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Abstract
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Computational Geometry
Computational geometry is concerned with the design, analysis, and implementation of
algorithms for geometric and topological problems, which arise naturally in a wide range of
areas, including computer graphics, CAD, robotics, computer vision, image processing, spatial
databases, GIS, molecular biology, sensor networks, machine learning, data mining, scientific
computing, theoretical computer science, and pure mathematics. Computational geometry
is a vibrant and mature field of research, with several dedicated international conferences
and journals and strong intellectual connections with other computing and mathematics
disciplines.
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Seminar Topics
The emphasis of this seminar was on presenting recent developments in computational
geometry, as well as identifying new challenges, opportunities, and connections to other fields
of computing. In addition to the usual broad coverage of new results in the field, the seminar
included broad survey talks on algebraic methods in computational geometry as well as
geometric data structures. The former focus area has seen exciting recent progress and the
latter is a fundamental topic at the heart of computational geometry. There are numerous
opportunities for further cross-disciplinary impact.

Algebraic Methods in Computational Geometry

The polynomial method of Guth and Katz of 2010 has had a fundamental impact on discrete
geometry and other areas, which was already envisioned by the talk of Jiří Matoušek at
the Annual European Workshop on Computational Geometry in 2011, four years before he
passed away. Indeed, the polynomial method has attracted the attention of many researchers,
including famous ones like Janos Pach, Micha Sharir, and Terence Tao. Applications have
been found not only in making progress on long-standing combinatorial geometry problems,
but also in the design and analysis of efficient algorithms for fundamental geometric problems
such as range searching, approximate nearest search, diameter, etc. The polynomial method
is very powerful and it offers a new research direction in which many interesting new results
can potentially be discovered.

Geometric Data Structures

Many beautiful results in geometric data structures have been established in the early days
of the field. Despite of this, some long-standing problems remain unresolved and some
of the recent progress is in fact made using the polynomial method mentioned previously.
Independently, there have been some recent advances in our understanding of lower bounds
and the usage of more sophisticated combinatorial constructions and techniques such as
shallow cuttings, optimal partition trees, discrete Voronoi diagrams, etc. There are also new
applications that require the modeling of uncertain data and hence call for a study of the
performance of geometric data structures under a stochastic setting.
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3 Overview of Talks

3.1 A Review of (some) Data Structure Lower Bound Techniques
Peyman Afshani (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Peyman Afshani

In this talk, we will have a broad look at the landscape of data structure lower bounds.
We will begin by introducing some fundamental lower bound models and then move on to
demonstrate the key techniques that enable us prove non-trivial results in each model. These
include the pointer machine model, the cell-probe model, the I/O-model, and the semi-group
(or group) model. We will also very briefly touch the conditional lower bounds.

3.2 Hard problems in knot theory
Arnaud de Mesmay (University of Grenoble, FR)

License Creative Commons BY 3.0 Unported license
© Arnaud de Mesmay

Joint work of Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, Martin Tancer
Main reference Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, Martin Tancer: “The Unbearable Hardness of

Unknotting”, in Proc. of the 35th International Symposium on Computational Geometry, SoCG
2019, June 18-21, 2019, Portland, Oregon, USA., LIPIcs, Vol. 129, pp. 49:1–49:19, Schloss Dagstuhl
– Leibniz-Zentrum fuer Informatik, 2019.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.49

Quite a few problems in knot theory are extremely hard to solve algorithmically (like testing
whether two knots are equivalent), and some of them are not even known to be decidable
(like computing the unknotting number of a knot). However, very few hardness results are
known. We show how a rather simple construction with Borromean rings can be leveraged
to establish a handful of NP-hardness proofs for seemingly unrelated problems. Our main
result shows that deciding if a diagram of the unknot can be untangled using at most k
Reidemeister moves (where k is part of the input) is NP-hard. We also prove that several
natural questions regarding links in the 3-sphere are NP-hard, including detecting whether a
link contains a trivial sublink with n components, computing the unlinking number of a link,
and computing a variety of link invariants related to four-dimensional topology (such as the
4-ball Euler characteristic, theslicing number, and the 4-dimensional clasp number).

3.3 Plantinga-Vegter algorithm takes average polynomial time
Alperen Ergür (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Alperen Ergür

Joint work of Felipe Cucker, Alperen A. Ergür, Josué Tonelli-Cueto
Main reference Felipe Cucker, Alperen A. Ergür, Josué Tonelli-Cueto: “Plantinga-Vegter algorithm takes average

polynomial time”, CoRR, Vol. abs/1901.09234, 2019.
URL https://arxiv.org/abs/1901.09234

We provide smoothed analysis of an adaptive subdivision algorithm due to Plantinga and
Vegter. The only available complexity analysis of this algorithm was due to Burr, Gao,
Tsigaridas which provided worst case bounds that are exponential in the degree of the input
equation. More in the line the practical success of PV algorithm, we provide polynomial
bounds in terms of the degree.
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3.4 General Polynomial Partitionings and their Applications in
Computational Geometry

Esther Ezra (Georgia Tech – Atlanta, US & Bar-Ilan Univ. Ramat Gan, IL)

License Creative Commons BY 3.0 Unported license
© Esther Ezra

Joint work of Pankaj Agarwal, Boris Aronov, Esther Ezra, Joshua Zahl
Main reference Pankaj Agarwal, Boris Aronov, Esther Ezra, Joshua Zahl: “An Efficient Algorithm for Generalized

Polynomial Partitioning and Its Applications”, CoRR, Vol. abs/1812.10269, 2018.
URL https://arxiv.org/abs/1812.10269

Since the celebrated work of Guth in Katz on the Erdos distinct distances problem, polynomial
partitioning became a central tool in solving incidence problems, as well as other main
problems in discrete geometry. In spite of this progress, the application of polynomial
partitioning in solving computational problems received considerably less attention.

Polynomial partitioning for a set of geometric objects forms a space decomposition,
such that any component in this decomposition is intersected by a small fraction of the
input objects. In this talk, I will survey the polynomial partitioning technique by first
presenting the setting of points in d-space, addressed by Guth and Katz, and then discussing
polynomial partitioning for general semi-algebraic sets, studied by Guth. I will then describe
the algorithmic issues concerning the construction of such polynomials. Whereas there are
efficient algorithms to construct polynomial partitionings of the first kind, it is currently
unknown how to effectively construct general polynomial partitionings. I will present an
efficient algorithm that constructs a general polynomial partitioning for semi-algebraic sets
in d-space, which, as a main tool, exploits the concept of “quantifier elimination” combined
with “epsilon-approximations”. The running time of this algorithm is only linear in the
number of input objects. As a preliminary result, I will present an algorithm that constructs
a space decomposition for a collection of algebraic curves in 3-space, with complexity bounds
similar to those of Guth. These results have several algorithmic implications, including a
nearly-optimal algorithm to eliminate depth cycles among disjoint triangles in 3-space, an
efficient range-search mechanism in the fast-query/large-storage regime, and an efficient
point-location machinery that outperforms traditional point-location machineries exploiting
vertical decompositions.

3.5 Approximating the Geometric Edit Distance
Kyle Jordan Fox (University of Texas – Dallas, US)

License Creative Commons BY 3.0 Unported license
© Kyle Jordan Fox

Joint work of Kyle Jordan Fox, Xinyi Li

We describe the first sublinear approximate strictly subquadratic time algorithms for com-
puting the geometric edit distance of two point sequences in constant dimensional Euclidean
space. First, we present a randomized O(n log2 n) time O(

√
(n))-approximation algorithm.

Then, we generalize our result to give a randomized alpha-approximation algorithm for any
alpha in [1,

√
(n)], running in time Õ(n2/α2). Both algorithms are Monte Carlo and return

approximately optimal solutions with high probability.
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3.6 Geometry and Generation of a New Graph Planarity Game
Wouter Meulemans (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Wouter Meulemans

Joint work of Rutger Kraaijer, Marc van Kreveld, Wouter Meulemans, André van Renssen
Main reference Rutger Kraaijer, Marc van Kreveld, Wouter Meulemans, André van Renssen: “Geometry and

Generation of a New Graph Planarity Game”, in Proc. of the 2018 IEEE Conference on
Computational Intelligence and Games, CIG 2018, Maastricht, The Netherlands, August 14-17,
2018, pp. 1–8, IEEE, 2018.

URL https://doi.org/10.1109/CIG.2018.8490404

We introduce a new abstract graph game, Swap Planarity, where the goal is to reach a state
without edge intersections and a move consists of swapping the locations of two vertices
connected by an edge. We analyze this puzzle game using concepts from graph theory and
graph drawing, computational geometry, and complexity. Furthermore, we specify what good
levels look like and we show how they can be generated. We also report on experiments that
show how well the generation works.

3.7 Multipoint evaluation for the visualization of high degree algebraic
surfaces

Guillaume Moroz (INRIA Nancy – Grand Est, FR)

License Creative Commons BY 3.0 Unported license
© Guillaume Moroz

Joint work of Guillaume Moroz, Marc Pouget

The surface solution of a polynomial equation f(x, y, z) = 0 can be visualized using for
example the marching cube algorithm. This requires to evaluate f on a grid of points in R3.
In this talk, we will review the existing methods to compute the evaluation of a polynomial
on multiple points and we will show how some of these methods can be adapted to visualize
efficiently algebraic curves and surfaces of degree ranging from 10 to 400.

3.8 Innovations in Convex Approximation and Applications
David M. Mount (University of Maryland – College Park, US)

License Creative Commons BY 3.0 Unported license
© David M. Mount

Joint work of Ahmed Abdelkader, Sunil Arya, Guilherme da Fonseca, David M. Mount

Recently, new approaches to convex approximation have produced major improvements to
approximation algorithms for a number of geometric optimization and retrieval problems.
These include computing the diameter and width of a point set, kernels for directional width,
bichromatic closest pairs, Euclidean minimum spanning trees, and nearest neighbor searching
under various distance functions including the Mahalanobis distance and Bregman divergence.
In this talk, I will describe these techniques, including Macbeath regions, Delone sets in the
Hilbert metric, and convexification, and I will explain how these techniques can be applied
to obtain these improvements.
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3.9 Geodesic Voronoi Diagrams in Simple Polygons
Eunjin Oh (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Eunjin Oh

Main reference Eunjin Oh: “Optimal Algorithm for Geodesic Nearest-point Voronoi Diagrams in Simple
Polygons”, in Proc. of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 391–409, SIAM, 2019.

URL https://doi.org/10.1137/1.9781611975482.25

In the presence of polygonal obstacles, the distance of two points is measured by the length
of a shortest path between the two points avoiding obstacles. In this talk, I introduce several
recent results on problems defined in polygonal domains including an O(n+m logm)-time
algorithm for computing the geodesic Voronoi diagram of m points in a simple n-gon.

3.10 Intersection patterns of sets in the plane
Zuzana Patáková (IST Austria & Charles University Praha)

License Creative Commons BY 3.0 Unported license
© Zuzana Patáková

Joint work of Gil Kalai, Zuzana Patáková

Helly theorem states that to decide whether a finite family of convex sets in Rd has a point
in common, it is enough to test only intersections of d+1 sets. As such, it has applications
not only within combinatorial geometry, but also in optimization and property testing.

We discuss related concepts as Helly-type theorems and fractional Helly-type theorems.
Apart from that, we focus on the following question: What conditions we need to put on
a family of n sets in the plane where no k+1 sets intersect, in order to conclude that the
number of intersecting k-tuples is at most cnk−1 for some constant c?

We provide a sufficient topological condition which includes much more families than
convex sets, for which the answer was known.

3.11 Metric Violation Distance
Benjamin Raichel (University of Texas – Dallas, US)

License Creative Commons BY 3.0 Unported license
© Benjamin Raichel

Joint work of Chenglin Fan, Anna Gilbert, Benjamin Raichel, Rishi Sonthalia, Gregory Van Buskirk
Main reference Chenglin Fan, Benjamin Raichel, Gregory Van Buskirk: “Metric Violation Distance: Hardness and

Approximation”, in Proc. of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pp. 196–209, SIAM, 2018.

URL https://doi.org/10.1137/1.9781611975031.14

We introduce and study the metric violation distance problem: given a set of pairwise
distances, represented as graph, modify the minimum number of distances such that the
resulting set forms a metric. Three variants are considered, based on whether distances are
allowed to only decrease, only increase, or the general case which allows both decreases and
increases.

We show that while the decrease only variant is polynomial time solvable, the increase
only and general variants are Multicut hard. By proving interesting necessary and sufficient
conditions on the optimal solution, we provide approximation algorithms approaching our
hardness bounds.
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3.12 Hitting Convex Sets with Points
Natan Rubin (Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 3.0 Unported license
© Natan Rubin

Main reference Natan Rubin: “An Improved Bound for Weak Epsilon-Nets in the Plane”, in Proc. of the 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pp. 224–235, IEEE Computer Society, 2018.

URL https://doi.org/10.1109/FOCS.2018.00030

We show that for any finite set P of points in the plane and ε > 0 there exist roughly ε−3/2

points that pierce every convex set K with that encompasses at least an ε-fraction of P . This
is the first improvement of the bound of O(ε−2) that was obtained in 1992 by Alon, Bárány,
Füredi and Kleitman for general point sets in the plane.

3.13 Hamiltonicity for convex shape Delaunay and Gabriel graphs
Maria Saumell (The Czech Academy of Sciences – Prague, CZ & Czech Technical University
– Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Maria Saumell

Joint work of Maria Saumell, Prosenjit Bose, Pilar Cano, Rodrigo I. Silveira
Main reference Prosenjit Bose, Pilar Cano, Maria Saumell, Rodrigo I. Silveira: “Hamiltonicity for Convex Shape

Delaunay and Gabriel Graphs”, in Proc. of the Algorithms and Data Structures – 16th
International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings,
Lecture Notes in Computer Science, Vol. 11646, pp. 196–210, Springer, 2019.

URL https://doi.org/10.1007/978-3-030-24766-9_15

We study Hamiltonicity for some of the most general variants of Delaunay and Gabriel graphs.
Instead of defining these proximity graphs using circles, we use an arbitrary convex shape C.
Let S be a point set in the plane. The k-order Delaunay graph of S, denoted k-DGC(S), has
vertex set S and edge pq provided that there exists some homothet of C with p and q on its
boundary and containing at most k points of S different from p and q. The k-order Gabriel
graph k-GGC(S) is defined analogously, except for the fact that the homothets considered
are restricted to be smallest homothets of C with p and q on its boundary.

We provide upper bounds on the minimum value of k for which k-GGC(S) and k-DGC(S)
are Hamiltonian. In particular, we give upper bounds of 24 for every C and 15 for every
point-symmetric C. We also improve the bound for even-sided regular polygons. These
constitute the first general results on Hamiltonicity for convex shape Delaunay and Gabriel
graphs.

3.14 The maximum level vertex in an arrangement of lines
Micha Sharir (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Micha Sharir

Joint work of Dan Halperin, Sariel Har-Peled, Eunjin Oh, Kurt Mehlhorn

The level of a point p in an arrangement of a set L of n lines is the number of lines that lie
strictly below p. The problem is to find a vertex of maximum level. It was posed as Exercise
8.13 in the “Dutch” textbook, but it hides much more than meets the eye when L is not in
general position. We present structural properties of maximum-level vertices (in degenerate
arrangements) and develop algorithms that find such a vertex in near-linear time.
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3.15 The Blessing of dimensionality: when higher dimensions help
Hans Raj Tiwary (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Hans Raj Tiwary

Problems in CG often suffer from a curse of dimensionality in that typical dependence of
algorithms is exponential in the dimension. In Linear Programming however one can often
drastically reduce the size of an LP by introducing extra variables. In geometric terms, many
interesting polytopes have exponentially many vertices and facets but are projections of
polytopes that can have polynomially many facets. I will present a communication game to
obtain such size reductions and illustrate it with a (non-geometric) example: Spanning trees.

3.16 Competitive Searching for a Line on a Line Arrangement
Marc van Kreveld (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Marc van Kreveld

Joint work of Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, Wouter Meulemans
Main reference Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, Wouter Meulemans:

“Competitive Searching for a Line on a Line Arrangement”, in Proc. of the 29th International
Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan,
Taiwan, LIPIcs, Vol. 123, pp. 49:1–49:12, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2018.

URL http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.49

We discuss the problem of searching for an unknown line on a known or unknown line
arrangement by a searcher S, and show that a search strategy exists that finds the line
competitively, that is, with detour factor at most a constant when compared to the situation
where S has all knowledge. In the case where S knows all lines but not which one is sought,
the strategy is 79-competitive. We also show that it may be necessary to travel on Omega(n)
lines to realize a constant competitive ratio. In the case where initially, S does not know any
line, but learns about the ones it encounters during the search, we give a 414.2-competitive
search strategy.

3.17 Stability analysis of shape descriptors
Kevin Verbeek (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Kevin Verbeek

Joint work of Wouter Meulemans, Kevin Verbeek, Jules Wulms
Main reference Wouter Meulemans, Kevin Verbeek, Jules Wulms: “Stability analysis of kinetic orientation-based

shape descriptors”, CoRR, Vol. abs/1903.11445, 2019.
URL https://arxiv.org/abs/1903.11445

Motivated by the analysis and visualization of moving points, we study orientation-based
shape descriptors on a set of continuously moving points, specifically the minimum oriented
bounding box. The optimal orientation of this box may be very unstable as the points are
moving, which is undesirable in many practical scenarios. If we bound the speed with which
the orientation of the box may change, this may increase the area. In this talk we study the
trade-off between stability and quality of oriented bounding boxes.
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We first show that there is no stateless algorithm, an algorithm that keeps no state
over time, that both approximates the minimum area of the oriented bounding box and
achieves continuous motion. On the other hand, if we can use the previous state of the
shape descriptor to compute the new state, then we can define "chasing" algorithms that
attempt to follow the optimal orientation with bounded speed. Under mild conditions, we
show that chasing algorithms with sufficient bounded speed approximate the minimum area
at all times.

3.18 A Motion Planning Algorithm for the Invalid Initial State
Disassembly Problem

Nicola Wolpert (University of Applied Sciences – Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Nicola Wolpert

Joint work of Daniel Schneider, Elmar Schömer, Nicola Wolpert
Main reference Daniel Schneider, Elmar Schömer, Nicola Wolpert: “A motion planning algorithm for the invalid

initial state disassembly problem”, in Proc. of the 20th International Conference on Methods and
Models in Automation and Robotics, MMAR 2015, Międzyzdroje, Poland, August 24-27, 2015,
pp. 35–40, IEEE, 2015.

URL https://doi.org/10.1109/MMAR.2015.7283702

Sampling-based motion planners are able to plan disassembly paths at high performance.
They are limited by the fact that the input triangle sets of the static and dynamic object
need to be free of collision in the initial and all following states. In real world applications,
like the disassembly planning in car industry, this often does not hold true. Beside data
inaccuracy, this is mainly caused by the modeling of flexible parts as rigid bodies, especially
fixture elements like clips. They cause the invalid initial state disassembly problem. In the
literature there exists no algorithm that is able to calculate a reasonable disassembly path
for an invalid initial state. Our novel algorithm overcomes this limitation by computing
information about the flexible parts of the dynamic object and incorporating this information
into the disassembly planning.

4 Open problems

4.1 Problem 1
Jeff Erickson (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
© Jeff Erickson

Given a directed graph G embedded on a surface S of genus 2 with some marked edges,
compute whether there exists a closed walk in G with more marked edges than unmarked
edges that is contractible on S. What is the running time for solving this problem? Is this
problem even decidable?
A bit of context to the problem:

This is the simplest open special case of finding negative-weight contractible walks in
weighted directed graphs. Even the more general problem can be solved in polynomial time
for directed graphs on the torus (via homology and linear programming) or directed graphs on
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surfaces with boundary (via CFG-shortest-paths algorithms). More generally, negative-weight
walks with trivial (integer) homology on any surface can be found in polynomial time.

An affirmative answer to the following question would yield an algorithm for this problem:
Is there a function f(n), such that for any n-vertex directed graph with some edges marked,
the shortest majority-marked contractible walk has at most f(n) edges? In particular, a
polynomial bound on f(n) would imply a polynomial-time algorithm.

There is no such upper bound for negative contractible walks in real-weighted graphs.
Even in graphs with constant complexity on the torus, the shortest negative contractible walk
can be arbitrarily long. Any hardness (or undecidability) results for real-weighted graphs
and/or higher-genus surfaces would also be interesting.

4.2 Problem 2
Peyman Afshani (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Peyman Afshani

Consider the following two problems.
1. This is a weighted version of the level set problem. Consider a set P consisting of n points

in the plane. We say a subset S ⊂ P is separable if S can be separated from P \ S using
a line. Consider a function f : P → R+. Given a value w ∈ R, a separable subset S ⊆ P
is a w-set if f(S) ≤ w and for all separable sets S′ such that S ( S′ we have f(S′) > w.
Find a non-trivial upper/lower bound on the maximum number of w-sets for given w.
In particular, can we have Ω(n2) w-sets for some w? Can we prove an upper bound of
O(n3/2) for any w?

2. Given a set of n points in the plane with real-valued weight, compute a centerpoint of P ,
preferably in O(n logn) time.

4.3 Problem 3
Guillaume Moroz (INRIA Nancy – Grand Est, FR)

License Creative Commons BY 3.0 Unported license
© Guillaume Moroz

Given pairwise distinct areas of all four sides A1, A2, A3, A4, the volume V , and the radius
of the enclosing ball R, how many tetrahedra with this property exist up to isometry?

Conjecture: There exist at most 6 for any combination of those properties.
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4.4 Problem 4
Stefan Langerman (UL – Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Stefan Langerman

Given a set of points P and their Delaunay triangulation, find a vertex separator of size
nα, α < 1 in o(n logn) time for this graph. Similarly, in three dimensions, find a separator
with those properties of the graph of the convex hull.

4.5 Problem 5
Antoine Vigneron (Ulsan National Institute of Science and Technology, KR)

License Creative Commons BY 3.0 Unported license
© Antoine Vigneron

Given a partition of the plane, directional cones for each component of the partition, and
two points s and t. We want to compute whether there exists a trajectory from s to t
which respects the directional constraints. For single component directional cones there is a
O(n logn) algorithm known. For multiple components it is NP-hard. What about symmetric
cones with two components? Clarification: If the directional cones have multiple connected
components, then we are not allowed to use directions from different components during the
same visit of the area.

4.6 Problem 6
Hans Raj Tiwary (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Hans Raj Tiwary

Do there exist polytopes P1, P2, Q such that
1. P1 × P2 is a projection of Q, and
2. xc(Q) ≤ xc(P1) + xc(P2)−−1,
where xc(P ) of a polytope P denotes the minimum number of facets of any polytope that
projects to P. It is known that if either P1 or P2 is a pyramid, then this does not exist.

4.7 Problem 7
Birgit Vogtenhuber (TU Graz, AT)

License Creative Commons BY 3.0 Unported license
© Birgit Vogtenhuber

Given a straight-line drawing of a complete graph Kn and a value k ∈ N, does there exist
a 2-coloring of edges such that there are less than k monochromatic crossings? Does this
problem have a polynomial time algorithm?
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4.8 Problem 8
Hsien-Chih Chang (Duke University – Durham, US)

License Creative Commons BY 3.0 Unported license
© Hsien-Chih Chang

Given two strings A and B (n := |A|,m := |B|), does there exist a data structure with
O((nm)1−ε) preprocessing time (for some ε > 0)
Õ(m1−δ) query time for some δ > 0 checking whether LCS(A[i . . . j], B) = LCS(A[i . . . j+
1], B)

This problem is interesting for any values of m. Especially, data structure for m = nc for
some c > 0 would be sufficient. Note that computing LCS(A[i . . . j], B) is equivalent to
computing the shortest path distance from node i at the top row to node j at the bottom
row in the dynamic-programming graph, which is planar.

4.9 Problem 9
Hans Raj Tiwary (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Hans Raj Tiwary

Given 0/1 polytopes P1, P2, Q (i.e., polytopes where all vertices are in {0, 1}d) defined by
inequalities, we want to know whether P1 + P2 = Q, where the addition is the Minkowski
sum. For general polytopes this problem is known to be (co)NP-complete.

4.10 Problem 10
Suresh Venkatasubramanian (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Suresh Venkatasubramanian

Consider the n-dimensional hypercube, and given n curves αi : [0, 1]→ [0, 1]n with
αi(0) = (0, . . . , 0, 1, 0, . . . , 0), where the ith position is 1
αi(1) = (1, . . . , 1)
∀i, j ∀t ≤ t′, d(αi(t), αj(t)) ≥ d(αi(t′), αj(t′))

where d is the euclidean distance.

Question: What tools are applicable to this setting?

4.11 Problem 11
Maarten Löffler (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Maarten Löffler

Let T be a tree with n = k2 vertices. A perfect plane grid drawing of a tree is a bijection
from the tree nodes to the nodes of a regular k × k grid such that
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1. the edges are preserved and embedded by straight lines, and
2. there are no crossing edges, and
3. no edge is going through a node.

Question 1: What is the runtime of deciding whether this is possible for a tree. (NP-hard?
polynomial?)

Let d be the maximal degree of a node in T .
Question 2: What is a function of the maximal degree d(n) such that a perfect plane grid

drawing is always possible?
Question 3: Even for d = 3, is such an embedding always possible?

4.12 Problem 12
Kyle Jordan Fox (University of Texas – Dallas, US)

License Creative Commons BY 3.0 Unported license
© Kyle Jordan Fox

Given the complete graph Kn with each edge colored either red or blue, and each edge has a
non-negative edge weight. Find the minimum weight perfect matching with an odd number
of red edges.

Known: There exists a randomized pseudo-polynomial algorithm.
Question: What is the complexity of this problem?
Applications: Max cut on surface graphs, matroid girth.

4.13 Problem 13
Siu-Wing Cheng (HKUST – Kowloon, HK)

License Creative Commons BY 3.0 Unported license
© Siu-Wing Cheng

This open problem is about self-improving sorting. Given numbers x1, . . . , xn drawn in-
dependently from distributions D1, . . . , Dn, i.e. xi ∼ Di for all i. We first allow for an
arbitrarily long learning phase which has O(n1+ε) space. Then there is the limiting phase in
which we want to sort new instances in O( 1

ε (n+H)) expected time with high probability,
where H is the sum of the entropies of the Di. There was a result at ISAAC’18 about this
problem. Can more general input model be allowed?

4.14 Problem 14
Maria Saumell (The Czech Academy of Sciences – Prague, CZ & Czech Technical University
– Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Maria Saumell

Shamos [1] conjectured that the Delaunay triangulation always contains a Hamiltonian cycle.
Dillencourt [2] disproved this conjecture, but he also showed that Delaunay triangulations
are almost Hamiltonian [3], in the sense that they are 1-tough.1

1 A graph is 1-tough if removing k vertices from it results in ≤ k connected components.
19181
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Given a planar point set S and two points p, q ∈ S, the k-Delaunay graph (k-DG) with
vertex set S has an edge pq provided that there exists a disk with p and q on the boundary
containing at most k points of S different from p and q. The following question arises: What
is the minimum value of k such that the k-Delaunay graph of any point set S is Hamiltonian?
Chang et al. [4] showed that 19-DG is Hamiltonian, and Abellanas et al. [5] lowered this
bound to 15-DG. Currently, the lowest known bound is by Kaiser et al. [6] who showed that
10-DG is Hamiltonian. Despite this, it is conjectured that 1-DG is Hamiltonian [5]. Is this
conjecture true?
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