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Abstract
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1 Executive Summary
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Computational complexity theory is the study of computation under bounded resources,
and the tradeoffs thereof offered by specific problems and classes of problems in various
computational models. Such resources include time and space for classical computation,
randomnesss, non-determinism, and oracles for more advanced uniform machines, size/advice
for circuits/non-uniform computation, interaction for communication protocols, length and
depth for proof complexity, and much more. The goals of work in this field are not only to
discover and improve these tradeoffs, but ideally to find tight lower bounds to match the
solutions that have been found, and use such results in one of the models to inform results
in the others. Despite decades of work on these problems, the answers to many foundational
questions (such as P vs NP, P vs BPP, NP vs co-NP) still remain out of reach.

For the 2019 instalment of the seminar series Computational Complexity of Discrete
Problems – which evolved out of the seminar series Complexity of Boolean Functions that
dates back to the founding of Dagstuhl – Anna Gál, Oded Regev, Rahul Santhanam, and
Till Tantau invited 40 participants to Dagstuhl to work towards discovering new results in
the field. The seminar started with the assembly of a large “graph of interests” that allowed
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the participants both to present their own research interests and to see how these align with
the other present researchers. The bulk of the research work was then done in the form of,
on the one hand, talks in the morning and late afternoon and, on the other hand, break-out
sessions and small discussions in the afternoon by smaller groups.

A distinguishing feature of the seminar talks were the lively discussions during and after
the talk: given the often highly abstract and specialized topics presented by the experts in
the field, lively discussions are by no means a given and they proved to be both rewarding and
helpful for all participants. In the informal afternoon sessions, smaller groups of researchers
had ample time to tackle the open problems of the field; with some discussions still going
on after midnight. Two events – the traditional Wednesday hike and the traditional wine-
and-cheese party on Thursday – allowed everyone well-earned breaks from doing research on
computational complexity.

The range of topics covered by the participants during the seminar was broad and included
derandomization, lower bounds for specific problems, communication complexity, complexity
classes, graph algorithms, learning theory, coding theory, and proof complexity. Specific
selected results presented throughout include:

A proof that the Log-Approximate-Rank Conjecture is false, yielding the first exponential
gap between the logarithm of the approximate rank and randomized communication
complexity for total functions.
An oracle separation of BQP and the polynomial hierarchy, showing a strong converse
to the Bennett et al. oracle relative to which BQP cannot solve NP-complete problems
in sub-exponential time.
Improved lower bounds for the Minimum Circuit Size Problem, including

MCSP 6∈ AC0[p],
MCSP requires N3−o(1)-size de Morgan formulas,
MCSP requires N2−o(1)-size general formulas,
MCSP requires 2Ω(N1/d+2.01)-size depth-d AC0 circuits,

where the first result is achieved by showing MCSP can solve the coin problem and the
others using properties of local pseudorandom generators.

Open problems were posed by Amit Chakrabarty, Alexander Golovnev, Or Meir, and
Omri Weinstein.

The organizers, Anna Gál, Oded Regev, Rahul Santhanam, and Till Tantau, would like
to thank all participants at this point for the many contributions they made, but we would
also like to especially thank the Dagstuhl staff for doing – as always – an excellent job and
helping with organizational matters and with making everyone feel welcome.
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3 Overview of Talks

3.1 Planarity, Exclusivity, and Unambiguity
Eric Allender (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Eric Allender, Archit Chauhan, Samir Datta, Anish Mukherjee
Main reference Eric Allender, Archit Chauhan, Samir Datta, Anish Mukherjee: “Planarity, Exclusivity, and

Unambiguity”, Electronic Colloquium on Computational Complexity (ECCC), Vol. 26, p. 39, 2019.
URL https://eccc.weizmann.ac.il/report/2019/039

We provide new upper bounds on the complexity of the s-t-connectivity problem in planar
graphs, thereby providing additional evidence that this problem is not complete for NL. This
also yields a new upper bound on the complexity of computing edit distance. Building on these
techniques, we provide new upper bounds on the complexity of several other computational
problems on planar graphs. All of these problems are shown to solvable in logarithmic time
on a concurrent-read exclusive-write (CREW) PRAM. The new upper bounds are provided
by making use of a known characterization of CREW algorithms in terms of “unambiguous”
AC1 circuits. This seems to be the first occasion where this characterization has been used
in order to provide new upper bounds on natural problems.

Joint work with Archit Chauhan, Samir Datta, and Anish Mukherjee.

3.2 Time-Space Tradeoffs for Learning Finite Functions from Random
Evaluations, with Applications to Polynomials

Paul Beame (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Paul Beame, Shayan Oveis Gharan, Xin Yang
Main reference Paul Beame, Shayan Oveis Gharan, Xin Yang: “Time-Space Tradeoffs for Learning Finite

Functions from Random Evaluations, with Applications to Polynomials”, in Proc. of the
Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018., pp. 843–856,
2018.

URL http://proceedings.mlr.press/v75/beame18a.html

We develop an extension of recent analytic methods for obtaining time-space tradeoff lower
bounds for problems of learning Boolean functions from uniformly random labelled examples.
With our methods we can obtain bounds for learning arbitrary concept classes of finite
functions from random evaluations even when the sample space of random inputs can be
significantly smaller than the concept class of functions and the function values can be from
an arbitrary finite set.

To obtain our results, we reduce the time-space complexity of learning from random
evaluations to the question of how much the corresponding evaluation matrix amplifies the
2-norms of ‘almost uniform’ probability distributions. To analyze the latter, we formulate it
as a semidefinite program, and analyze its dual. (Similar results to ours using related but
somewhat different techniques were independently shown by Garg, Raz, and Tal.)

As applications we show that any algorithm that learns an n-variate polynomial function
of degree at most d over any prime field Fp with probability p−O(n), or with prediction
advantage p−O(n) over random guessing, given evaluations on randomly chosen inputs either
requires space Ω((nN/d) log p) or time pΩ(n/d) where N = (n/d)Θ(d) is the dimension of the
space of such polynomials. These bounds, which are based on new bounds on the bias of
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polynomials over Fp, are asymptotically optimal for polynomials of arbitrary constant degree
and constant p since they match the tradeoffs achieved by natural learning algorithms for
the problems.

3.3 Randomness and intractability in Kolmogorov complexity
Igor Carboni Oliveira (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Igor Carboni Oliveira

Main reference Igor Carboni Oliveira: “Randomness and Intractability in Kolmogorov Complexity”, Electronic
Colloquium on Computational Complexity (ECCC), Vol. 26, p. 64, 2019.

URL https://eccc.weizmann.ac.il/report/2019/064

We introduce randomized time-bounded Kolmogorov complexity (rKt), a natural extension
of Levin’s notion of Kolmogorov complexity. A string w of low rKt complexity can be
decompressed from a short representation via a time-bounded algorithm that outputs w with
high probability.

This complexity measure gives rise to a decision problem over strings: MrKtP (The
Minimum rKt Problem). We explore ideas from pseudorandomness to prove that MrKtP and
its variants cannot be solved in randomized quasi-polynomial time. This exhibits a natural
string compression problem that is provably intractable, even for randomized computations.
Our techniques also imply that there is no n1−ε-approximate algorithm for MrKtP running in
randomized quasi-polynomial time.

Complementing this lower bound, we observe connections between rKt, the power of
randomness in computing, and circuit complexity. In particular, we present the first hardness
magnification theorem for a natural problem that is unconditionally hard against a strong
model of computation.

3.4 Quantum Exact Learning of k-sparse functions and improved
Chang’s Lemma for sparse Boolean functions

Sourav Chakraborty (Indian Statistical Institute – Kolkata, IN)

License Creative Commons BY 3.0 Unported license
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Joint work of Srinivasan Arunachalam, Sourav Chakraborty, Troy Lee, Ronald de Wolf
Main reference Srinivasan Arunachalam, Sourav Chakraborty, Troy Lee, Ronald de Wolf: “Two new results about

quantum exact learning”, CoRR, Vol. abs/1810.00481, 2018.
URL https://arxiv.org/abs/1810.00481

We show how to exactly learn a k-Fourier-sparse n-bit Boolean function from O(k1.5(log k)2)
uniform quantum samples from that function. This improves over the bound of Θ(kn)
uniformly random classical examples [1]. Our main tool is an improvement of Chang’s lemma
for sparse Boolean functions. This result appears in paper “Two new results about quantum
exact learning” written jointly with Srinivasan Arunachalam, Troy Lee, Manaswi Paraashar
and Ronald de Wolf.

References
1 Ishay Haviv, Oded Regev The List-Decoding Size of Fourier-Sparse Boolean Functions.

Conference on Computational Complexity 2015: 58-71
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3.5 The Log-Approximate-Rank Conjecture is False
Arkadev Chattopadhyay (TIFR – Mumbai, IN)

License Creative Commons BY 3.0 Unported license
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Joint work of Arkadev Chattopadhyay, Nikhil S. Mande, Suhail Sherif
Main reference Arkadev Chattopadhyay, Nikhil S. Mande, Suhail Sherif: “The Log-Approximate-Rank Conjecture

is False”, Electronic Colloquium on Computational Complexity (ECCC), Vol. 25, p. 176, 2018.
URL https://eccc.weizmann.ac.il/report/2018/176

We construct a simple and total XOR function F on 2n variables that has only O(
√
n) spectral

norm, O(n2) approximate rank and nO(logn) approximate nonnegative rank. We show it
has polynomially large randomized bounded-error communication complexity of Ω(

√
n) .

This yields the first exponential gap between the logarithm of the approximate rank and
randomized communication complexity for total functions. Thus F witnesses a refutation of
the Log-Approximate-Rank Conjecture (LARC) which was posed by Lee and Shraibman [5]
as a very natural analogue for randomized communication of the still unresolved Log-Rank
Conjecture for deterministic communication. The best known previous gap for any total
function between the two measures is a recent 4th-power separation by Göös, Jayram, Pitassi
and Watson [1].

Additionally, our function F refutes Grolmusz’s Conjecture [2] and a variant of the
Log-Approximate-Nonnegative-Rank Conjecture, suggested recently by Kol, Moran, Shpilka
and Yehudayoff [3], both of which are implied by the LARC. The complement of F has
exponentially large approximate nonnegative rank. This answers a question of Lee [4] and
Kol et al. [3], showing that approximate nonnegative rank can be exponentially larger
than approximate rank. The function F also falsifies a conjecture about parity measures of
Boolean functions made by Tsang, Wong, Xie and Zhang [6]. The latter conjecture implied
the Log-Rank Conjecture for XOR functions. Our result further implies that at least one
of the following statements is true: (a) The Quantum-Log-Rank Conjecture is false; (b)
The total function F exponentially separates quantum communication complexity from its
classical randomized counterpart.

References
1 Mika Göös, T. S. Jayram, Toniann Pitassi, Thomas Watson: Randomized Communication

vs. Partition Number. ICALP 2017: 52:1-52:15
2 Vince Grolmusz: On the Power of Circuits with Gates of Low L1 Norms. Theor. Comput.

Sci. 188(1-2): 117-128 (1997)
3 Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff: Approximate Nonnegative Rank

Is Equivalent to the Smooth Rectangle Bound. ICALP (1) 2014: 701-712
4 Troy Lee: Some open problems about nonnegative rank. http://research.cs.rutgers.edu/

~troyjlee/open_problems.pdf, 2012.
5 Troy Lee, Adi Shraibman: Lower Bounds in Communication Complexity. Foundations and

Trends in Theoretical Computer Science 3(4): 263-398 (2009)
6 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, Shengyu Zhang: Fourier Sparsity, Spectral

Norm, and the Log-Rank Conjecture. FOCS 2013: 658-667
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3.6 A Route Towards Advances on the BPL versus L problem
Gil Cohen (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Gil Cohen

Joint work of Mark Braverman, Gil Cohen, Ankit Garg

The BPL vs. L problem is a fundamental question in complexity theory. The best known
result by Saks and Zhou from the late 90s puts BPL in L3/2 where the common belief is that
BPL = L. In this talk, I’ll present a potential program towards improving the Saks-Zhou
result to BPL ⊆ Lc for some constant c < 3/2. One step of this program was implemented
in a joint work with Braverman and Garg. The missing step is related to a beautiful paper
by Raz and Reingold.

3.7 Identifying low-dimensional functions in high-dimensional spaces
Anindya De (University of Pennsylvania – Philadelphia, US)

License Creative Commons BY 3.0 Unported license
© Anindya De

Joint work of Anindya De, Elchanan Mossel, Joe Neeman
Main reference Anindya De, Elchanan Mossel, Joe Neeman: “Is your data low-dimensional?”, CoRR,

Vol. abs/1806.10057, 2018.
URL https://arxiv.org/abs/1806.10057

Motivated by the problem of feature selection in machine learning, the problem of testing
juntas, i.e., checking if a Boolean function on the n-dimensional hypercube only depends on
k << n coordinates, has attracted a lot of attention in theoretical computer science. However,
in many settings, there is no obvious choice of a basis and a more meaningful question is to
ask if a function only depends a k-dimensional subspace. We show that while such “linear
juntas” are not testable with any finite number of queries, assuming an upper bound of s
on their surface area, such functions can tested with poly(k, s) queries, i.e., independent of
the ambient dimension n. We also show a poly(s) lower bound on the query complexity of
any non-adaptive tester for linear-juntas showing that the dependence on s is tight up to
polynomial factors. As a consequence of our upper bound, we show that intersections of a
constant number of halfspaces (as well as several related concepts) are testable with constant
query complexity.

3.8 Graph Communication Protocols
Lukáš Folwarczný (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Lukáš Folwarczný

Graph communication protocols are a generalization of classical communication protocols
to the case when the underlying graph is a directed acyclic graph. Motivated by potential
applications in proof complexity, we study variants of graph communication protocols and
relations between them.

Our results establish the following hierarchy: Protocols with disjointness are at least
as strong as protocols with equality and protocols with equality are at least as strong as
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protocols with inequality. Furthermore, we establish that protocols with a conjunction
of two inequalities have the same strength as protocols with equality. Lower bounds for
protocols with inequality are known. Obtaining lower bounds for protocols higher in the
hierarchy would direcly lead to applications in proof complexity. In particular, lower bounds
for resolution with parities (R(LIN)) and DNF-resolution (DNF-R) would be obtained this
way.

3.9 Static Data Structure Lower Bounds Imply Rigidity
Alexander Golovnev (Harvard University – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Alexander Golovnev

Joint work of Zeev Dvir, Alexander Golovnev, Omri Weinstein
Main reference Zeev Dvir, Alexander Golovnev, Omri Weinstein: “Static Data Structure Lower Bounds Imply

Rigidity”, Electronic Colloquium on Computational Complexity (ECCC), Vol. 25, p. 188, 2018.
URL https://eccc.weizmann.ac.il/report/2018/188

We show that static data structure lower bounds in the group (linear) model imply semi-
explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower
bound of t ≥ ω(log2 n) on the cell-probe complexity of linear data structures in the group
model, even against arbitrarily small linear space (s = (1 + ε)n), would already imply a
semi-explicit (PNP) construction of rigid matrices with significantly better parameters than
the current state of art [1]. Our results further assert that polynomial (t ≥ nδ) data structure
lower bounds against near-optimal space, would imply super-linear circuit lower bounds
for log-depth linear circuits (a four-decade open question). In the succinct space regime
(s = n + o(n)), we show that any improvement on current cell-probe lower bounds in the
linear model would also imply new rigidity bounds. Our results rely on a new connection
between the “inner” and “outer” dimensions of a matrix [2], and on a new reduction from
worst-case to average-case rigidity, which is of independent interest.

References
1 Noga Alon, Rina Panigrahy, Sergey Yekhanin: Deterministic Approximation Algorithms

for the Nearest Codeword Problem. APPROX-RANDOM 2009: 339-351
2 Ramamohan Paturi, Pavel Pudlák: Circuit lower bounds and linear codes. J. Math. Sci.,

134(5):2425–2434, 2006.

3.10 Recent Applications of High Dimensional Expanders to Coding
Prahladh Harsha (TIFR – Mumbai, IN)

License Creative Commons BY 3.0 Unported license
© Prahladh Harsha

Expander graphs, over the last few decades, have played a pervasive role in almost all areas of
theoretical computer science. Recently, various high-dimensional analogues of these objects
have been studied in mathematics and even more recently, there have been some surprising
applications in computer science, especially in the area of coding theory.

In this talk, we’ll explore these high-dimensional expanders from a spectral viewpoint and
give an alternate characterization if terms of random walks. We will then see an application
of high-dimensional expanders towards efficient list decoding.
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3.11 New Circuit Lower Bounds for Minimum Circuit Size Problem
Valentine Kabanets (Simon Fraser University – Burnaby, CA)

License Creative Commons BY 3.0 Unported license
© Valentine Kabanets

Joint work of Mahdi Cheraghchi, Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets,
Antonina Kolokolova, Avishay Tal, Zhenjian Lu, Dimitrios Myrisiotis

Main reference Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova,
Avishay Tal: “AC0[p] Lower Bounds Against MCSP via the Coin Problem”, in Proc. of the 46th
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for MCSP from Local Pseudorandom Generators”, in Proc. of the 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece.,
pp. 39:1–39:14, 2019.
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Minimum Circuit Size Problem (MCSP) asks if a given truth table of an n-variate boolean
function is computable by a boolean circuit of size at most s, for a given s > 0. While MCSP
is believed to be outside of P, it’s not known if MCSP is NP-hard.

It is natural to ask for circuit lower bounds for MCSP against restricted circuit models. In
this talk, I will show some new circuit lower bounds for MCSP against constant-depth circuits
(AC0 and AC0[p]) and de Morgan formulas, essentially matching the known state-of-the-art
lower bounds for the corresponding circuit models.

This talks is based on two joint works with Alexander Golovnev, Rahul Ilango, Russell
Impagliazzo, Antonina Kolokolova, and Avishay Tal, as well as Mahdi Cheraghchi, Zhenjian
Lu, and Dimitrios Myrisiotis.

3.12 An Optimal Space Lower Bound for Approximating MAX-CUT
Michael Kapralov (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
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Joint work of Michael Kapralov, Dmitry Krachun
Main reference Michael Kapralov, Dmitry Krachun: “An Optimal Space Lower Bound for Approximating

MAX-CUT”, CoRR, Vol. abs/1811.10879, 2018.
URL https://arxiv.org/abs/1811.10879

We consider the problem of estimating the value of MAX-CUT in a graph in the streaming
model of computation. At one extreme, there is a trivial 2-approximation for this problem
that uses only O(logn) space, namely, count the number of edges and output half of this
value as the estimate for the size of the MAX-CUT. On the other extreme, for any fixed ε > 0, if
one allows Õ(n) space, a (1 + ε)-approximate solution to the MAX-CUT value can be obtained
by storing an Õ(n)-size sparsifier that essentially preserves MAX-CUT value.

Our main result is that any (randomized) single pass streaming algorithm that breaks
the 2-approximation barrier requires Ω(n)-space, thus resolving the space complexity of any
non-trivial approximations of the MAX-CUT value to within polylogarithmic factors in the
single pass streaming model. We achieve the result by presenting a tight analysis of the
Implicit Hidden Partition Problem introduced by Kapralov et al. [1] for an arbitrarily large
number of players. In this problem a number of players receive random matchings of Ω(n)
size together with random bits on the edges, and their task is to determine whether the bits
correspond to parities of some hidden bipartition, or are just uniformly random.
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Unlike all previous Fourier analytic communication lower bounds, our analysis does not
directly use bounds on the `2 norm of Fourier coefficients of a typical message at any given
weight level that follow from hypercontractivity. Instead, we use the fact that graphs received
by players are sparse (matchings) to obtain strong upper bounds on the `1 norm of the
Fourier coefficients of the messages of individual players using their special structure, and
then argue, using the convolution theorem, that similar strong bounds on the `1 norm are
essentially preserved (up to an exponential loss in the number of players) once messages
of different players are combined. We feel that our main technique is likely of independent
interest.
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1 Michael Kapralov, Sanjeev Khanna, Madhu Sudan, Ameya Velingker: (1 + Ω(1))-

Approximation to MAX-CUT Requires Linear Space. SODA 2017: 1703-1722

3.13 Improved soundness for proving proximity to Reed-Solomon codes
Swastik Kopparty (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, Shubhangi Saraf
Main reference Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, Shubhangi Saraf: “DEEP-FRI: Sampling outside

the box improves soundness”, CoRR, Vol. abs/1903.12243, 2019.
URL https://arxiv.org/abs/1903.12243

Given oracle access to some string w, we would like to verify (using few queries, with the
aid of an interactive prover), that w is a codeword of the Reed-Solomon code. An ingenious
FFT-based protocol called FRI (Fast Reed-Solomon IOPP) was recently given by [1]. Follow-
up work of [2] showed that FRI rejects any w that is very far from the Reed-Solomon code
with quite large probability.

We give an improved analysis for the soundness of FRI, and show that this is tight.
We then give a new protocol called *DEEP-FRI* which has both (a) a better name, and

(b) further improved (and possibly optimal) soundness for this problem.
The list-decodability of Reed-Solomon codes plays an important role in these results.
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3.14 Stronger Lower Bounds for Online ORAM
Michal Koucký (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
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Joint work of Pavel Hubávcek, Michal Koucký, Karel Král, Veronika Slívová
Main reference Pavel Hubávcek, Michal Koucký, Karel Král, Veronika Slívová: “Stronger Lower Bounds for Online

ORAM”, CoRR, Vol. abs/1903.03385, 2019.
URL http://arxiv.org/abs/1903.03385

Oblivious RAM (ORAM), introduced in the context of software protection by Goldreich
and Ostrovsky [1], aims at obfuscating the memory access pattern induced by a RAM
computation. Ideally, the memory access pattern of an ORAM should be independent of the
data being processed. Since the work of Goldreich and Ostrovsky, it was believed that there
is an inherent Ω(logn) bandwidth overhead in any ORAM working with memory of size n.
Larsen and Nielsen [2] were the first to give a general Ω(logn) lower bound for any online
ORAM, i.e., an ORAM that must process its inputs in an online manner.

In this work, we revisit the lower bound of Larsen and Nielsen, which was proved under
the assumption that the adversarial server knows exactly which server accesses correspond
to which input operation. We give an Ω(logn) lower bound for the bandwidth overhead of
any online ORAM even when the adversary has no access to this information. For many
known constructions of ORAM this information is provided implicitly as each input operation
induces an access sequence of roughly the same length. Thus, they are subject to the lower
bound of Larsen and Nielsen. Our results rule out a broader class of constructions and
specifically, they imply that obfuscating the boundaries between the input operations does
not help in building a more efficient ORAM.

As our main technical contribution and to handle the lack of structure, we study the
properties of access graphs induced naturally by the memory access pattern of an ORAM
computation. We identify a particular graph property that can be efficiently tested and that
all access graphs of ORAM computation must satisfy with high probability. This property is
reminiscent of the Larsen-Nielsen property but it is substantially less structured; that is, it
is more generic.

References
1 Oded Goldreich, Rafail Ostrovsky: Software Protection and Simulation on Oblivious RAMs.

J. ACM 43(3): 431-473 (1996)
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3.15 Improving OBDD-Attacks and Related Complexity-Theoretic
Problems

Matthias Krause (Universität Mannheim, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Matthias Hamann, Matthias Krause, Alex Moch

We present and discuss new algorithmic ideas for improving OBDD-attacks against stream
ciphers. Standard OBDD-attacks compute the secret initial state behind a given piece z
of keystream by generating a sequence Q1, Q2, . . . , Qs of ordered binary decision diagrams
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(OBDDs), where Q1 is small, the intermediate OBDDs become not larger than 2(1−a)/(1+a)n,
and Qs contains the secret initial state behind z as only satisfying assignment. Here, n
denotes the inner state length of the cipher, and a ∈ (0, 1) the compression rate, a constant
defined by the cipher. The motivation of our research is to circumvent the bottleneck of
standard OBDDs attack consisting in the huge storage of 2(1−a)/(1+a)n needed for some of
the intermediate OBDDs.

For reaching this goal we propose the following strategy

1. Generate in parallel two OBDDs P and Q of moderate size such that P and Q have only
a few common satisfying assignments.

2. Compute these satisfying assignments, including the secret inner state, by a new breadth-
first-search based algorithm.

We show at hand of experiments that this approach improves standard OBDD-attacks
drastically. For understanding the theory behind this phenomenon we study in a first step
the complexity of the Bounded Synthesis Problem (given two OBDDs P and Q for which it
is known that they have only one common satisfying assignment, compute this assignment).
The question to discuss here is if there are algorithms for the Bounded Synthesis Problem
which are asymptotically better than synthesing and minimzing P ∧Q.

3.16 Building strategies into QBF proofs
Meena Mahajan (Institute of Mathematical Sciences – Chennai, IN)
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Quantified Boolean Formulas (QBF) are a natural extension of the SAT problem, with more
sophisticated semantics: functions witnessing the truth of a QBF can be interpreted as
strategies in a two-player game. A lot has been written regarding the extraction of strategies
from QBF proofs, in various proof systems. Here we devise a new system – Merge Resolution
– in which strategies are built explicitly within the proofs themselves. We investigate some
advantages of Merge Resolution over existing systems; in particular, we find that it lifts
naturally to DQBF, a further extension of QBF.

Joint work with Olaf Beyersdorff and Joshua Blinkhorn. STACS 2019.
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3.17 Exponential Lower Bounds for Weak Pigeonhole Principle and
Perfect Matching Formulas over Sparse Graphs

Jakob Nordström (KTH Royal Institute of Technology – Stockholm, SE)
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Joint work of Susanna F. de Rezende, Jakob Nordström, Kilian Risse, Dmitry Sokolov

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP)
formulas and perfect matching formulas over highly unbalanced, sparse expander graphs,
thus answering the challenge to establish strong lower bounds in the regime between balanced
constant-degree expanders as in [1] and highly unbalanced, dense graphs as in [2], [3], and
[4]. We obtain our results by revisiting Razborov’s pseudo-width method for PHP formulas
over dense graphs and extending it to sparse graphs. This further demonstrates the power of
the pseudo-width method, and we believe it could potentially be useful for attacking also
other longstanding open problems for resolution and other proof systems.

This is joint work with Susanna F. de Rezende, Kilian Risse, and Dmitry Sokolov.
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3.18 Extractors for small zero-fixing sources
Pavel Pudlák (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Pavel Pudlák
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Main reference Pavel Pudlák, Vojtech Rödl: “Extractors for small zero-fixing sources”, Electronic Colloquium on

Computational Complexity (ECCC), Vol. 26, p. 58, 2019.
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A random variable X is an (n, k)-zero-fixing source if for some subset V ⊂ [n], X is the
uniform distribution on the strings {0, 1}n that are zero on every coordinate outside of V .
An ε-extractor for (n, k)-zero-fixing sources is a mapping F : {0, 1}n → {0, 1}m, for some
m, such that F (X) is ε-close in statistical distance to the uniform distribution on {0, 1}m
for every (n, k)-zero-fixing source X. Zero-fixing sources were introduced by Cohen and
Shinkar in [1] in connection with the previously studied extractors for bit-fixing sources.
They constructed, for every µ > 0, an efficiently computable extractor that extracts a positive
fraction of entropy, i.e., Ω(k) bits, from (n, k)-zero-fixing sources where k ≥ (log logn)2+µ.

We have found two different constructions of extractors for zero-fixing sources that are
able to extract a positive fraction of entropy for k essentially smaller than log logn. The first
extractor works for k ≥ C log log logn, for some constant C. The second extractor extracts a
positive fraction of entropy for k ≥ log(i) n for any fixed i ∈ N, where log(i) denotes i-times
iterated logarithm. The fraction of extracted entropy decreases with i. The first extractor
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is a function computable in polynomial time in ∼ n (for ε = o(1), but not too small); the
second one is computable in polynomial time when k ≤ α log logn/ log log logn, where α is a
positive constant.

In the talk we sketch the main idea of the first construction.
Joint work with Vojtech Rodl.
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3.19 Majority Quantifiers, Complexity Classes and Games
Rüdiger Reischuk (Universität zu Lübeck, DE)

License Creative Commons BY 3.0 Unported license
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An overview is given on logical/syntactical descriptions of complexity classes based on
quantifiers. Existential and universal quantifiers together with predicates in P suffice to
characterize the polynomial hierarchy, PSPACE and 2 person full information games. Zachos
and coauthors have investigated probabilistic quantifiers and shown that a pair of sequences
of quantifiers can be used to characterize the classical probabilistic complexity classes and
2 person games involving randomness – Arthur Merlin games. We discuss technical tools
to prove relations between these complexity classes based on such characterizations and to
investigate hierarchies built on quantifier sequences. The essential technique here is swapping
of quantifiers.

3.20 Computational Two Party Correlation
Ronen Shaltiel (University of Haifa, IL)
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Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
pp. 136–147, IEEE Computer Society, 2018.

URL https://doi.org/10.1109/FOCS.2018.00022

Let π be an efficient two-party protocol that (given security parameter κ) both parties output
single bits Xκ and Yκ, respectively. We are interested in how (Xκ, Yκ) “appears” to an
efficient adversary that only views the transcript Tκ. We make the following contributions:

We develop new tools to argue about this loose notion, and show (modulo some caveats)
that for every such protocol π, there exists an efficient simulator such that the following
holds: on input Tκ, the simulator outputs a pair (X ′κ, Y ′κ) such that (X ′κ, Y ′κ, Tκ) is
(somewhat) computationally indistinguishable from (Xκ, Yκ, Tκ).
We use these tools to prove the following dichotomy theorem: every such protocol π is:

either uncorrelated – it is (somewhat) indistinguishable from an efficient protocol whose
parties interact to produce Tκ, but then choose their outputs independently from some
product distribution (that is determined in poly-time from Tκ),
or, the protocol implies a key-agreement protocol (for infinitely many κ’s).
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Uncorrelated protocols are uninteresting from a cryptographic viewpoint, as the correlation
between outputs is (computationally) trivial. Our dichotomy shows that every protocol is
either completely uninteresting or implies key-agreement.

3.21 Near-Optimal Erasure List-Decodable Codes
Amnon Ta-Shma (Tel Aviv University, IL)
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A code C is (1 − τ, L) erasure list-decodable if for every word w, after erasing any 1 − τ
fraction of the symbols of w, the remaining τ -fraction of its symbols have at most L possible
completions into codewords of C.

Non-explicitly, there exist binary (1− τ, L) erasure list-decodable codes having rate O(τ)
and tiny list-size L = O(log 1/τ). Achieving either of these parameters explicitly is a natural
open problem (see, e.g., [5],[3],[4]). While partial progress on the problem has been achieved,
no prior explicit construction achieved rate better than Ω(τ2) or list-size smaller than Ω(1/τ).
Furthermore, Guruswami showed no linear code can have list-size smaller than Ω(1/τ) [3].
We construct an explicit binary (1− τ, L) erasure list-decodable code having rate τ1+γ (for
any constant γ > 0 and small τ and list-size poly(log 1/τ), answering simultaneously both
questions, and exhibiting an explicit non-linear code that provably beats the best possible
linear code.

The binary erasure list-decoding problem is equivalent to the construction of explicit,
low-error, strong dispersers outputting one bit with minimal entropy-loss and seed-length. For
error ε, no prior explicit construction achieved seed-length better than 2 log 1/ε or entropy-loss
smaller than 2 log 1/ε, which are the best possible parameters for extractors. We explicitly
construct an ε-error one-bit strong disperser with near-optimal seed-length (1 + γ) log 1/ε
and entropy-loss O(log log 1/ε).

The main ingredient in our construction is a new (and almost-optimal) unbalanced two-
source extractor. The extractor extracts one bit with constant error from two independent
sources, where one source has length n and tiny min-entropy O(log logn) and the other source
has length O(logn) and arbitrarily small constant min-entropy rate. When instantiated as a
balanced two-source extractor, it improves upon Raz’s extractor [7] in the constant error
regime. The construction incorporates recent components and ideas from extractor theory
with a delicate and novel analysis needed in order to solve dependency and error issues that
prevented previous papers (such as [6],[1],[2]) from achieving the above results.
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5 Venkatesan Guruswami, Piotr Indyk: Near-optimal linear-time codes for unique decoding
and new list-decodable codes over smaller alphabets. STOC 2002: 812-821
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3.22 Oracle Separation of BQP and the Polynomial Hierarchy
Avishay Tal (Stanford University, US)
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In their seminal paper, Bennett, Bernstein, Brassard, and Vazirani [2] showed that relative to
an oracle, quantum algorithms are unable to solve NP-complete problems in sub-exponential
time (i.e., that Grover’s search is optimal in this setting).

In this work, we show a strong converse to their result. Namely, we show that, relative
to an oracle, there exist computational tasks that can be solved efficiently by a quantum
algorithm but require exponential time for any algorithm in the polynomial hierarchy (that
captures P, NP, and co-NP as its first levels).

The tasks that exhibit this “quantum advantage” arise from a pseudo-randomness approach
initiated by Aaronson [1]. Our core technical result is constructing a distribution over Boolean
strings that “look random” to constant-depth circuits of quasi-polynomial size, but can be
distinguished from the uniform distribution by very efficient quantum algorithms.
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3.23 Different methods to isolate a perfect matching in bipartite
graphs

Thomas Thierauf (Hochschule Aalen, DE)
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We give different proofs of our result that the perfect matching problem for bipartite is in
quasi-NC. In particular, we present three different ways how to construct a weight function
that isolates the minimum weight perfect matching. Each method yields different parameters
for the size of the weights. We think that is interesting to see different methods because still
it is an open problem to improve our result to NC.
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3.24 Lower Bounds for Matrix Factorization
Ben Lee Volk (Caltech – Pasadena, US)
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We consider the problem of constructing explicit matrices which cannot be expressed as a
product of a few sparse matrices. In addition to being a natural mathematical question, this
problem appears in various areas in computer science, such as algebraic complexity, data
structures, and machine learning.

We outline an approach for proving improved lower bounds through a certain derandomiz-
ation problem, and use this approach to prove asymptotically optimal quadratic lower bounds
for natural special cases, which generalize many of the common matrix decompositions.

We then discuss some open problems related to this approach.

3.25 Oblivious Lower Bounds for Near-Neighbor Search
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We prove an Ω(d lgn/(lg lgn)2) lower bound on the dynamic cell-probe complexity of statist-
ically oblivious approximate-near-neighbor search (ANN) over the d-dimensional Hamming
cube. For the natural setting of d = Θ(logn), our result implies an Ω̃(lg2 n) lower bound,
which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for
ANN. This is the first super-logarithmic unconditional lower bound for ANN against general
(non black-box) data structures. We also show that any oblivious static data structure
for decomposable search problems (like ANN) can be obliviously dynamized with O(logn)
overhead in update and query time, strengthening a classic result of Bentley and Saxe ([1]).
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