to
pursue. Consider for example the classical concept of minimal dominating sets for graphs.
The task of finding a maximum cardinality minimal dominating set (or an approximation of
it) as well as enumerating all minimal dominating sets naturally leads to solving the following
extension problem: Given a graph G = (V,E) and a vertex set P ⊆ V , does there exists a
minimal dominating set S with P ⊆ S.

In an attempt to study the nature of such extension tasks, we propose a general, partial-
order based framework to express a broad class of what we refer to as extension problems.
In essence, we consider optimisation problems in NPO with an additionally specified set of
presolutions (including the solutions) and a partial order on those. This partial order 4
reflects not only the notion of extension but also of minimality as follows. For a presolution P
and a solution S, S extends P if P 4 S. A solution S is minimal, if there exists no solution
S′ 6= S with S′ 4 S. The resulting extension problem is then formally the task to decide for
a given presolution P , if there exits a minimal solution S which extends P .

We consider a number of specific problems which can be expressed in this framework.
Possibly contradicting intuition, these problems tend to be NP-hard, even for problems where
the underlying optimisation problem can be solved in polynomial time. This raises the
question of how fixing a presolution causes this increase in difficulty. In this regard, we study
the parameterised complexity of extension problems with respect to parameters related to

18421
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the presolution. We further discuss relaxation of the extension constraint asking only for
a solution S which extends some presolution P ′ 4 P . Here we do not want just any such
presolution P ′ but we want P ′ to be as close to P as possible, in the sense that there exits no
presolution P ′′ 6= P ′ with P ′ 4 P ′′ 4 P which can also be extended. These considerations
yield some insight into the difficult aspects of extension problems.

3.5 Enumeration of Preferred Extensions in Almost Oriented Digraphs
Serge Gaspers (UNSW – Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Serge Gaspers

Joint work of Serge Gaspers, Rayi Li

In this talk, we present enumeration algorithms to list all preferred extensions of an argu-
mentation framework. This task is equivalent to enumerating all semikernels of a directed
graph. For directed graphs on n vertices, all preferred extensions can be enumerated in
O∗(3n/3) time and there are directed graphs with Ω(3n/3) preferred extensions. We give
faster enumeration algorithms for directed graphs with at most 0.8004n vertices occurring in
2-cycles. In particular, for oriented graphs one of our algorithms runs in time O(1.2321n),
and we show that there are oriented graphs with Ω(3n/6) > Ω(1.2009n) preferred extensions.

A combination of three algorithms leads to the fastest enumeration times for various
proportions of the number of vertices in 2-cycles. The most innovative one is a new 2-stage
sampling algorithm, combined with a new parameterized enumeration algorithm, analyzed
with a combination of the recent monotone local search technique (STOC 2016) and an
extension thereof (ICALP 2017).

3.6 Listing All Maximal k-Plexes in Temporal Graphs
Anne-Sophie Himmel (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Anne-Sophie Himmel

Joint work of Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier, René
Saitenmacher

Main reference Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier, René
Saitenmacher: “Listing All Maximal k-Plexes in Temporal Graphs” in Proceedings of the 2018
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,
(ASONAM ’18), p.41–46. IEEE, 2018.

URL https://doi.org/10.1109/ASONAM.2018.8508847

Many real-world networks evolve over time, that is, new contacts appear and old contacts
may disappear. They can be modeled as temporal graphs where interactions between vertices
(in case of social networks these would represent people) are represented by time-stamped
edges. One of the most fundamental problems in (social) network analysis is community
detection, and one of the most basic primitives to model a community is a clique. Addressing
the problem of finding communities in temporal networks, Viard et al. [TCS 2016] introduced
∆-cliques as a natural temporal version of cliques. Himmel et al. [SNAM 2017] showed how
to adapt the well-known Bron-Kerbosch algorithm to enumerate ∆-cliques. We continue
this work and improve and extend this algorithm to enumerate temporal k-plexes (notably,
cliques are the special case k = 1).
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We define a ∆-k-plex as a set of vertices with a lifetime, where during the lifetime each
vertex has an edge to all but at most k − 1 vertices at least once within any consecutive
∆ + 1 time steps. We develop a recursive algorithm for enumerating all maximal ∆-k-
plexes and perform experiments on real-world social networks that demonstrate the feasibility
of our approach. In particular, for the special case of ∆-1-plexes (that is, ∆-cliques), we
observe that our algorithm is significantly faster than the previous algorithm by Himmel et
al. [SNAM 2017] for enumerating ∆-cliques.

3.7 Constructive and nonconstructive enumeration of designs
Petteri Kaski (Aalto University, FI)

License Creative Commons BY 3.0 Unported license
© Petteri Kaski

This talk looks at enumeration problems in the study of combinatorial designs where the
enumeration is to be carried out up to isomorphism given by a group action. We look at two
examples, namely one-factorizations of the complete graph and Latin squares, enumerated
up to isomorphism by the sequences A000474 and A003090, respectively, in the Online
Encyclopedia of Integer Sequences. A key technique used in both cases is McKay’s method
of canonical extensions [1].

References
1 Brendan D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998), no. 2,

306–324.

3.8 Node Similarity with q-Grams for Real-World Labeled Networks
Andrea Marino (University of Pisa, IT)

License Creative Commons BY 3.0 Unported license
© Andrea Marino

Joint work of Conte, Alessio; Ferraro, Gaspare; Grossi, Roberto; Sadakane, Kunihiko; Uno, Takeaki
Main reference Alessio Conte, Gaspare Ferraro, Roberto Grossi, Andrea Marino, Kunihiko Sadakane, Takeaki Uno:

“Node Similarity with q -Grams for Real-World Labeled Networks”, in Proc. of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London,
UK, August 19-23, 2018, pp. 1282–1291, ACM, 2018.

URL http://dx.doi.org/10.1145/3219819.3220085

We study node similarity in labeled networks, using the label sequences found in paths of
bounded length q leading to the nodes. (This recalls the q-grams employed in document
resemblance, based on the Jaccard distance.) When applied to networks, the challenge is
two-fold: the number of q-grams generated from labeled paths grows exponentially with q, and
their frequency should be taken into account: this leads to a variation of the Jaccard index
known as Bray-Curtis index for multisets. We describe nSimGram, a suite of fast algorithms
for node similarity with q-grams, based on a novel blend of color coding, probabilistic counting,
sketches, and string algorithms, where the universe of elements to sample is exponential. In
particular, after a preprocessing node coloring phase, our method estimates the similarity
between two nodes x and y, sampling colorful q-paths, i.e. q-paths containing different colors
ending in x and y, and using the Bray-Curtis index for the corresponding multisets of q-grams.
We provide experimental evidence that our measure is effective and our running times scale
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to deal with large real-world networks. One lesson learned is that, when dealing with network
analytic, in order to avoid to do statistics on an exponential number of solutions, sometimes
we can successfully focus just on special solutions, e.g. colorful solutions, or consider just
part of them by applying sampling.

3.9 On Solving Enumeration Problems with SAT Oracles
João Marques-Silva (University of Lisbon, PT)

License Creative Commons BY 3.0 Unported license
© João Marques-Silva

Joint work of Mark H. Liffiton, Alessandro Previti, Ammar Malik, João Marques-Silva
Main reference Mark H. Liffiton, Alessandro Previti, Ammar Malik, João Marques-Silva: “Fast, flexible MUS

enumeration”, Constraints, Vol. 21(2), pp. 223–250, 2016.
URL http://dx.doi.org/10.1007/s10601-015-9183-0

Enumeration is often necessary in the context of reasoning about computationally hard
problems, including NP-complete, PSPACE-complete, or harder. One example is enumeration
of solutions. However, there are many other enumeration problems, that find important
practical applications. One example is the enumeration of diagnoses or explanations of
overconstrained systems. This talk overviews some of these enumeration problems, and
reports on the progress achieved in recent years.

3.10 Minimal Connected Dominating Sets below 2n

Michal Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Michal Pilipczuk

Joint work of Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh
Main reference Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh: “Below all subsets for Minimal Connected

Dominating Set”, CoRR, Vol. abs/1611.00840, 2016.
URL http://arxiv.org/abs/1611.00840

We prove that the number of minimal connected dominating sets in an n-vertex graph is
always bounded by (2− ε)n, for some ε > 0, and moreover they can be enumerated in time
O((2− ε)n). The proof relies on a fine understanding of combinatorial properties of minimal
connected dominating sets and a probabilistic argument, which shows that if a graph is
“robustly dense”, then the probability that a random subset of its vertices is a minimal
connected dominating set is exponentially small.
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3.11 Enumerating minimal dominating sets in triangle-free graphs
Jean-Florent Raymond (TU Berlin, DE)
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Joint work of Marthe Bonamy, Oscar Defrain, Marc Heinrich, Jean-Florent Raymond
Main reference Marthe Bonamy, Oscar Defrain, Marc Heinrich, Jean-Florent Raymond: “Enumerating minimal

dominating sets in triangle-free graphs”, CoRR, Vol. abs/1810.00789, 2018.
URL http://arxiv.org/abs/1810.00789

It is a long-standing open problem whether the minimal dominating sets of a graph can
be enumerated in output-polynomial time. In this talk I will present the following results
obtained jointly with Oscar Defrain, Marthe Bonamy, and Marc Heinrich:

the enumeration of minimal dominating sets in triangle-free graphs can be performed in
output-polynomial time;
deciding if a set of vertices of a bipartite graph can be completed into a minimal dominating
set is a NP-complete problem.

3.12 The Maximum Number of Minimal Dominating Sets in a Tree
Günter Rote (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
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Main reference Günter Rote: “The Maximum Number of Minimal Dominating Sets in a Tree”, in Proc. of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pp. 1201–1214, SIAM, 2019.

URL https://doi.org/10.1137/1.9781611975482.73

A tree with n vertices has at most 95n/13 minimal dominating sets. The corresponding
growth constant 951/13 ≈ 1.4194908 is best possible.

I show how these results are obtained in a semi-automatic way with computer help,
starting from the dynamic-programming recursion for computing the number of minimal
dominating sets of a given tree. This recursion defines a bilinear operation on sixtuples, and
the growth constant arises as a kind of “dominant eigenvalue” of this operation.

We also derive an output-sensitive algorithm for listing all minimal dominating sets with
linear set-up time and linear delay between reporting successive solutions. It is open whether
the delay can be reduced to a constant delay, for an appropriate modification of the problem
statement.

3.13 Efficiently Enumerating Hitting Sets of Hypergraphs Arising in
Data Profiling

Martin Schirneck (Hasso-Plattner-Institut – Potsdam, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Thomas Bläsius, Tobias Friedrich, Julius Lischeid, Kitty Meeks, Martin Schirneck

A reoccurring task in the design and profiling of relational data is the discovery of hidden
dependencies between attributes, e.g., unique column combinations. Enumerating them
is equivalent to the classical transversal hypergraph problem. We present a backtracking
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algorithm for the enumeration of inclusion-wise minimal hitting sets that achieves polynomial
delay on hypergraphs for which the size of the largest minimal transversal is bounded.

This algorithm solves the extension problem for minimal hitting sets as a subroutine. The
extension problem is known to be NP-complete. We show that it also remains hard in the
parameterised sense. In fact, it is one of only a few natural W[3]-complete problems when
parameterised by the size of the set to be extended. Despite the hardness results, we show
that a careful implementation of the extension oracle can help avoiding the worst case on
hypergraphs arising in the profiling of real-world databases, leading to significant speed-ups
in practice.

This work is to appear at the 2019 Meeting on Algorithm Engineering and Experiments
(ALENEX).

3.14 A panorama of enumeration complexity
Yann Strozecki (University of Versailles, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Yann Strozecki, Arnaud Mary, Florent Capelli
Main reference Florent Capelli, Yann Strozecki: “Incremental delay enumeration: Space and time”, Discrete

Applied Mathematics, 2018.
URL https://doi.org/10.1016/j.dam.2018.06.038

We review different complexity measures for enumeration algorithms: total time, incremental
time and delay. To each of these measures, we associate one ore several complexity classes.
We show how those classes relate to classical decision or search problems and how they
relate together. In particular, we prove strict inclusions modulo complexity hypotheses such
as ETH or TFNP 6=NP. We then present a framework of saturation problems designed to
investigate the limit between incremental polynomial time and polynomial delay. It allows
to prove that a large number of natural saturation problems are solvable in polynomial delay
and capture interesting problems such as the enumerations of maximal cliques in a graph or
of the circuits in a matroid representable over a finite field. We also present low complexity
classes with polynomial time precomputation and related algorithms: constant delay (Gray
codes, amortization or queries over simple structures) and polynomial delay in the size of a
single solution.

3.15 How to use the Solutions of Enumeration in Practice
Takeaki Uno (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
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There are many applications of optimizations and enumerations in practice. However,
users are often, always, not satisfied with the solution given by those algorithms. For the
optimization, there is no alternatives even though they have several implicit unwritten rules,
and for enumeration that is the given huge number of solutions. Actually, the users usually
want to choose something well, thus want to understand the problems and data easily, what
is important, and what solutions are possible. In this sense, users want to be given good
explanations of problems and solutions, in an understandable and abstracted ways. For this

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1016/j.dam.2018.06.038
https://doi.org/10.1016/j.dam.2018.06.038
https://doi.org/10.1016/j.dam.2018.06.038
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Henning Fernau, Petr A. Golovach, and Marie-France Sagot 75

sake, we propose three ways; one is abstract the solutions by clustering the solutions, one is
decomposing the problem/solutions into parts composing the solutions, and one is to extract
important vertices and edges of the solutions according to the distribution of the solutions
to the enumeration.

3.16 A Complexity Theory for Hard Enumeration Problems
Heribert Vollmer (Leibniz Universität Hannover, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Nadia Creignou, Markus Kröll, Reinhard Pichler, Sebastian Skritek, Heribert Vollmer
Main reference Nadia Creignou, Markus Kröll, Reinhard Pichler, Sebastian Skritek, Heribert Vollmer: “On the

Complexity of Hard Enumeration Problems”, CoRR, Vol. abs/1610.05493, 2016.
URL http://arxiv.org/abs/1610.05493

We introduce a hierarchy complexity classes and reductions for enumeration problems. The
hierarchy resembles the polynomial-time hierarchy for decision problems. We provide tools
to prove membership in the hierarchy, e.g., based on self-reducibility. Furthermore, we
introduce a new reduction among enumeration problems, based on oracle computations,
i.e., a Turing-type reduction. We prove a basic “Completeness Theorem”, providing an
easy to obtain hardness for classes in our hierarchy. We demonstrate the applicability of
our approach by providing a number of completeness results for well-studied enumeration
problems from the areas of propositional logic, artificial intelligence, and database theory.

4 Open problems

4.1 The DIVERSE X Paradigm
Michael R. Fellows (University of Bergen, NO) and Frances Rosamond (University of Bergen,
NO)

License Creative Commons BY 3.0 Unported license
© Michael R. Fellows and Frances Rosamond

4.1.1 Introduction

Diverse X refers to a parameterized problem such as the following (being somewhat informal,
to begin with):

DIVERSE VERTEX COVERS
Input: A graph G on n vertices, and positive integers k, r and T .
Parameter: (k, r)
Output: A set S of r different vertex covers Vi of G, each of size at most k, such that a

diversity measurement for the set of solutions S is at least T .
To summarize the role of these different numbers: k measures the quality of the solutions

(the vertex covers in S). A vertex cover of a graph is good when it is small; r measures the
size of the sample S of these high quality solutions; T measures the diversity of the sample.
For example, we might take the diversity measurement to be the sum of the Hamming
distances between the pairs of n-length 0/1 indicator vectors, where the sum is taken over
all possible pairs Vi and Vj of the solutions in S.
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This is clearly a very general paradigm for problem parameterization. The problem
defined above is a variation on the classic NP-hard decision problem X = VERTEX COVER.

Theorem. DIVERSE VERTEX COVERS is FPT.

4.1.2 Motivation for the Paradigm

A motivation to look at this parameterization has been developing for a long time, since some
conversations in the early 1990s with biologists, in the collaborative setting of computational
biology.1

Biologists typically do not want just one high quality solution to a combinatorial optim-
ization problem relevant to their investigations. For example, they don’t want just one high
quality multiple sequence alignment. Because they have all of this other information. Call
this side information which is not included in the simple combinatorial model. Given two
sequence alignments of equally good score, they might prefer one of them, on the basis of
side information, for further investigation.2

Biologists typically also do not want all of the solutions of quality k. There are usually
too many to deal with.

A moment’s reflection makes clear that this is the natural situation now in all areas of
science and information systems. There is more and more data coming from all different
directions. Relevant side information is the rule in practical computing, not the exception.

This direction of investigation is truly fundamental and profound!
The traditional approach in computational complexity, focusing on the existence (or

construction) of a single high-quality solution, lending to optimality issues (in the worst-case
asymptotic framework), is therefore almost always nonsense!

This generality and significance deserves a brave and colorful name: The Second Main
Heresy.

In applied settings, they generally don’t care about optimality. They want a diverse
sample of high quality solutions, to which they can apply side information in picking one to
work with.

In order to get an r-sized sample of quality k, and high diversity, you might have to move
away from optimality. So this is sort of like approximation, but different. There will likely be
interesting tradeoffs motivated by practical considerations and the properties of real datasets,
and the playground for metatheorems should be rich.

4.1.3 What is a Diverse Collection of High Quality Solutions Good For?

Beyond the basic vanilla issue raised in the above section, one can point to several established
areas, and speculative possibilities.

Concorde-style memetic heuristics. The Concorde heuristic for TSP patented by Paul
Seymour and Bill Cook, when Paul was at Bell Labs, maintains a (smallish) population of
high quality solutions, and alternates between two phases. In one phase, each solution in the
population is improved (hopefully) by a local search heuristic, applied separately to each
solution in the population. In the second phase (termed recombination) a small number of

1 The conversations were with Ben Koop and/or Chris Upton. Why did it take so long for the DIVERSE
X research direction to gel? The conversations were in the early days of parameterized complexity, and
my recollection is that we were already taking so much heat for the very idea of a relevant secondary
measurement apart from the input size — that while they had an undeniably good point, our plate was
already full of trouble!

2 It can even happen that the crucial side information is secret, as in an amusing anecdote about a
scheduling problem that I heard about from Karsten Weihe at a Dagstuhl Workshop around 1998.
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tours (like ten or so) from the population (randomly chosen), are combined by taking the
union of the edges involved in these ten tours.

It turns out, empirically, for many applications of the TSP problem, the union of ten
high quality tours tends to be a graph of treewidth less than 15, and on such a graph, TSP
can be solved exactly and optimally (essentially by an FPT dynamic programming algorithm
where the treewidth parameter is 15). The solution found will be at least as good as any
of the tours in the union. This is then added to the population (which is maintained at a
constant size by some pruning of less efficient solutions). These two phases are repeated
some number of times.

Prominence in data – training sets for machine learning, and uses in data visualization.
The work of Gunnar Carlsson and Harlan Sexton.

Maximizing relative prominence in the setting of abstract simplicial complexes is the
same as sum of pairwise Hamming distances.

Speculative Uses: Heuristic Kernelization. If you have a highly diverse r-sized sample S
of good solutions (k-small) for Vertex Cover, then the vertices v that:

(i) Occur in many of the solutions in S, should perhaps be inducted into the solution:
G′ = G− v and k′ = k − 1. (ii) Occur in none of solutions in S, should perhaps be banned
from a solution. G′ = G−−N [v] and k′ = k − deg(v).

Either of these simplifies the instance and is a heuristic kernelization.

Speculative Uses: Evidentiary Interpretation of Universal Quantification. Suppose we
are interested in the graph property involving alternating quantification:

For every independent set J in G of size k, there exists a set J ′ of size k such tha J ∪ J ′
is a dominating set in G.

Considered classically, this is likely hard for ΠP
2 , but if we could find a very diverse

collection of k-independent sets, for each Ji of which, there is a J ′i such that Ji ∪ J ′i is a
dominating set, then we might regard this as evidence that the graph has the property. Thus
using diversity to interpret ΠP

2 into NP in a heuristic, evidentiary manner.
This could potentially be quite interesting, as most of mathematical thought involves at

most two, sometimes three, very rarely four alternating quantifications. It is probably the
same with cognition in general.

This could also be interesting in the context of the Szeider-deHaan program.

4.1.4 Some Concrete Open Problems

Classical P-time Self-reducibility. DIVERSE X, generally speaking, is a search problem.
In the setting of classical complexity (P vs NP and all that), search problems are sort of
swept under the rug (see the discussion in the Garey and Johnson book). It is generally easy
to work out a search algorithm given an oracle for the decision problem.3

Given an oracle for the decision problem (“Does G have a dominating set of size k?”) is
there (or, when is there) a P-time oracle algorithm that constructively produces a set S of r
different solutions, of diversity measure at least T?

3 It should be more widely understood that this is a skeleton in the closet of classical complexity. The
problem is in defining what one means by P-time self-reducibility, the usual name for this passage from
decision to construction. Formally, decision problems are defined by a formal language, but the notion
of a solution requires some sort of relational framework. There is no generally agreed-upon definition of
P-time self-reducibility. An attempt to frame things in relational terms was made in [1]. This might be
relevant to the DIVERSE X program.
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What about FPT self-reducibility for DIVERSE X? For various X and various diversity
measures.

Dependence of Positive Results on Properties of the Diversity Measure. Can we give
meta-theorems where if the diversity measure has certain properties, then positive results
hold?

References
1 K. Abrahamson, M. Fellows, M. Langston and B. Moret. “Constructive Complexity.” Dis-

crete Appl. Math. 34 (1991), 3–16.

4.2 Various enumeration perspectives
Henning Fernau (University of Trier, Germany)
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4.2.1 Planar graphs

Planarity often gives opportunities for improved algorithms in decision or optimization
problems: square root phenomenon, PTAS, . . .
Many worst-case examples in enumeration are planar. No hope for improvements here?
Enumeration problems involving connectivity are notoriously hard.
What about considering such problems on planar graphs?
Intuition: There are not too many ways to interconnect planar graphs . . .

4.2.2 Enumerating representative solutions

One of the motivations for enumeration:
User do not only want to see one optimal solution, because there might be ill-formalized
aspects of the problem that require to also look at seemingly non-optimal solutions.
Yet, users do not want to look at zillions of solutions.
What about presenting a selection of k solutions that are far apart from each other, kind
of being a representative selection of the whole space of solutions?

4.2.3 Enumeration beyond graphs

Typically, the enumeration community focuses on problems concerning graphs or (some-
times) logic. What about other areas?
To give some concrete example and also to indicate the different character of such
problems, we suggest looking at synchronizing words, a notion related to the possibly
most famous open combinatorial question in Formal Languages, the so-called Černý
Conjecture.
A word x ∈ Σ∗ is called synchronizing for a DFA A, A = (S,Σ, δ, s0, F ), if there is a state
sf , such that for all states s, δ∗(s, x) = sf .
Deciding, given (A, k), if DFA A has synchronizing word of length at most k is NP-
complete [1].
For the purpose of enumeration, in order to define a good notion of minimality, several
natural options exist, depending on the chosen partial ordering on the set of words. The
most common are: the prefix, suffix, subword (infix), subsequence (scattered subword),
lexicographic, or length-lexicographic orderings.
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In the meantime, we (together with S. Hoffmann) could at least determine the status
of most of the extension problems that can be associated to these enumeration problem.
More precisely, given A and a word u, the question if there is some synchronizing word w
that is larger than u (in the considered ordering) and minimal among the synchronizing
words can be solved in polynomial time for the prefix, suffix and lexicographic orderings
but is NP-hard for the subsequence or length-lexicographic orderings. The status with
respect to the subword ordering is unkonwn.

References
1 D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,

19(3):500–510, 1990.

4.3 Enumeration of tree width-t-modulators
Fedor V. Fomin (University of Bergen, NO) and Saket Saurabh (Institute of Mathematical
Sciences – Chennai, IN)
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Let t ≥ 1 be a fixed integer. Given a graph G, a set S ⊆ V (G) is called treewidth-t-modulator
if G − S has treewidth at most t. Furthermore if G[S] is connected it is called connected
treewidth-t-modulator Observe that for t = 1, treewidth-1-modulator and connected treewidth-
1-modulator are known as feedback vertex set and connected feedback vertex set, respectively.
It is known that the number of minimal feedback vertex sets on a graph on n vertices is at
most O(1.8527n) [1].

1. Show that there exist a constant c such that any graph on n-vertices has at most(
2− 1

c

)n
nO(1)

minimal connected feedback vertex sets.
Potential approach seems to be via methods given in [2] and [3].

2. Show that for evert t ≥ 2, there exist a constant ct such that any graph on n-vertices has
at most(

2− 1
ct

)n
nO(1)

minimal treewidth-2-modulator sets. Even for t = 2, this is open. One could also study
this problem when the objective is to upper bound the number of minimal vertex sets,
whose deletion results in an outer-planar graph.
Potential approach seems to be via methods given in [1].

References
1 Serge Gaspers, Edward J. Lee: Exact Algorithms via Multivariate Subroutines. ICALP

2017: 69:1–69:13
2 Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh: Below all subsets for Minimal Con-

nected Dominating Set. CoRR abs/1611.00840 (2016)
3 Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, Igor Razgon: On the Minimum Feed-

back Vertex Set Problem: Exact and Enumeration Algorithms. Algorithmica 52(2): 293–
307 (2008)
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4.4 Minimal separators in graphs
Serge Gaspers (UNSW – Sydney, AU)
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It is known that every graph on n vertices has O(1.6181n) minimal separators [2]. However, it
is unknown whether this bound is tight. In 2008, a family of graphs with Ω(3n/3) = Ω(1.4422n)
minimal separators was shown [1], and this lower bound has recently been improved to
Ω(1.4457n) [3]]. The question is to improve either the upper bound or the lower bound.

References
1 Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, Yngve Villanger: Exact Algorithms for

Treewidth and Minimum Fill-In. SIAM J. Comput. 38(3): 1058–1079, 2008.
2 F.V. Fomin and Y. Villanger, Treewidth computation and extremal combinatorics, Com-

binatorica 32(3), 289–308, 2012.
3 Serge Gaspers and Simon Mackenzie. On the Number of Minimal Separators in Graphs.

Journal of Graph Theory 87(4): 653–659, 2018.

4.5 Enumeration of vertex subsets with non-local properties
Petr A. Golovach (University of Bergen, NO)
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The most standard approach for the input-sensitive enumeration of vertex subsets of a graph
satisfying a given property Π is using the recursive branching algorithms (see the book [1]).
Still, this approach has limitations. In particular, the technique works well for properties that
are local in some sense. For example, a set of vertices X is an inclusion-maximal independent
set of a graph G if and only if |X ∩N [v]| = 1 for every v ∈ V (G) and this property is crucial
for for the recursive branching algorithm that enumerates maximal independent sets of an
n-vertex graph in time O∗(3n/3). It looks that for non-local properties, we have to develop
new techniques. The following specific problems could be interesting as starting points.

1. A set D ⊆ V (G) is a connected dominating set of G if D is a dominating set and G[D]
is connected. Lokshtanov, Pilipczuk and Saurabh [2] proved that all inclusion-minimal
connected dominating sets of an n-vertex graph can be enumerated in time O(2(1−ε)n)
where ε < 10−50 slightly improving upon the trivial O∗(2n) algorithm. Is it possible to
improve this results?

2. A set D ⊆ V (G) is irredundant if for every u ∈ D, there is v ∈ N [u] (called a private
vertex) such that v /∈ N [w] for every w ∈ D \ {u}. Is it possible to enumerate all
inclusion-maximal irredundant sets of an n-vertex graph faster that O∗(2n)?

References
1 Fedor V. Fomin, Dieter Kratsch: Exact Exponential Algorithms. Springer 2010
2 Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh: Below all subsets for Minimal Con-
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4.6 Enumeration of minimal dominating sets for graph classes
Dieter Kratsch (Université de Lorraine, FR)
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The number of minimal dominating sets of an n-vertex graphs has generated plenty of
research in the last 15 years. In fact even in 1985 all known was that it could not be more
than order of 2n/ logn.

Due to groundbreaking work in input-sensitive algorithms by Fomin, Grandoni, Pyatkin
and Stepanov (2008) we know that there is an upper bound of 1.7159n. This one is achieved
by an intricate measure and conquer analysis of the branching algorithm enumerating all
minimal dominating sets of the input graph. The best known lower bound for general
n-vertex graphs is 15n/6, approximately 1.5704n, is folklore (see e.g. the master thesis of
Serge Gaspers in 2005, see also the above mentioned paper by Fomin et al). Hence there is a
huge gap between upper and lower bound.

Any even small improvement upon the lower or upper bound for graphs in general
would be highly appreciated and may lead to improvements on various similar questions
(minimal feedback vertex sets, minimal separators, minimal connected dominating sets,
minimal subset feedback vertex sets, etc.).

A natural approach to achieve matching upper and lower bounds is to restrict lower
and upper bounds to some particular class of graphs. Starting with a paper by Couturier
Heggernes, Kratsch, van’t Hoff (2013) matching upper and lower bounds for the number of
minimal dominating sets in n-vertex graphs of a certain graph class have been obtained. It is
worth mentioning that in almost all of these cases the upper bound has been obtained by the
use of structural properties of the graph class (and without complicated measure-and-conquer
analysis).

An interesting class that despite various efforts still has non matching upper and lower
bounds are the chordal graphs.
Nothing has been published on bipartite graphs.
Possibly the most challenging case are permutation graphs. For at least a year we tried to
prove that 15n/6, approximately 1.5705n, is a matching upper bound. However we never
succeeded to fix all the holes in our proofs. Thus we give up on this one some years ago.
Now with some new ideas we conjecture that 1.5705n is an upper bound for permutation
graphs and it might even be an upper bound for cocomparability graphs.

4.7 Enumeration of k-colorable induced subgraphs
Daniel Lokshtanov (University of California – Santa Barbara, US)
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Question 1: Is the following statement true? For every integer k > 0 there exists reals ck < 2
and ak > 0 such that for every graph G on n vertices the number of inclusion maximal
k-colorable induced subgraphs of G is at most ak · cnk .
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Question 2: For a graph G and integer k, define the family Fk(G) to contain all vertex
sets S that are the union of k (not necessarily distinct) maximal independent sets of G. Is
the following statement true? For every integer k > 0 there exists reals ck < 2 and ak > 0
such that for every graph G on n vertices |Fk(G)| ≤ ak · cnk?

Remarks: A positive answer to question 2 implies a positive answer to question 1, but
not necessarily vice versa. Question 2 was posed by Boris Bukh at ICGT 2018.

4.8 Primal and Dual Representations
Kazuhisa Makino (University of Tokyo, JP)
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Enumeration is one of the fundamental topics of discrete mathematics. Recently, enumerar-
ation (or generation) algorithms have recently been acheived much attention in computer
science. In this note, we describe three famous problems, which are not known to be solved in
output-polynomial (or polynomial total) time. They can be viewed as the decision problems
on primal and dual representations for polytopes, monotone Boolean functions, and Horn
Boolean functions.

Problem 1
Input: A set of points S ∈ Rn and a set of inequalities H in Rn.
Question: Is the convex hull of S represented by H ?

Problem 2
Input: A monotone DNF ϕ and a monotone CNF ψ.
Question: Is ϕ logically equivalent to ψ ?

Clearly they belong to co-NP. As for Problem 1, one of the natural representations of
polytope P is the set of extreme points in P , and the other one is the set of facets of P . It is
not known whether Problem 1 can be solved in polynomial time, or it is co-NP-compelte. It
is known that Problem 1 can be solved in polynomial time then the corresponding generation
problems such as (1-1) given a set of point S, generating all facets of the polytope defined by
S, or (1-2) given a set of inequalites H (that defines a polytope), generate all the extreme
points of the polytope defined by H, can be solved in polynomial total time, On the other
hand, if it is co-NP-complete, the correponding generation problems have no polynomial
total time algorithm, unless P=NP.

As for Problem 2, monotone Boolean functions have two natural representations: monotone
DNFs ϕ and monotone CNFs ψ. It is known that Problem 2 can be solved in quasi-polynomial
time. However, it is still open whether Problem 2 can be solved in polynomial time, or it
is co-NP-compelte, where most experts in complexity theory believe that Problem 2 is not
co-NP-complete. Similarly to Problem 1, Problem 2 can be solved in polynomial time if and
only if the corresponding generation problems can be solved in polynomial total time.

Let us consider primal and dual representations of Horn Boolean function f : {0, 1}n →
{0, 1}. A CNF is called Horn if each clause contains at most one positive literal, and a
Boolean function is called Horn if it can be represented by a Horn CNF. It is well-known that
a Boolean function f is Horn if and only if its false set is closed under intersection, i.e., for
any pair of vectors v and w in {0, 1}n such that f(v) = f(w) = 1, we have f(v∧w) = 1. Here
for vectors v and w in {0, 1}n, v∧w denotes the vector in {0, 1}n defined by (v∧w)i = vi∧wi
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for all i = 1, . . . , n. Thus Horn functions have alternative representation. For a set S of
vectors in {0, 1}n, the intersection closure Cl∧(S) is the set defined by

Cl∧(S) = {
∧
v∈W

v |W ⊆ S}.

It is not difficult to see that any set T of vectors in {0, 1}n that is closed under intersection has
a unique (inclusion-)minimal set S such that T = Cl∧(S). Such a set is called characteristic
set of T .

Problem 3
Input: A set of vectors S ∈ {0, 1}n and a Horn CNF ψ

Question: Is Cl∧(S) a set of true vectors of ψ ?

Problem 3 is polynomially equivalent to the problem that decides whether given charac-
teristifc set and Horn CNF represent the same Horn Boolean function. Again the complexity
status of Problem 3 is still open, although Problem 3 is polynomially equivalent to Problem
2 if ψ in Problem 3 contains all prime implicates, which implies that Problem 3 is at least as
difficult as Problem 2. Moreover, Problem 3 can be solved in polynomial time if and only if
the corresponding generation problems can be solved in polynomial total time.
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4.9 Minimal dominating sets enumeration and hypergraph colorings
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It is known that the problem of finding the next solution for enumeration of minimal
dominating sets in a graph reduces to the following problem. We are given two hypergraphs
H1 and H2 over the same universe U with the property that every hyperedge of H1 intersects
every hyperedge of H2. The question is whether one can color every element of U red or blue
so that red vertices form a transversal of H1 while blue vertices form a transversal of H2. It
is known that this problem can be solved in quasi-polynomial time (in the size of input),
which immediately leads to incremental quasipolynomial-time enumeration algorithm.

There are two question about the problem stated above:
1. Can one exclude a polynomial-time algorithm for the problem under ETH? To do so, one

would need to devise a reduction from 3SAT that takes an instance ϕ of total size N ,
and in time 2O(N1−ε) outputs an equivalent instance of the problem in question of size
2O(N1−ε), for some ε > 0.

2. Is the problem in coNP? If this was true, then this would exclude the existence of a
reduction as above, unless 3SAT is solvable in co-nondeterministic subexponential time.
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4.10 Generation of representative solutions
Yann Strozecki (University of Versailles, FR)
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The aim of many enumeration algorithms is to build explicitly a set of elements so that an
end user (a chemist, a biologist, a network engineer ...) can inspect them and select the best
for him. When the user can express its preferences as a value to optimize, it is a classical
optimization problem. If there are several critieria, we have multi-criteria problem and the
set of pareto optimal solutions can be enumerated (or approximated). However, most of
the time, the user is unable to give its preferences explicitly and formally. Hence we must
generate the whole set of solutions, which can be slow and is often too large to be used by
the user or requires complex data analysis methods.

It would be much better to generate only a small subsets of the solutions but diverse
enough to represent well the whole set of solutions. There are several way of formalizing
this problem which can or have been proposed during the workshop: generating k solutions
which are different enough, generating a sufficiently large subset of solutions, representing
succinctly the set of solutions using cartesian product, unions, wildcards ... Here we assume
that we have a distance over the set of solutions. We say that a subset of solutions C is a
d-cover of the whole set of solutions S if all solutions in S are at distance at most d of a
solution in C. We say that an enumeration problem is efficiently approximable if for every
d, there is an algorithm which produces a d-cover in a time polynomial in the size of the
smallest d-cover. We can relax this definition by allowing non solutions to be in the cover
and also by allowing randomized algorithms.

When the set of solutions S is given explicitly, the task of finding a small d-cover is a
clustering problem, which is often hard. Hence, this notion is relevant only if the set of
solutions is very simple and structured. As open problems and important practical examples
we ask whether the two following problems are efficiently approximable for the Hamming
distance between solutions:

the set of (minimal) spanning trees of a graph
the set of (minimal) s− t paths

4.11 Strong polynomial delay conjectures
Yann Strozecki (University of Versailles, FR)
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Main reference Florent Capelli, Yann Strozecki: “Enumerating models of DNF faster: breaking the dependency on

the formula size”, CoRR, Vol. abs/1810.04006, 2018.
URL http://arxiv.org/abs/1810.04006

A good enumeration algorithm is in polynomial delay, that is the delay between the production
of two solutions is polynomial in the “input”. However, for many problems, the input can be
much larger than the size of the generated solutions. Hence, we should rather design strong
polynomial delay algorithms, where after a precomputation phase polynomial in the input,
the solutions are generated with a delay polynomial in the size of the previous solution.

The problem of enumerating the models of a DNF formula is denoted by EnumDNF.
This problem seems exceedingly simple: we just need to compute the union of the models
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of the terms and the models of one term can be obtained in constant delay by Gray code
enumeration. There are linear delay algorithm solving EnumDNF, for instance using a
classical branching method with the relevant data structure. Let n be the number of variables
and m the number of terms of a DNF. Note that a model is of size n while m can be
exponentially larger than n. Hence the known algorithms are not in strong polynomial delay.
While this problem seems simple, we conjecture that dealing with non disjoint union is hard
and that there are no better algorithms than the classical one.

Weak conjecture: EnumDNF cannot be solved in strong polynomial delay.
Strong conjecture: EnumDNF cannot be solved in delay O(m1−εnk) for any k and ε > 0.

Remark: the weak conjecture is false for monotone DNF formulas. The strong conjecture
is false if one considers amortized delay. We feel that the weak conjecture could be proved
(assuming complexity hypothesis) by looking at the total time. Indeed, it is of the form
ma + snb where s is the number of solutions, a and b are constants. When s is large this
number is almost independent from m, which seems to strong.
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