
Report from Dagstuhl Seminar 19062

Bringing CP, SAT and SMT together: Next Challenges in
Constraint Solving
Edited by
Sébastien Bardin1, Nikolaj S. Bjørner2, and Cristian Cadar3

1 CEA LIST, FR, sebastien.bardin@cea.fr
2 Microsoft Research – Redmond, US, nbjorner@microsoft.com
3 Imperial College London, GB, c.cadar@imperial.ac.uk

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 19062 “Bringing
CP, SAT and SMT together: Next Challenges in Constraint Solving”, whose main goals were to
bring together leading researchers in the different subfields of automated reasoning and constraint
solving, foster greater communication between these communities and exchange ideas about new
research directions.

Constraint solving is at the heart of several key technologies, including program analysis,
testing, formal methods, compilers, security analysis, optimization, and AI. During the last
two decades, constraint solving has been highly successful and transformative: on the one hand,
SAT/SMT solvers have seen a significant performance improvement with a concomitant impact on
software engineering, formal methods and security; on the other hand, CP solvers have also seen
a dramatic performance improvement, with deep impact in AI and optimization. These successes
bring new applications together with new challenges, not yet met by any current technology.

The seminar brought together researchers from SAT, SMT and CP along with application
researchers in order to foster cross-fertilization of ideas, deepen interactions, identify the best
ways to serve the application fields and in turn help improve the solvers for specific domains.

Seminar February 3–6, 2019 – http://www.dagstuhl.de/19062
2012 ACM Subject Classification Theory of computation → Logic, Theory of computation

→ Automated reasoning, Mathematics of computing → Solvers, Theory of computation →
Constraint and logic programming, Hardware → Theorem proving and SAT solving, Software
and its engineering → Formal methods, Software and its engineering → Software verification,
Hardware → Functional verification

Keywords and phrases Automated Decision Procedures, Constraint Programming, SAT, SMT
Digital Object Identifier 10.4230/DagRep.9.2.27

1 Executive Summary

Sébastien Bardin (CEA LIST, FR)
Nikolaj S. Bjørner (Microsoft Research – Redmond, US)
Cristian Cadar (Imperial College London, GB)
Vijay Ganesh (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Sébastien Bardin, Nikolaj S. Bjørner, Cristian Cadar and Vijay Ganesh

The scattered landscape of constraint solving. Constraint solving is at the heart of several
key technologies, including program analysis, testing, formal methods, compilers, security
analysis, optimization, and AI. During the last two decades, constraint solving has been

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving, Dagstuhl Reports, Vol. 9, Issue 2,
pp. 27–47
Editors: Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/19062
http://dx.doi.org/10.4230/DagRep.9.2.27
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

28 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

highly successful and transformative: on the one hand, SAT/SMT solvers have seen a
significant performance improvement with a concomitant impact on software engineering,
formal methods and security; on the other hand, CP solvers have also seen a dramatic
performance improvement, with deep impact in AI and optimization.

These successes bring new applications together and new challenges: some fundamental
constraints still lack efficient reasoning (e.g., floating-point arithmetic); quantifiers are rarely
taken into account; current approaches focus essentially on satisfiability and/or validity while
some applications would benefit from queries such as optimization or model counting. While
each of the SAT, SMT and CP communities has made progress on some of these problems,
no approach is able to tackle them all. Moreover, while historically strongly connected, the
SAT/SMT communities have had minimal interactions with the CP community over the
recent years.

Goals. The aim of this seminar was to reunify the Constraint Solving landscape and identify
the next big challenges together with promising approaches. The seminar brought together
researchers from SAT, SMT and CP along with applications researchers in order to foster
cross-fertilization of ideas, deepen interactions, identify the best ways to serve the application
fields and in turn help improve the solvers for specific usages.

An overview of constraint solving.

CP. Constraint Programming [1] focuses on finding a solution (satisfiability) or a best
solution (optimization) to constraint problems seen as sets of atomic constraints over
arbitrary domains. Traditionally, CP is interested in problems defined over finite-domain
variables (typically: bounded integers), yet a lot of work has also been devoted to infinite
domains such as real numbers. The basic scheme of CP approaches (in the finite setting)
consists in exploring the search tree of all partial valuations of the problem until a solution
is found, or all possible valuations have been explored. At each step, propagation allows
to refine further the admissible values for yet-unlabeled variables and, once no more
propagation is possible, labeling assigns a value to a yet-unlabeled variable (yielding
a backtrack point) and then propagation takes place against this, etc. CP has been
highly successful in AI-related domains such as planning or scheduling, and promising
applications to program verification have emerged recently.
Strong points: advance propagation techniques based on the key notion of arc-consistency;
specific reasoning, especially for finite-domain theories (e.g. floats, bounded arithmetic,
bitvectors); queries beyond satisfiability, e.g. optimization

SAT. While the seminal DPLL procedure [3] follows mostly the procedure described
above for CP but specialized to the Boolean case1, the true miracle of SAT comes from
its modern version [2], where conflict-driven learning allows significant driven-by-need
pruning of the search space—making the technique equally good at finding solutions or
proving there is none. Many more improvements have been explored over the years, with
carefully tuned propagation, data structures and branching heuristics. DPLL-style SAT
solvers are at the core of hardware design and verification tools, and they have shown
unreasonable efficiency on very large industrial problems.
Strong points: conflict-driven clause learning methods; efficient search/propagate procedure,
with optimized branching and look-ahead.

1 Seeing CP as a generalization of SAT is also possible.

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 29

SMT. Satisfiability Modulo Theory [4] extends SAT by considering the satisfiability
problem over combinations of first-order theories, for examples formulas involving complex
boolean structure plus uninterpreted functions, arrays and linear arithmetics. While first
restricted to the unquantified case, the technique has been extended with partial support
for quantifiers. The core of SMT techniques is the combination of efficient theory-dedicated
conjunctive-only decision procedures (typically through the Nelson-Oppen combination
framework) together with their lifting to the general (disjunctive) case thanks to the
DPLL(T) framework, where a DPLL-style SAT solver works in interplay with theory
solvers. SMT problems arise naturally in software analysis, where programs are built
over combinations of basic data types. Hence, SMT solvers are naturally at the heart of
most modern software verification technologies.
Strong points: first-order decision procedures, including theories over infinite domains;
elegant combinations of solvers; partial handling of quantifiers.

Research questions. The seminar allows to highlight several key challenges to current
constraint solving techniques. They have been discussed during the meeting from different
research perspectives.

Hard-to-handle data types: several common data types and associated theories are
still not managed in an efficient-enough way, typically finite-but-large domains such
as modular arithmetic, bounded arithmetic with non-linear operations, floating-point
arithmetic or bitvector constraints deeply mixing arithmetic and bit-level reasoning, sets
with cardinality, strings with size, etc.
Quantifiers: quantifiers can be added to SMT solvers but often at the price of losing
model generation, while there is some support for finite quantification in SAT and CP
but at the price of a significant drop in performance; yet, quantifiers are useful in practice
(initial state, pre/post-conditions, summaries, etc.);
Beyond satisfiability: while the first applications of constraint solving were concerned
with finding solutions or proving validity / infeasibility, new applications bring new types
of queries, such a optimization, soft constraints, solution counting, over-approximating
sets of solutions, etc.
New trade-offs between learning and propagation: while the SAT community seems to
have reached a sweet spot on this question (with efforts put on a posteriori learning rather
than on a priori propagation), the issue is not settled yet for SMT and CP, and may be
theory and/or application dependent.

Potential synergies. We have also identified the following potential synergies between CP,
SAT and SMT, and expect strong interactions around these points in a near future:

CP researchers have advanced propagation techniques, domain-dedicated reasoning and
(deep) constraint combination. SAT and SMT researchers can learn from that.
SAT researchers have significantly advanced branching heuristics, look-ahead and conflict-
clause learning methods. CP and SMT researchers can learn from that.
SMT researchers have focused on theory solvers and well-defined solver combinations. How
can we do “lightweight” theory integration in SAT/CP solvers that trade off generality
for cheaper and focused implementation of theories aimed at very specific applications?
SAT and CP researchers can take advantage of these points.
How can we better serve the needs of applications researchers? Application researchers
can tell solver designers about which of these features (and combinations thereof) they
would like the most in a single solver.
Finally, an important question is how do we leverage machine learning in these contexts.
The experience of the SAT community may bring here some answers.

19062

30 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

Outcome. The main goal of this Dagstuhl seminar was to bring together leading researchers
in the different subfields of automated reasoning and constraint solving, foster greater
communication between these communities and discuss new research directions.

The seminar had 28 participants from Australia, Austria, France, Germany, Finland,
Italy, Spain, Sweden, Switzerland, United Kingdom and United States, from both academia,
research laboratories and the industry. More importantly, the participants represented
several different communities, with the topics of the talks and discussions reflecting these
diverse interests in both solving technologies (CP, SAT, SMT), challenges (floating-point con-
straints, quantifiers, etc.) and application domains (testing, verification, security, compilation,
commercialization, among others).

It was the first time such an inclusive meeting was held, bringing together leading research-
ers from SAT/SMT (typical interest: formal verification), CP (typical interest: optimization)
and applications (typical interest: testing, verification, security). All participants agreed the
event was fruitful, and we expect to see more collaborations between SAT/SMT and CP in a
near future.

References
1 R. Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.
2 L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning

in a boolean satisfiability solver. In International Conference on Computer-aided design.
IEEE Press, 2001.

3 M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
munications of the ACM, 1962.

4 C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories.
In Handbook of Satisfiability. 2009.

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 31

2 Table of Contents

Executive Summary
Sébastien Bardin, Nikolaj S. Bjørner, Cristian Cadar and Vijay Ganesh 27

Tutorials
The State-of-the-Art in SAT Solving: Search, Simplify, Prove!
Armin Biere . 33
SMT – Basics and Recent Trends
Nikolaj S. Bjørner . 33
The State of the Art in CP Solving: Infer, Relax, Search!
Pierre Flener . 34
Learning in Constraint Programming
Peter J. Stuckey . 34

Overview of Talks
Redundancy in Clausal Proofs and Satisfaction Driven Clause Learning
Armin Biere . 35
Bigly solving with Z3
Nikolaj S. Bjørner . 35
COLIBRI: CP for FP (and BV)
François Bobot and Sébastien Bardin . 35
Replayable Symbolic Execution
Frank Busse . 36
Just Fuzz-it: An Unconventional Approach to SMT Solving
Cristian Cadar . 36
Greybox Fuzzing with Cost-Directed Input Prediction
Maria Christakis . 37
Better Bit Blasting in Yices 2
Bruno Dutertre . 37
SMT for Binary-Level Security Analysis
Benjamin Farinier . 38
SMT-Based Exploit Generation: Past, Present and Future
Sean Heelan . 38
Symbolic Pointers
Timotej Kapus . 38
Symbol Elimination and Vampire
Laura Kovács . 39
Floating-point Program Verification with CP Technology
Laurent Michel . 39
Experiences with a Little Combinatorial-optimization Startup
Robert Nieuwenhuis . 40

19062

32 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

On Division Versus Saturation in Cutting Planes
Jakob Nordström . 40
Continuous Constraint Solving
Marie Pelleau . 41
Reusing Solutions Modulo Theories
Mauro Pezzè . 41
Interpolation in SMT
Tanja Schindler . 42
Machine Learning Clause DB Managment
Mate Soos . 42
Unison 101
Christian Schulte . 42
Solver Independent Rotating Workforce Scheduling
Peter J. Stuckey . 43
Counterexample-Guided Quantifier Instantiation in Logical Theories
Cesare Tinelli . 44
Creating a Program Schedule in EasyChair
Andrei Voronkov . 44

Discussions
Food for Thought on CP and SAT/SMT
Pierre Flener . 44
Numerical Challenges
Yannick Moy . 45
A SAAS Solver
Robert Nieuwenhuis . 45
Inprocessing in SAT?
Mate Soos . 45

Programme . 45

Participants . 47

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 33

3 Tutorials

3.1 The State-of-the-Art in SAT Solving: Search, Simplify, Prove!
Armin Biere (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Armin Biere

This tutorial covers algorithmic aspects of conflict-driven clause learning and important
extensions developed in recent years, including decision heuristics, restart schemes, various
pre- and inprocessing techniques as well as proof generation and checking. Programmatic
incremental usage of SAT solvers is discussed next. The talk closes with an overview on the
state-of-the-art in parallel SAT solving and open challenges in general.

The speaker contributed to the core technology of modern SAT solving, has developed 12
SAT solvers since 1999, which won 36 medals including 16 gold medals in international SAT
competitions.

3.2 SMT – Basics and Recent Trends
Nikolaj S. Bjørner (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Nikolaj S. Bjørner

The tutorial provides a refresher on Satisfiability Modulo Theories, SMT [1, 2]. SMT is used
for a branch of automatic theorem proving that integrates satisfiability search with specialized
procedures for theories of relevance. We describe the basic architecture of SMT solvers as
a combination of propositional SAT search with integrated theory reasoning. The theories
described in the tutorial includes arithmetic reasoning, floating point reasoning, strings,
and domains found in CP solvers. The tutorial highlights recent advances in arithmetic
reasoning, such as reducing non-linear integer arithmetic solving to linear integer arithmetic by
introducing tangent lemmas and other properties of linear arithmetic formulas. The approach
complements a technique based on reductions to cylindric algebraic decomposition. A number
of other recent advances around reducing integer feasibility using strengthened linear real
constraints, and centering search around policy iteration are also discussed. The second part
of the tutorial describes uses of SMT solving. First from the view of which functionality is
available in SMT solvers as a service to applications, second from the perspective of a set of
timely applications of SMT solvers, including network verification, quantum compilation,
smart contract verification, trusted financial software, DNN analysis, axiomatic economics,
and uses of strings and regular expression reasoning.

References
1 C.W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In

Handbook of Satisfiability. 2009.
2 Leonardo de Moura and Nikolaj Bjørner. Satisfiability Modulo Theories: Introduction and

Applications. CACM, September 2011

19062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

34 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

3.3 The State of the Art in CP Solving: Infer, Relax, Search!
Pierre Flener (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Pierre Flener

I explain the declarative structure-based high-level modelling and the composition of special-
ised algorithms within the satisfaction and optimisation solvers of constraint programming
(CP) technology, whether they work by systematic search or local search or a hybrid thereof,
aided by a lot of inference and, to a lesser extent, by relaxation. If desired, the solving
process can be parametrised by a user-provided search strategy, either by choice among
predefined ones or programmatically. A lot of important extensions have been developed in
recent years, including preprocessing, symmetry handling, autonomous search, hybridisation
with SAT, etc.

3.4 Learning in Constraint Programming
Peter J. Stuckey (The University of Melbourne, AU)

License Creative Commons BY 3.0 Unported license
© Peter J. Stuckey

Joint work of Peter J. Stuckey, Olga Ohrimenko, Michael Codish, Thibaut Feydy, Geoffrey Chu, Graeme Gange
Main reference Olga Ohrimenko, Peter J. Stuckey, Michael Codish: “Propagation via lazy clause generation”,

Constraints, Vol. 14(3), pp. 357–391, 2009.
URL https://doi.org/10.1007/s10601-008-9064-x

Nogood learning is a powerful mechanism for improving combinatorial search, by remembering
what went wrong in the past, we can avoid making the same mistakes in the future. Nogood
learning originated in the CP community, but had its first major impact in the SAT community
where nogood learning SAT solvers are now universal. Modern CP solvers make use of
the same learning mechanisms as in SAT, but there are many different features that arise
in making them effective. In this talk I describe the nitty-gritty details about how CP
solvers use nogood learning to improve performance. We discuss atomic constraints versus
Booleans, integer variable (theory) propagators, lazy literal generation, structure based
extended resolution, lifting explanations, and theory propagators in CP.

References
1 Thibaut Feydy, Peter J. Stuckey: Lazy Clause Generation Reengineered. CP 2009. Springer,

2009
2 Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, Mark G. Wallace: Explaining the cumu-

lative propagator. Constraints 16(3): 250-282 (2011)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/s10601-008-9064-x

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 35

4 Overview of Talks

4.1 Redundancy in Clausal Proofs and Satisfaction Driven Clause
Learning

Armin Biere (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Armin Biere

Joint work of Marijn J.H. Heule, Benjamin Kiesl, Armin Biere

We discuss recent notions of redundancy in clausal propositional proof system, including
variants of blocked clauses, resolution asymmetric tautologies (RAT), as well as our new
redundancy notion of propagation redundancy (PR). These concepts can be used to obtain
short clausal proofs of hard combinatorial problems. We further proposed a new SAT solving
paradigm, called satisfaction driven clause learning (SDCL), which can generate such proofs
automatically.

References
1 Marijn J.H. Heule, Benjamin Kiesl, Armin Biere: Short Proofs Without New Variables.

CADE 2017
2 Marijn J.H. Heule, Benjamin Kiesl, Martina Seidl, Armin Biere: PRuning Through Satis-

faction. Haifa Verification Conference 2017

4.2 Bigly solving with Z3
Nikolaj S. Bjørner (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Nikolaj S. Bjørner

The talk describes solving hard scheduling constraints using distributed SAT solving. Using
the method of cube-and conquer, Z3 is distributed on hundreds of CPUs in Azure. We
describe these solving methods that leverage cloud infrastructure.

4.3 COLIBRI: CP for FP (and BV)
François Bobot (CEA LIST, FR) and Sébastien Bardin (CEA LIST, FR)

License Creative Commons BY 3.0 Unported license
© François Bobot and Sébastien Bardin

Joint work of Sébastien Bardin, François Bobot, Zakaria Chihani, Bruno Marre

At first sight people misunderstand floating point numbers as reals. Then with more
experiences their counter-intuitive behavior are patent. However sometimes they still behave
like reals. We are going to see how a CP approach is able to prove these kind of assertions.
We are going to see also how bitvectors are handled in a CP way.

We presented an efficient Constraint Programming approach to the SMTLIB theory of
quantifier-free floating-point arithmetic (QF-FP). We rely on dense interreduction between
many domain representations to greatly reduce the search space. We compare our tool to
current state-of-the-art SMT solvers and show that it is consistently better on large problems
involving non-linear arithmetic operations (for which bit-blasting techniques tend to scale

19062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

36 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

badly). We also briefly present results on the theory of bit-vectors (QF-BV) following the
same high-level CP philosophy. These results emphasize the importance of the conservation
of the high-level structure of the original problems, compared with standard bitblasting
approaches.

References
1 Zakaria Chihani, Bruno Marre, François Bobot, Sébastien Bardin: Sharpening Constraint

Programming Approaches for Bit-Vector Theory. CPAIOR 2017. Springer, 2017
2 François Bobot, Zakaria Chihani and Bruno Marre: Real Behavior of Floating Point. SMT

Workshop 2017
3 Sébastien Bardin, Philippe Herrmann, Florian Perroud: An Alternative to SAT-based

Approaches for Bit-Vectors. TACAS 2010. Springer, 2010

4.4 Replayable Symbolic Execution
Frank Busse (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Frank Busse

Joint work of Frank Busse, Cristian Cadar

Symbolic execution is a dynamic program analysis technique that heavily relies on constraint
solving. Constraint solving is computationally expensive, and many symbolic execution
engines employ query caches to reduce solving time. Still, most of the execution time is spent
solving constraints. Even worse, current engines are not able to reuse solver results and have
to re-compute all results in every run and for every new version of a program under test.
We present Replayable Symbolic Execution, a lightweight technique that persistently stores
and re-uses solver results to significantly reduce the solving time in subsequent executions.
Additionally, we give an overview of the distribution of solving times for individual queries
in symbolic execution runs on real-world software. Symbolic execution often generates
queries that are challenging for modern solvers, but the majority of queries is easily solvable.
However, this majority accumulates to a substantial amount of solving time, and we argue
that developers of SMT solvers should also consider this use case and optimise for short
start-up phases.

4.5 Just Fuzz-it: An Unconventional Approach to SMT Solving
Cristian Cadar (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Cristian Cadar

Joint work of Daniel Liew, Alaistair Donaldson, Cristian Cadar, J. Ryan Stinnett

In this ongoing work, we investigate the use of coverage-guided fuzzing as a means of proving
satisfiability of SMT formulas over finite variable domains, with specific application to
floating-point constraints. We show how an SMT formula can be encoded as a program
containing a location that is reachable if and only if the program’s input corresponds to a
satisfying assignment to the formula. A coverage-guided fuzzer can then be used to search for
such an assignment via a test input that covers the location. We have implemented this idea
in a tool, Just Fuzz-it Solver (JFS), and we present a large experimental evaluation showing

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 37

that JFS is both competitive with and complementary to state-of-the-art SMT solvers with
respect to solving floating-point constraints, and that the coverage-guided approach of JFS
provides significant benefit over naive fuzzing in the floating-point domain. Applied in a
portfolio manner, the JFS approach thus has the potential to complement traditional SMT
solvers for program analysis tasks that involve reasoning about floating-point constraints.

A publication is coming up and will be posted at https://srg.doc.ic.ac.uk/publications/
JFS is publicly available at https://github.com/delcypher/jfs/

4.6 Greybox Fuzzing with Cost-Directed Input Prediction
Maria Christakis (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Maria Christakis

Joint work of Valentin Wüstholz, Maria Christakis
Main reference Valentin Wüstholz, Maria Christakis: “Learning Inputs in Greybox Fuzzing”, CoRR,

Vol. abs/1807.07875, 2018.
URL https://arxiv.org/abs/1807.07875

Greybox fuzzing is a lightweight testing approach that effectively detects bugs and security
vulnerabilities. However, greybox fuzzers randomly mutate program inputs to exercise new
paths; this makes it challenging to cover code that is guarded by narrow checks, which are
satisfied by no more than a few input values.

In this work, we present a technique that extends greybox fuzzing with a method for
predicting new inputs based on costs computed along already explored program executions.
The new inputs are predicted such that they guide exploration toward optimal executions,
which minimize a certain cost, for instance, the cost of covering a new path or revealing a
vulnerability. We have evaluated our technique and compared it to standard greybox fuzzing
on real-world benchmarks. In comparison, our technique detects significantly more bugs,
often orders-of-magnitude faster.

4.7 Better Bit Blasting in Yices 2
Bruno Dutertre (SRI – Menlo Park, US)

License Creative Commons BY 3.0 Unported license
© Bruno Dutertre

Joint work of Dejan Jovanovic, Stéphane Graham-Lengrand, Jorge A. Navas

We present recent developments in solving bit-vector problems in Yices using the standard
bit-blasting method, which amounts to converting a bit-vector SMT problem into SAT. This
is work in progress. New techniques discussed include: better use of information available at
the SMT level to guide preprocessing and variable elimination in the SAT solver, and the
use of cut-sweeping as a preprocessing and in-processing technique.

19062

https://srg.doc.ic.ac.uk/publications/
https://github.com/delcypher/jfs/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1807.07875
https://arxiv.org/abs/1807.07875
https://arxiv.org/abs/1807.07875
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

38 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

4.8 SMT for Binary-Level Security Analysis
Benjamin Farinier (CEA LIST, FR)

License Creative Commons BY 3.0 Unported license
© Benjamin Farinier

Joint work of Sébastien Bardin, Richard Bonichon, Robin David, Matthieu Lemerre, Marie-Laure Potet,
Benjamin Farinier

Program verification is an undeniable success of formal methods. Driven by progress in
Satisfiability Modulo Theories, it led to the development of several tools for automatic bugs
search. However, these decision procedures remain unsuitable when looking for vulnerabilities.
Indeed, not all the bugs are vulnerabilities, and being able to distinguish them requires the
resolution of formulas of appreciably larger size, but also belonging to more expressive logics
which are poorly supported by current solvers. In this presentation, I will explain why the
search for vulnerabilities leads to such formulas, then I will present two of our results on
their resolution.

References
1 Benjamin Farinier, Sébastien Bardin, Richard Bonichon, Marie-Laure Potet: Model Gen-

eration for Quantified Formulas: A Taint-Based Approach. CAV 2018. Springer, 2018
2 Benjamin Farinier, Robin David, Sébastien Bardin, Matthieu Lemerre: Arrays Made Sim-

pler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018. Springer, 2018

4.9 SMT-Based Exploit Generation: Past, Present and Future
Sean Heelan (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Sean Heelan

SMT solvers are at the core of the most popular approaches to exploit generation. In this
talk I will first briefly outline the exploit generation problem and then explain how the
existing state-of-the-art leverages SMT solvers to address it. Finally, I will give an overview
of an entirely new approach to exploit generation that addresses some of the most significant
limitations of existing systems, while still being tightly coupled with SMT solving technology.

4.10 Symbolic Pointers
Timotej Kapus (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Timotej Kapus

Joint work of Timotej Kapus, Cristian Cadar

Symbolic execution is an effective technique for exploring paths in a program and reasoning
about all possible values on those paths. However, the technique still struggles with code
that uses complex heap data structures, in which a pointer is allowed to refer to more than
one memory object. In this talk I present and discuss three ways symbolic execution can
handle such cases:

1. Symbolic execution forks execution into multiple states, one for each object to which the
pointer could refer, this can lead to major state explosion.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 39

2. Instead of forking the whole symbolic execution, the constraints of each potential fork
can be grouped together in a big disjunction, however SMT solver often struggle more
with disjunctions.

3. All the memory can be grouped together into a single objetct thus avoiding the problem,
but makes the constraints too large for real programs.

4.11 Symbol Elimination and Vampire
Laura Kovács (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Laura Kovács

Joint work of Laura Kovacs, Andrei Voronkov, Simon Robillard, Evgeny Kotelnikov, Bernhard Gleiss

We overview the symbol elimination method for using first-order theorem proving in software
analysis and verification. Symbol elimination exploits consequence finding in saturation-based
theorem proving and generates logical consequences of an input set S of formulas such that
these consequences are using only a subset of the input symbols from S. To make symbol
elimination practical and scalable for program analysis, we use symbol elimination in the
first-order theories of various data structures, imposing the challenge of reasoning with
both theories and quantifiers. The talk will overview recent recent developments on symbol
elimination and its use within our Vampire theorem prover, and report on our experiments
applying symbol elimination for generating loop invariants and proving program loops correct.

References
1 Bernhard Gleiss, Laura Kovács, Simon Robillard: Loop Analysis by Quantification over

Iterations. LPAR 2018
2 Laura Kovács, Andrei Voronkov: Finding Loop Invariants for Programs over Arrays Using

a Theorem Prover. FASE 2009
3 Evgenii Kotelnikov, Laura Kovács, Andrei Voronkov: A FOOLish Encoding of the Next

State Relations of Imperative Programs. IJCAR 2018

4.12 Floating-point Program Verification with CP Technology
Laurent Michel (University of Connecticut – Storrs, US)

License Creative Commons BY 3.0 Unported license
© Laurent Michel

Joint work of Heytem Zitoun, Claude Michel, Michel Rueher, Laurent Michel
Main reference Heytem Zitoun, Claude Michel, Michel Rueher, Laurent Michel: “Search Strategies for Floating

Point Constraint Systems”, in Proc. of the Principles and Practice of Constraint Programming –
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 – September 1,
2017, Proceedings, Lecture Notes in Computer Science, Vol. 10416, pp. 707–722, Springer, 2017.

URL https://doi.org/10.1007/978-3-319-66158-2_45

The ability to verify critical software is a key issue in embedded and cyber physical systems
typical of automotive, aeronautics or aerospace industries. Bounded model checking and
constraint programming approaches search for counter-examples that exhibit property viola-
tions. The search of such counter-examples is a long, tedious and costly task, especially for
programs performing floating point computations. Existing search strategies are dedicated
to finite domains and, to a lesser extent, to continuous domains. In this talk, we outline
how CP can be used to this end and how critical novel search strategies are to floating point
constraints. Empirical results help position this work with respect to state-of-the-art SAT
and SMT solvers applied to the same task.

19062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1007/978-3-319-66158-2_45
https://doi.org/10.1007/978-3-319-66158-2_45
https://doi.org/10.1007/978-3-319-66158-2_45
https://doi.org/10.1007/978-3-319-66158-2_45
https://doi.org/10.1007/978-3-319-66158-2_45

40 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

4.13 Experiences with a Little Combinatorial-optimization Startup
Robert Nieuwenhuis (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Robert Nieuwenhuis

Experiences with a little combinatorial-optimization startup. Some of the technical and
practical challenges we encountered are discussed. We also describe three of the very
different real-world problems we have attacked, and discuss desirable improvements in solver
technology.

4.14 On Division Versus Saturation in Cutting Planes
Jakob Nordström (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Jakob Nordström

Joint work of Stephan Gocht, Amir Yehudayoff, Jakob Nordström

The conflict-driven clause learning (CDCL) paradigm has revolutionized SAT solving over
the last two decades. Extending this approach to pseudo-Boolean (PB) solvers doing 0-1
linear programming holds the promise of further exponential improvements in theory, but
intriguingly such gains have not materialized in practice. Also intriguingly, the most popular
PB extensions of CDCL have not employed the standard cutting planes method with division,
but have instead used the saturation rule saying that no variable coefficient needs to be
larger than the maximum contribution that the inequality can require from this variable. To
the best of our knowledge, there has been no study comparing the strengths of division and
saturation in PB solving.

In this work, we show that cutting planes with division can be exponentially stronger than
cutting planes with saturation, even when all linear combinations of inequalities are required
to cancel variables (as in PB conflict analysis). In the other direction we do not obtain an
exponential separation, but we show that the number of division steps needed to simulate a
single saturation step can be exponential in the bitsize of the coefficients involved. We also
perform some experiments on crafted benchmarks to see to what extent these theoretical
phenomena can be observed in actual solvers. Our conclusions are that a careful combination
of division and saturation seems to be crucial to harness more of the power of the cutting
planes method in PB solvers.

References
1 Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, Jakob Nordström: In

Between Resolution and Cutting Planes: A Study of Proof Systems for Pseudo-Boolean
SAT Solving. SAT 2018

2 Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, Marc Vinyals: Using Combinatorial
Benchmarks to Probe the Reasoning Power of Pseudo-Boolean Solvers. SAT 2018

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 41

4.15 Continuous Constraint Solving
Marie Pelleau (Laboratoire I3S – Sophia Antipolis, FR)

License Creative Commons BY 3.0 Unported license
© Marie Pelleau

Joint work of Marie Pelleau, Antoine Miné, Charlotte Truchet, Frédéric Benhamou
Main reference Marie Pelleau, Antoine Miné, Charlotte Truchet, Frédéric Benhamou: “A Constraint Solver Based

on Abstract Domains”, in Proc. of the Verification, Model Checking, and Abstract Interpretation,
14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings,
Lecture Notes in Computer Science, Vol. 7737, pp. 434–454, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-35873-9_26

Constraint Programming generally deals with discrete variables. In this short talk I will
summarize some of the techniques used to deal with numerical problems containing continuous
variables.

4.16 Reusing Solutions Modulo Theories
Mauro Pezzè (University of Lugano, CH)

License Creative Commons BY 3.0 Unported license
© Mauro Pezzè

Joint work of Andrea Aquino, Giovanni Denaro, Mauro Pezzè
Main reference Andrea Aquino, Giovanni Denaro, Mauro Pezzè: “Heuristically matching solution spaces of

arithmetic formulas to efficiently reuse solutions”, in Proc. of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pp. 427–437, IEEE /
ACM, 2017.

URL http://dx.doi.org/10.1109/ICSE.2017.46

This talk presents an approach for reusing formula solutions for both satisfiability and
unsatisfiability proofs in order to reduce the impact of Satisfiability Modulo Theories (SMT)
solvers on the scalability of symbolic program analysis.

SMT solvers can efficiently handle huge expressions in relevant logic theories, but they still
represent a main bottleneck to the scalability of symbolic analyses, like symbolic execution
and symbolic model checking. Reusing proofs of formulas solved during former analysis
sessions can reduce the amount of invocations of SMT solvers, thus mitigating the impact of
SMT solvers on symbolic program analysis. Yet, early approaches to reuse formula solutions
exploit equivalence and inclusion relations among structurally similar formulas, and are
strongly tighten to the specific target logics.

In this talk, I present an original approach that reuses both satisfiability and unsatisfiab-
ility proofs shared among many different formulas – beyond the standard cases of equivalent
or related-by-implication formulas. The approach straightforwardly generalises across mul-
tiple logics. The technique is based on the original concept of distance between formulas,
which heuristically approximates the likelihood of formulas to share either satisfiability or
unsatisfiability proofs.

19062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-35873-9_26
http://dx.doi.org/10.1007/978-3-642-35873-9_26
http://dx.doi.org/10.1007/978-3-642-35873-9_26
http://dx.doi.org/10.1007/978-3-642-35873-9_26
http://dx.doi.org/10.1007/978-3-642-35873-9_26
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICSE.2017.46
http://dx.doi.org/10.1109/ICSE.2017.46
http://dx.doi.org/10.1109/ICSE.2017.46
http://dx.doi.org/10.1109/ICSE.2017.46
http://dx.doi.org/10.1109/ICSE.2017.46

42 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

4.17 Interpolation in SMT
Tanja Schindler (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
© Tanja Schindler

Joint work of Jochen Hoenicke, Tanja Schindler
Main reference Jochen Hoenicke, Tanja Schindler: “Efficient Interpolation for the Theory of Arrays”, in Proc. of

the Automated Reasoning – 9th International Joint Conference, IJCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Lecture Notes
in Computer Science, Vol. 10900, pp. 549–565, Springer, 2018.

URL https://doi.org/10.1007/978-3-319-94205-6_36

Craig interpolants are used to derive invariants in interpolation-based model checking. The
interpolants can be generated from proofs of unsatisfiability provided by an SMT solver. In
the talk we discuss some approaches to produce interpolants for different first-order theories,
and highlight specific techniques implemented in our interpolating SMT solver SMTInterpol
that address a couple of different difficulties in proof-based interpolation.

References
1 Jochen Hoenicke, Tanja Schindler: Efficient Interpolation for the Theory of Arrays. IJCAR

2018
2 Jochen Hoenicke, Tanja Schindler: Solving and Interpolating Constant Arrays Based on

Weak Equivalences. VMCAI 2019

4.18 Machine Learning Clause DB Managment
Mate Soos (Hobbyist – Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Mate Soos

Joint work of Mate Soos, Raghav Kulkarni, Kuldeep Meel

In this talk, we present a machine-learning based system for learnt clause database man-
agement. The system has three main parts. The data gathering, the data crunching and
machine learning model generation, and validation. The data we have collected is many
GBs of relevant, never-before seen data about SAT solver behavior. We then crunch this
data through sampling and data modeling to create a machine learning model that can be
executed inside the SAT solver. Finally, we run the SAT solver with the learnt model inside.
The results validate the approach but more interestingly, the side-effect of having so much
valuable data is something that we didn’t anticipate and may well be as important as the
final results themselves.

4.19 Unison 101
Christian Schulte (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Christian Schulte

Joint work of Christian Schulte, Mats Carlsson, Roberto Castañeda Lozano, Gabriel Hjort Blindell
URL https://unison-code.github.io/

This talk shows how Unison improves code generation in compilers by using constraint
programming (CP) as a method for solving combinatorial optimization problems. It presents

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1007/978-3-319-94205-6_36
https://doi.org/10.1007/978-3-319-94205-6_36
https://doi.org/10.1007/978-3-319-94205-6_36
https://doi.org/10.1007/978-3-319-94205-6_36
https://doi.org/10.1007/978-3-319-94205-6_36
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://unison-code.github.io/

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 43

how register allocation (assigning program variables to processor registers) and instruction
scheduling (reordering processor instructions to increase throughput) can be modeled and
solved using CP. Unison is significant as its addresses the same aspects as traditional code
generation algorithms, yet is based on simple models and can robustly generate better code.

Unison is a collaboration between SICS, KTH, and Ericsson.

References
1 Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, Christian Schulte: Re-

gister allocation and instruction scheduling in Unison. CC 2016. Springer, 2016
2 Gabriel Hjort Blindell, Roberto Castañeda Lozano, Mats Carlsson, Christian Schulte: Mod-

eling Universal Instruction Selection. CP 2015. Springer 2015
3 Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, Christian Schulte: Com-

binatorial Register Allocation and Instruction Scheduling. CoRR abs/1804.02452 (2018)

4.20 Solver Independent Rotating Workforce Scheduling
Peter J. Stuckey (The University of Melbourne, AU)

License Creative Commons BY 3.0 Unported license
© Peter J. Stuckey

Joint work of Peter J. Stuckey, Andreas Schutt, Nysret Musliu
Main reference Nysret Musliu, Andreas Schutt, Peter J. Stuckey: “Solver Independent Rotating Workforce

Scheduling”, in Proc. of the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research – 15th International Conference, CPAIOR 2018, Delft, The Netherlands, June
26-29, 2018, Proceedings, Lecture Notes in Computer Science, Vol. 10848, pp. 429–445, Springer,
2018.

URL https://doi.org/10.1007/978-3-319-93031-2_31

We give two solver independent models for the rotating work-force scheduling and compare
them using different solving technology, both constraint programming and mixed integer
programming. We show that the best of these models outperforms the state-of-the-art com-
plete approaches for the rotating workforce scheduling problem, and that solver independent
modelling allows us to use different solvers to achieve different aims: e.g. speed to solution,
robustness of solving (particular for unsatisfiable problems) and how quickly we can generate
good solutions (for optimization versions of the problem).

The lessons learned from this problem are interesting. An expert modeller constructed a
model targeting CP solvers and another model targeting MIP solvers, but in practice the
best model for CP solvers was the MIP one, and the best solver for MIP solvers was the CP
one. This shows the importance of solver independent modelling where we dont commit to
the solving technology we use during the modelling process.

19062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1007/978-3-319-93031-2_31
https://doi.org/10.1007/978-3-319-93031-2_31
https://doi.org/10.1007/978-3-319-93031-2_31
https://doi.org/10.1007/978-3-319-93031-2_31
https://doi.org/10.1007/978-3-319-93031-2_31
https://doi.org/10.1007/978-3-319-93031-2_31

44 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

4.21 Counterexample-Guided Quantifier Instantiation in Logical
Theories

Cesare Tinelli (University of Iowa – Iowa City, US)

License Creative Commons BY 3.0 Unported license
© Cesare Tinelli

Joint work of Cesare Tinelli, Andrew Reynolds, Haniel Barbosa, Clark Barrett, Pascal Fontaine, Amit Goel,
Dejan Jovanovic, Sava Krstič, Leonardo de Moura, Aina Niemetz, Andres Noetzli, Mathias Preiner

Main reference Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett, Cesare Tinelli: “Solving
Quantified Bit-Vectors Using Invertibility Conditions”, in Proc. of the Computer Aided
Verification – 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, Lecture Notes in
Computer Science, Vol. 10982, pp. 236–255, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-319-96142-2_16

This talk provides an overview of a general approach to reason with quantified formulas
in SMT. The approach maintains a set S of ground formulas incrementally expanded with
selected instances of quantified input formulas, with the selection based on counter-models of
S. In particular, in first-order theories that admit quantifier elimination and have a decidable
universal fragment, this approach leads to practically efficient decision procedures for the
full theory.

4.22 Creating a Program Schedule in EasyChair
Andrei Voronkov (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
© Andrei Voronkov

After giving a short overview of EasyChair and constraint satisfaction problems in it, the
talk focuses on the problem of creating automatically a high-quality program schedule.

The talk formulates the problem, explains why it is hard and proposes it as a challenge
to the SAT/CSP community.

5 Discussions

5.1 Food for Thought on CP and SAT/SMT
Pierre Flener (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Pierre Flener

I discuss existing bridges between the CP and SAT/SMT solving technologies, awareness
issues, as well as differences and cross-fertilisation opportunities.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-96142-2_16
http://dx.doi.org/10.1007/978-3-319-96142-2_16
http://dx.doi.org/10.1007/978-3-319-96142-2_16
http://dx.doi.org/10.1007/978-3-319-96142-2_16
http://dx.doi.org/10.1007/978-3-319-96142-2_16
http://dx.doi.org/10.1007/978-3-319-96142-2_16
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 45

5.2 Numerical Challenges
Yannick Moy (AdaCore – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Yannick Moy

SPARK is a subset of the Ada programming language targeted at formal verification. It
comes with a formal verification tool called GNATprove based on the Why3 platform and
relies on SMT solvers (Alt-Ergo, CVC4 and Z3) as the main engines of proof. Customers
and users of SPARK face three main challenges regarding proof of numerical properties:
non-linear arithmetic (in integers or bitvectors), floating-point arithmetic, combining theories.
Many properties involving one of these are not provable by SMT solvers, and currently
require proof in Coq of corresponding lemmas. For each of these, the challenge is both to
prove true properties, and to generate counterexamples for false properties.

5.3 A SAAS Solver
Robert Nieuwenhuis (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Robert Nieuwenhuis

Shouldn’t we use hundreds of machines (not cores), available at 0.01€ per machine·h,
to offer a SAAS solver? Indeed, CDCL (underlying SAT, SMT, Pseudo-Boolean solving,
lazy-clause-generation-based CP, etc.) is terribly sequential (perhaps even more than you
think). So, why are we stubbornly trying to parallelize it with portfolios (sharing what?)?
Alternative ideas could be to exploit community structure (perhaps computed by some
short CDCL runs?) and parallel inprocessing. In this setting, are we married with clauses?
Couldn’t we handle any (more or less efficiently unit-propagatable?) representation like
PB-constraints or even BDDs?

5.4 Inprocessing in SAT?
Mate Soos

License Creative Commons BY 3.0 Unported license
© Mate Soos

This talk discusses how inprocessing has been used in modern SAT solvers. There have been
a lot of papers about inprocessing, but they are rarely used. Why?

6 Programme

The seminar was mainly organized around short talks (15 min) in order to give the opportunity
to each participant to present his work and to share his thoughts on the topic. The short
duration was intended to keep a fast pace and good interactions. Besides, the first day
featured several longer tutorials (SAT – 1h, CP – 1h, SMT – 30 min, learning in CP – 30 min)
in order to bring the audience a minimal common background and to efficiently bootstrap

19062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

46 19062 – Bringing CP, SAT and SMT together: Next Challenges in Constraint Solving

interactions. Finally, four discussion sessions (30 min) were devoted to open discussions
on hot topics, the speakers briefly introducing the challenge and their views and then the
organizers leading the discussion. This schedule is only indicative: many sessions took longer
because of intense and fruitful discussions.

Programme for Monday 4th of February

Organizers – Overview to seminar, introduction of participants, proposals
Armin Biere – (tutorial) The State-of-the-Art in SAT Solving: Search, Simplify, Prove!
Nikolaj Bjørner – (tutorial) Overview of SMT Solving
Pierre Flener – (tutorial) The State of the Art in CP Solving: Infer, Relax, Search!
Peter Stuckey – (tutorial) Learning in Constraint Programming
Maria Christakis – Greybox Fuzzing with Cost-Directed Input Prediction
Frank Busse – Replayable Symbolic Execution
Timotej Kapus – Symbolic Pointers
Yannick Moy – (discussions) Numerical challenges
Robert Nieuwenhuis – Experiences with a little combinatorial-optimization startup

Programme for Tuesday 5th of February

Laurent Michel – Floating-point Program Verification with CP Technology
François Bobot – Real Behavior of Floating Point numbers
Mate Soos – (discussion) Inprocessing in SAT – what happened?
Peter Stuckey – Solver Independent Modelling for Rotating Workforce Scheduling
Christian Schulte – Unison 101: Generating Code with Constraint Programming
Cristian Cadar – JFS: Constraint solving via fuzzing
Mauro Pezzè – Reusing Solutions Modulo Theories
Robert Nieuwenhuis – (discussion) A SAAS Solver
Jakob Nordström – On Division Versus Saturation in Cutting Planes
Laura Kovács – Symbol Elimination and Vampire
Armin Biere – Redundancy in Clausal Proofs and Satisfaction Driven Clause Learning
Pierre Flener – (discussion) Food for Thought on CP and SAT/SMT
Benjamin Farinier – SMT solving for security
Cesare Tinelli – Quantifier Instantiation Techniques in SMT

Programme for Wednesday 6th of February

Mate Soos – Supervised Machine Learning for Clause Deletion Strategies
Marie Pelleau – Continuous constraint solving
Tanja Schindler – Interpolation in SMT
Andrei Voronkov – Creating a program schedule in EasyChair
Sean Heelan – SMT-Based Exploit Generation: Past, Present and Future
Nikolaj Bjørner – Bigly solving with Z3
Bruno Dutertre – Better Bitblasting in Yices

Sébastien Bardin, Nikolaj S. Bjørner, and Cristian Cadar 47

Participants

Sébastien Bardin
CEA LIST, FR

Armin Biere
Johannes Kepler Universität
Linz, AT

Nikolaj S. Bjorner
Microsoft Research –
Redmond, US

François Bobot
CEA LIST – Nano-INNOV, FR

Frank Busse
Imperial College London, GB

Cristian Cadar
Imperial College London, GB

Maria Christakis
MPI-SWS – Kaiserslautern, DE

Bruno Dutertre
SRI – Menlo Park, US

Benjamin Farinier
CEA LIST – Nano-INNOV, FR

Pierre Flener
Uppsala University, SE

Sean Heelan
University of Oxford, GB

Matti Järvisalo
University of Helsinki, FI

Timotej Kapus
Imperial College London, GB

Laura Kovács
TU Wien, AT

Laurent Michel
University of Connecticut –
Storrs, US

Yannick Moy
AdaCore – Paris, FR

Robert Nieuwenhuis
UPC – Barcelona, ES

Jakob Nordström
KTH Royal Institute of
Technology – Stockholm, SE

Marie Pelleau
Laboratoire I3S – Sophia
Antipolis, FR

Mauro Pezzè
University of Lugano, CH

Tanja Schindler
Universität Freiburg, DE

Christian Schulte
KTH Royal Institute of
Technology – Stockholm, SE

Laurent Simon
University of Bordeaux, FR

Mate Soos
Hobbyist – Berlin, DE

Peter J. Stuckey
The University of Melbourne, AU

Cesare Tinelli
University of Iowa –
Iowa City, US

Andrei Voronkov
University of Manchester, GB

19062

	Executive Summary Sébastien Bardin, Nikolaj S. Bjørner, Cristian Cadar and Vijay Ganesh
	Table of Contents
	Tutorials
	The State-of-the-Art in SAT Solving: Search, Simplify, Prove! Armin Biere
	SMT – Basics and Recent Trends Nikolaj S. Bjørner
	The State of the Art in CP Solving: Infer, Relax, Search! Pierre Flener
	Learning in Constraint Programming Peter J. Stuckey

	Overview of Talks
	Redundancy in Clausal Proofs and Satisfaction Driven Clause Learning Armin Biere
	Bigly solving with Z3 Nikolaj S. Bjørner
	COLIBRI: CP for FP (and BV) François Bobot and Sébastien Bardin
	Replayable Symbolic Execution Frank Busse
	Just Fuzz-it: An Unconventional Approach to SMT Solving Cristian Cadar
	Greybox Fuzzing with Cost-Directed Input Prediction Maria Christakis
	Better Bit Blasting in Yices 2 Bruno Dutertre
	SMT for Binary-Level Security Analysis Benjamin Farinier
	SMT-Based Exploit Generation: Past, Present and Future Sean Heelan
	Symbolic Pointers Timotej Kapus
	Symbol Elimination and Vampire Laura Kovács
	Floating-point Program Verification with CP Technology Laurent Michel
	Experiences with a Little Combinatorial-optimization Startup Robert Nieuwenhuis
	On Division Versus Saturation in Cutting Planes Jakob Nordström
	Continuous Constraint Solving Marie Pelleau
	Reusing Solutions Modulo Theories Mauro Pezzè
	Interpolation in SMT Tanja Schindler
	Machine Learning Clause DB Managment Mate Soos
	Unison 101 Christian Schulte
	Solver Independent Rotating Workforce Scheduling Peter J. Stuckey
	Counterexample-Guided Quantifier Instantiation in Logical Theories Cesare Tinelli
	Creating a Program Schedule in EasyChair Andrei Voronkov

	Discussions
	Food for Thought on CP and SAT/SMT Pierre Flener
	Numerical Challenges Yannick Moy
	A SAAS Solver Robert Nieuwenhuis
	Inprocessing in SAT? Mate Soos

	Programme
	Participants

