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Abstract
In this report the program and the outcomes of Dagstuhl Seminar 19202 “Approaches and Ap-
plications of Inductive Programming” is documented. After a short introduction to the state of
the art to inductive programming research, an overview of the introductory tutorials, the talks,
program demonstrations, and the outcomes of discussion groups is given.
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1 Executive Summary
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Inductive programming addresses the automated or semi-automated generation of computer
programs from incomplete information such as input-output examples, constraints, computa-
tion traces, demonstrations, or problem-solving experience [11]. The generated – typically
declarative – program has the status of a hypothesis which has been generalized by induction.
That is, inductive programming can be seen as a special approach to machine learning. In
contrast to standard machine learning, only a small number of training examples is necessary.
Furthermore, learned hypotheses are represented as logic or functional programs, that is,
they are represented on symbol level and therefore are inspectable and comprehensible
[36, 15, 37, 29]. On the other hand, inductive programming is a special approach to program
synthesis. It complements deductive and transformational approaches [39, 25, 4]. In cases
where synthesis of specific algorithm details that are hard to figure out by humans inductive
reasoning can be used to generate program candidates from either user-provided data such
as test cases or from data automatically derived from a formal specification [35]. Finally,
symbolic approaches can be combined with probabilistic methods [8, 9].
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Inductive program synthesis is of interest for researchers in artificial intelligence since the
late sixties [2]. On the one hand, the complex intellectual cognitive processes involved in
producing program code which satisfies some specification are investigated, on the other hand
methodologies and techniques for automating parts of the program development process are
explored. One of the most relevant areas of application of inductive programming techniques
is end-user programming [5, 22, 6]. For example, the Microsoft Excel plug-in Flashfill
synthesizes programs from a small set of observations of user behavior [15, 14, 13]. Related
applications are in process mining and in data wrangling [19, 21]. Inductive programming in
general offers powerful approaches to learning from relational data [30, 23] and to learning
from observations in the context of autonomous intelligent agents [28, 20, 36]. Furthermore,
inductive programming can be applied in the context of teaching programming [38, 41].

A recent new domain of interest is how to combine inductive programming with blackbox
approaches, especially in the context of (deep) neural networks [10] and in data science.

Relation to Previous Dagstuhl-Seminars
The seminar is a continuation Dagstuhl-Seminars 13502, 15442, and 17382. In the first
seminar, the focus was on establishing the research community by exploring the different areas
of basic research and applications of inductive programming and identifying commonalities
and differences in methods and goals. In the second seminar, more in-depth coverage of
algorithmic methods was provided and the relation of inductive programming to cognitive
modeling was explored. The third seminar had a main focus on applications in data cleansing,
teaching programming, and interactive training. Furthermore, first proposals for neural
approaches to learning for inductive programming were presented.

Besides many new insights from many discussions, visible outcomes from the previous
seminars are:

Muggleton, S.H., Schmid, U., Zeller, C., Tamaddoni-Nezhad, A. and T. Besold (2019).
Ultra-strong machine learning – comprehensibility of programs learned with ILP. Machine
Learning, 107(7), 1119–1140.
Schmid, U., Zeller, C., Besold, T., Tamaddoni-Nezhad, A., & Muggleton, S.H. (2017).
How does predicate invention affect human comprehensibility?. In Alessandra Russo and
James Cussens, editors, Proceedings of the 26th International Conference on Inductive
Logic Programming (ILP 2016), pp. 52-67, Springer.
Hernández-Orallo, J., Martínez-Plumed, F., Schmid, U., Siebers, M., & Dowe, D. L.
(2016). Computer models solving intelligence test problems: Progress and implications.
Artificial Intelligence, 230, 74-107.
Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggleton, S. H., Schmid, U., &
Zorn, B. (2015). Inductive programming meets the real world. Communications of the
ACM, 58(11), 90-99.
https://en.wikipedia.org/wiki/Inductive_programming
NIPS’2016 workshop on Neural Nets and Program Induction involving Stephen Muggleton.
A collaboration in the context of the EPSRC funded Human-Like Computing Network+
headed by Muggleton (see http://hlc.doc.ic.ac.uk/).

For the fourth seminar, we extend our invitation to researchers from deep learning and to
researchers addressing statistical machine learning and probabilistic reasoning. The focus
of the fourth seminar has been on the potential of inductive programming for
explainable AI, especially in combination with (deep) neural networks and with
data science.
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Inductive Programming as a Approach to Explainable AI
Recently it has been recognized that explainability is crucial for machine learning to be
usable in real world domains – especially such where erroneous decisions might be harmful
to humans. Consequently, interfaces which explain (aspects) of classifier decisions have been
proposed – especially in the context of deep learning [32, 3]. The notion of explainability has
already been addressed in the early days of machine learning: During the 1980s Michie defined
Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and
comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable
and comprehensibility not so, later definitions in the 1990s, such as that of Mitchell [27],
tended to use a one-dimensional approach to Machine Learning based solely on predictive
accuracy, ultimately favouring statistical over symbolic Machine Learning approaches.

In [29] a definition was provided of comprehensibility of hypotheses which can be estimated
using human participant trials. Experiments were conducted testing human comprehensibility
of logic programs. Results show that participants were not able to learn the relational concept
on their own from a set of examples but they were able to apply the relational definition
provided by the ILP Metagol system correctly. That is, the results demonstrate that ILP
systems can fulfill Michie’s criterion of operational effectiveness. The findings also imply
the existence of a class of relational concepts which are hard to acquire for humans, though
easy to understand given an abstract explanation. We believe improved understanding of
this class could have potential relevance to contexts involving human learning, teaching and
verbal interaction.

Finally, while research in explanations in the context of neural networks is focusing on
visualization, ILP learned classifiers allow natural language explanations. In the Dagstuhl
seminar we plan to discuss possibilities for combining deep learning approaches and inductive
programming such that both modes of explanations can be generated.

Inductive Programming for Support in Data Science
The success of the inductive programming system FlashFill has motivated the developed
of several approaches to using inductive programming in the context of data science, more
specifically data wrangling. It is well known that in data science and data mining processes,
about 80 per cent of the time goes to selecting the right data, and further pre-processing it
so that it be input into data mining software. One important step in that process is data
wrangling, which is concerned with cleaning up the data and transforming it across different
formats. For this step, inductive programs can be used; various approaches are moving in
that direction, e.g. FlashRelate [1], Tacle [19] and SYNTH [7]. Furthermore, workshops
are being organised on the topic of automating data wrangling (e.g. at ICDM 2016, http:
//dmip.webs.upv.es/DWA2016/, at ECMLPKDD 2019, https://sites.google.com/view/autods
and at Dagstuhl Seminar 18401), and tools such as MagicHaskeller and JailBreakR being
used in this context. In the Dagstuhl seminar, we also want to deepen the link between data
wrangling and inductive programming.

Inductive Programming and Neural Computation
The deep learning community has been interested in taking on challenging tasks from the
artificial intelligence community. It is therefore no surprise that they have also started to
look into inductive and automatic programming. In particular, they have contributed several
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mixtures of traditional computational models with those of neural networks. For instance,
the neural Turing machine [12] integrates a neural network with an external memory and it is
able to learn simple algorithms such as copy and sort, the neural program interpreter [31] is a
recurrent neural network that learns to represent and execute programs from program traces,
while [33] present an end-to-end differentiable interpreter for the programming language
Forth and [34, 24] for a declarative Prolog like language. The central goal in these approaches
is to obtain an end-to-end differentiable model. While initial results are promising, the
approaches still require a lot of data to be trained or need to scale up. This contrasts with the
more traditional symbolic approaches to inductive programming and thus a key opportunity
is to further cross-fertalize these two approaches.

Inductive Programming and Human-like Computing
The human ability to master complex demands is to a large extend based on the ability to
exploit previous experiences. Based on our experience, we are able to predict characteristics
or reactions of (natural or man-made, inanimate or animate) objects, we can reason about
possible outcomes of actions, and we can apply previously successful routines and strategies
to new tasks and problems. In philosophy, psychology and artificial intelligence, researchers
proposed that the core process to expand knowledge, that is, construct hypotheses, in such a
way that we can transfer knowledge from previous experience to new situations is inductive
inference [18, 16, 40].

One special aspect of induction is that humans are able to acquire complex, productive
rule sets from experience. Following Chomsky, rules are productive when they can be applied
in situations of various complexity. Typical examples of such rule sets are knowledge about
natural language grammar, recursive concepts such as ancestor and recursive problem solving
strategies. For example, if humans have learned how to solve Tower of Hanoi problems with
three and four discs, at least some of them are able to generalize the underlying strategy for
solving problems with an arbitrary number of discs.

Inductive programming provides mechanisms to generate such productive, recursive rule
sets. Examples of recent work on using inductive programming to model this learning-
capability of human cognition are [26, 20, 36, 17, 23]. Therefore, it might be fruitful for
cognitive scientists to get acquainted with inductive programming as one approach to model
the acquisition of complex knowledge structures. On the other hand, knowledge gained from
experiments in human problem solving, concept learning and language acquisition can be a
source of inspiration for new algorithmic approaches to inductive programming.

Objectives and Expected Outcomes of the Seminar
A long-term objective of the seminar series is to establish inductive programming as a
self-contained research topic in artificial intelligence, especially as a field of machine learning
and of cognitive modeling. The seminar serves as community building event by bringing
together researchers from different areas of inductive programming – especially inductive
logic programming and inductive functional programming –, from different application areas
such as end-user programming and tutoring, and from cognitive science research, especially
from cognitive models of inductive (concept) learning. For successful community building we
seek to balance junior and senior researchers and to mix researchers from universities and
from industry.

19202
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The previous seminars resulted in new collaborations between researchers from different
backgrounds as documented in joint publications and we expect that the collaborations will
continue, deepen and extend, resulting not only in further joint publications but also in joint
research projects.

In the fourth seminar, we continued and extended previous discussions addressing the
following aspects:

Identifying the specific contributions of inductive programming to machine learning
research and applications of machine learning, especially identifying problems for which
inductive programming approaches are more suited than standard machine learning
approaches, including deep learning and probabilistic programming. Focus here is
on possibilities of combining (deep) neural approaches or probabilistic programming
with (symbolic) inductive programming, especially with respect to new approaches to
comprehensibility of machine learned models and on explainable AI.
Establishing criteria for evaluating inductive programming approaches in comparison to
each other and in comparison to other approaches of machine learning and providing a
set of benchmark problems.
Discussing current applications of inductive programming in end-user programming and
programming education and identifying further relevant areas of application.
Establishing stronger relations between cognitive science research on inductive learning
and inductive programming under the label of human-like computation.
Strengthening the relation of inductive programming and data science, especially with
respect to data cleansing and data wrangling.

Concluding Remarks and Future Plans
In the wrapping-up section, we decided to move the IP webpage1 to a Wiki and encouraged
all participants to make available their systems, tutorial/lecture slides and publications there.

As the grand IP challenge we came up with 2017 is still up:

An IP program should invent an algorithm publishable in a serious journal (e.g., an
integer factorization algorithm) or win a programming competition!
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3 Introductory Talks

3.1 Introduction to Inductive Functional Programming
Ute Schmid (Universität Bamberg, DE)

License Creative Commons BY 3.0 Unported license
© Ute Schmid

Inductive programming (IP) is an area of research concerned with learning recursive programs,
typically in some declarative language, from small sets of input/output examples. Since
a general program is induced from examples, IP can be seen as a special case of machine
learning. In contrast to standard machine learning, induced program hypotheses are required
to cover all given examples correctly. In the talk I will give a general introduction to
the research area of IP and then focus on induction of functional programs. First, I will
present Thesys – the classical approach for learning Lisp programs by regularity detection.
Afterwards, I will present the more recent approach IgorII. IgorII has been the first approach
realizing necessary function invention on the fly. It integrates the concept of structure-guided
program induction from Thesys, concepts of contemporary programming languages, such
as pattern matching, as well as concepts proposed in Inductive Logic Programming (ILP),
especially allowing to take into account background knowledge. I will point out relations of
IP to cognitive models of learning, demonstrating that IgorII can be applied out of the box
to learning the recursive rule sets for problems such as Tower of Hanoi, language parsing,
and number series induction. Finally, I will present arguments for IP as a highly expressive
approach to interpretable ML.

References
1 Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggleton, S., Schmid, U., and Zorn,

B. (2015). Inductive Programming Meets the Real World, Communications of the ACM,
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4 Overview of Talks

4.1 Declarative Compression of Imperative Programs
Eli Bingham (Uber AI Labs – San Francisco, US)

License Creative Commons BY 3.0 Unported license
© Eli Bingham

Joint work of Eli Bingham, Fritz Obermeyer, Noah D. Goodman

Standard approaches to program synthesis in general-purpose imperative languages like
Python often struggle with ambiguous or inconsistent examples or produce large deterministic
programs which are difficult to interpret. These limitations can be overcome in principle
by adding randomness or other forms of nondeterminism to the language, but support for
nondeterminism is limited in existing synthesis tools and the resulting programs may only
approximately solve the tasks at hand.
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To bridge this gap, we introduce program merging, a simple algorithm for finding short
nondeterministic programs that approximate the behavior of a deterministic imperative
program. We define a family of compressive program transformations that refactor exactly
duplicated program fragments into new subroutines or replace approximately duplicated
program fragments with declarative approximations such as random variables, constraints,
or learnable parameters. Program merging searches for sequences of such transformations
applied to an initial program that maximize the posterior probability of the final program
given the original examples or specification.

The resulting programs may mix multiple intractable declarative computations (in the form
of nested sums over multiple semirings). As a step towards principled and efficient approximate
evaluation of such programs, we introduce Funsor, a Python-embedded domain-specific
language for mixed-mode declarative programming with an initial focus on approximate
probabilistic inference and gradient-based optimization.

4.2 Difficulty of problems for humans
Ivan Bratko (University of Ljubljana, SI)
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Joint work of Ivan Bratko, Matej Guid, Dayana Hristova, Simon Stoiljkovikj

Some questions of interest for Explainable AI are: (1) How difficult a given problem is for
humans, and how humans would typically tackle the problem? (2) How can we measure the
comprehensibility of a theory or of an explanation? In this talk we discuss one approach to
automatic prediction of difficulty for humans of problems that are solved through informed
search. Although there are many applications that require prediction of difficulty, for example
intelligent tutoring systems, in our case the motivation came from a computer analysis of the
quality of play in chess games played by human world chess champions. This analysis aimed
at answering questions like who was the best chess player of all time. The quality of play was
estimated on the basis of the differences between moves played by humans and moves played
in the same positions by a chess playing engine taken as the golden standard. Different
chess champions tended to play in different styles: some tended towards simple, quiet and
safe positions, while others preferred complicated, aggressive and risky game. As it is easier
to play correctly in simple positions than in complex positions, our evaluation method, to
be fair, also had to take into account the difficulty of individual positions that occurred in
champions games. Our method of assessing the difficulty of chess positions was based on
the amount of search needed by the chess engine to find the best move. This enabled a fair
comparison of players with different playing styles, and to answer questions like: How well
would a player like Capablanca, known for his tendency to simplify the game, do if he played
in the style of Tal, known for his tendency toward extremely complicated positions. Although
this approach was generally successful in the comparison of world champions, it was later
found inappropriate for estimating the difficulty of particular type of positions, called tactical
chess positions. In solving tactical positions, humans use pattern-based knowledge to guide
their search extremely effectively. As this knowledge has never been sufficiently formalized
for use in a chess program, a refinement was needed to simulate human search by a chess
program without access to humans’ pattern-based tactical knowledge.
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4.3 Trace-Based Programming Method
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We describe a programming method for systematically implementing sequential algorithms
in any imperative or functional programming language. The method is based on the premise
that it is easy to write down how an algorithm proceeds on a concrete input. This information–
which we call execution trace–is used as a starting point to derive the desired program. In
contrast to test-driven development the program is directly constructed from the test cases
instead of written separately. The program’s operations, control flow and predicates guiding
the control flow are worked out separately, which saves the programmer from having to
think about them simultaneously. This reduces the likelihood of introducing errors. We
demonstrate our method for two examples and discuss its utility. The method only requires
pen and paper. However, a computer can facilitate its usage by taking care of certain trivial
tasks.

Outline of the method. The execution trace of an algorithm can be seen as a table where
each column corresponds to a variable. The i-th row contains the values of the variables
after i execution steps of the algorithm for a certain input. The first step is to determine the
set of variables used by the algorithm. Then an input is chosen and an execution trace for
this input is written down. The next step is to generalize the literals in this table. More
specifically, one has to determine how each value in row i+ 1 can be expressed in terms of
the values in row i. After removing the literals from the table, the sequence of expressions
that is left in each row corresponds to an operation executed by the algorithm. Certain
rows correspond to the same operation. This information can be used to derive the control
flow graph of the desired program. Assume the i-th row corresponds to the operation α(i).
Then the graph has a vertex for each operation and for each i there is an edge from α(i) to
α(i+ 1). Stated differently, the sequence of operations in the table describes a path through
the control flow graph. By repeating the previous steps for various inputs one will eventually
arrive at the complete control flow graph of the program. Finally, it remains to determine
the edge predicates, i.e. under what circumstances does the program move from one program
state to the next.

The method works in such a way that the constructed program is consistent with all
execution traces that were used to build it. A one-to-one correspondence between program
states and operations is assumed. Intuitively, this means each line of code in a program must
be unique. While this is not necessarily the case, this can always be achieved by adding a
state variable.
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Figure 1 Automating data wrangling with IP: process example. The first row (Input and Output)
is used as an input example for the IP system. The function returned is applied to the rest of the
instances to obtain the outputs.

4.4 Automated Data Transformation with Inductive Programming and
Dynamic Background Knowledge

Lidia Contreras-Ochando (Technical University of Valencia, ES)
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Data quality is vital for machine learning and data science. Despite the growing amount of
data preparation tools, the most tedious data wrangling activities and feature manipulation
are still partially resistant to automation because they depend heavily on domain information.
For example, if the strings “17th of August of 2017” and “2017-08-17” are to be formatted
into “08/17/2017” to be correctly recognised by a data science tool, this is generally processed
in two phases: (1) they are recognised as dates and (2) some conversions are applied specific
to the date domain. The dates manipulating processes, however, are very distinct from those
for manipulating addresses or phone numbers. This needs enormous quantities of background
knowledge, which generally becomes a bottleneck as domain and format diversity grows. We
assist to relieve this issue by using inductive programming (IP) with dynamic background
knowledge (BK) fuelled by a machine learning meta-model that chooses the domain, the
primitives (or both) from some descriptive features of the data wrangling problem (see Figure
1). We demonstrate this for the automation of data transformation and we evaluate the
approach on an integrated benchmark for data wrangling, which we share publicly for the
community.
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4.5 Inductive general game playing
Andrew Cropper (University of Oxford, GB), Richard Evans (Google DeepMind – London,
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General game playing (GGP) is a framework for evaluating an agent’s general intelligence
across a wide range of tasks. In the GGP competition, an agent is given the rules of a game
(described as a logic program) that it has never seen before. The task is for the agent to
play the game, thus generating game traces. The winner of the GGP competition is the
agent that gets the best total score over all the games. In this paper, we invert this task: a
learner is given game traces and the task is to learn the rules that could produce the traces.
This problem is central to inductive general game playing (IGGP). We introduce a technique
that automatically generates IGGP tasks from GGP games. We introduce an IGGP dataset
which contains traces from 50 diverse games, such as Sudoku, Sokoban, and Checkers. We
claim that IGGP is difficult for existing inductive logic programming (ILP) approaches. To
support this claim, we evaluate existing ILP systems on our dataset. Our empirical results
show that most of the games cannot be correctly learned by existing systems. The best
performing system solves only 40% of the tasks perfectly. Our results suggest that IGGP
poses many challenges to existing approaches. Furthermore, because we can automatically
generate IGGP tasks from GGP games, our dataset will continue to grow with the GGP
competition, as new games are added every year. We therefore think that the IGGP problem
and dataset will be valuable for motivating and evaluating future research.
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4.6 Playgol: learning programs through play
Andrew Cropper (University of Oxford, GB)
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Children learn though play. We introduce the analogous idea of learning programs through
play. In this approach, a program induction system (the learner) is given a set of tasks and
initial background knowledge. Before solving the tasks, the learner enters an unsupervised
playing stage where it creates its own tasks to solve, tries to solve them, and saves any
solutions (programs) to the background knowledge. After the playing stage is finished, the
learner enters the supervised building stage where it tries to solve the user-supplied tasks
and can reuse solutions learnt whilst playing. The idea is that playing allows the learner to
discover reusable general programs on its own which can then help solve the user-supplied
tasks. We claim that playing can improve learning performance. We show that playing can
reduce the textual complexity of target concepts which in turn reduces the sample complexity
of a learner. We implement our idea in Playgol, a new inductive logic programming system.
We experimentally test our claim on two domains: robot planning and real-world string
transformations. Our experimental results suggest that playing can substantially improve
learning performance. We think that the idea of playing (or, more verbosely, unsupervised
bootstrapping for supervised program induction) is an important contribution to the problem
of developing program induction approaches that self-discover BK.

4.7 Inductive Programming and Constraint Learning for Automated
Data Science

Luc De Raedt (KU Leuven, BE)
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The SYNTH approach on automated data science was presented. It is centred around a
simple but non-trivial “autocompletion” setting for automating data science. Given are a set
of worksheets in a spreadsheet and the goal is to automatically complete some values. The
SYNTH approach has several components that are based on inductive programming. This
includes the data wrangling work (that was presented by Gust Verbruggen, this volume)
and the work on constraint learning. This talk focussed especially on inductively learning
constraints from examples. Although constraints are ubiquitous in artificial intelligence,
there are only few approaches that learn them.
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4.8 Contrastive Explanations: Status and Future
Amit Dhurandhar (IBM TJ Watson Research Center – Yorktown Heights, US)
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With the widespread adoption of AI technologies across society, explainability as a tool to
understand and build trustworthy systems has become an endeavor of utmost importance.
This has implications in building systems that are not only robust but also fair and accountable.
In my talk I will present our recent work on contrastive explanations and along with future
directions. An explanation being contrastive is considered to be the most important aspect
of an explanation [1] followed by it being selective. Our method is able to achieve both
where we generate contrastive explanations that are also sparse. We show how to generate
these explanations for images as well as tabular data for complex models such as deep neural
networks. We then generalize our approach to be also applicable in model agnostic settings.
Generating such explanations for text is part of future work given that we want to change a
piece of text by minimal amount, yet create semantically correct text that lies in a different
class. An extremely interesting and ambitious direction is to learn boolean features using our
explanations and create a simple model using them that can potentially replicate a complex
models performance.
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4.9 Apperception
Richard Evans (Google DeepMind – London, GB) and José Hernández-Orallo (Technical
University of Valencia, ES)
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This work is an attempt to answer a central question in unsupervised learning: what does
it even mean to “make sense” of a sensory sequence? Imagine a machine, equipped with
sensors, receiving a stream of sensory information. It must, somehow, make sense of this
stream of sensory data. But what does it mean, exactly, to “make sense” of sensory data?
We have an intuitive understanding of what is involved in making sense of the sensory stream
– but can we specify precisely what is involved? Can this intuitive notion be formalized?

In this paper, we make two contributions. First, we provide a precise formalization of
what it means to “make sense” of a sensory sequence. According to our definition, making
sense of a sensory sequence involves constructing a symbolic causal theory that explains
the sensory sequence and satisfies a set of unity conditions that were inspired by Kant’s
discussion of the “synthetic unity of apperception” in the Critique of Pure Reason. According
to our interpretation, making sense of sensory input is a type of program synthesis, but it is
unsupervised program synthesis.

Our second contribution is a computer implementation, the Apperception Engine, that
was designed to satisfy our requirements for making sense of a sensory sequence. Our system
is able to produce interpretable human-readable causal theories from very small amounts
of data, because of the strong inductive bias provided by the Kantian unity constraints. A
causal theory produced by our system is able to predict future sensor readings, as well as
retrodict earlier readings, and “impute” (fill in the blanks of) missing sensory readings. In
fact, it is able to do all three tasks simultaneously.

We tested the engine in a diverse variety of domains, including cellular automata, rhythms
and simple nursery tunes, multi-modal binding problems, occlusion tasks, and sequence
induction IQ tests. In each domain, we test our engine’s ability to predict future sensor
values, retrodict earlier sensor values, and impute missing sensory data.The Apperception
Engine performs well in all these domains, significantly out-performing neural net baselines.
These results are significant because neural nets typically struggle to solve the binding
problem (where information from different modalities must somehow be combined together
into different aspects of one unified object) and fail to solve occlusion tasks (in which objects
are sometimes visible and sometimes obscured from view). We note in particular that in
the sequence induction IQ tasks, our system achieved human-level performance. This is
notable because the Apperception Engine was not designed to solve these IQ tasks; it is not
a bespoke hand-engineered solution to this particular domain. Rather, it is a general purpose
apperception system for making sense of *any* sensory sequence, that just happens to be
able to solve these IQ tasks out of the box.
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4.10 Machine Teaching with P3
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Machine Teaching is a problem based on finding a minimal subset of examples (or witness set)
from which a learner can induce a concept. Traditionally, machine teaching techniques employ
the notion of “teaching dimension”. This dimension is linked to a concept and is defined as
the minimum cardinality of a witness set for learning the concept. In this work, we present
some limitations of the notion of teaching dimension, and, motivated by these drawbacks, we
introduce the definition of “teaching size” that expresses the the size of the shortest witness
set needed to identify the concept. We study some theoretical properties of this definition in
the general machine teaching framework. Experiments over as on a simple Turing-complete
language are used to show important differences between the teaching dimension and the
teaching size. Concretely, we use P3, a version of P”, a primitive programming language
introduced in 1964 by Corrado Böhm. P3 is Turing complete and uses just 7 instructions.
We present some interesting results about the relationship between the teaching dimension
and the teaching size when inducing simple concepts in the P3 language.
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4.11 A potpourri of things we’ve worked on that at some point
seemed to be relevant for this workshop.

Johannes Fürnkranz (TU Darmstadt, DE)
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Having not been active in inductive programming for several years, I arrived at this workshop
with the predisposition to listen and learn. I was surprised to find that several discussion
directly related to work that we have been doing in the past, and gave a spontaneous talk
that summarized some of these results. The issues that we touched upon included inductive
programming, interpretability and rule learning, learning in games, and multi-label rule
learning.

To inductive programming, I could not add much, but was surprised that an ancient,
long-forgotten paper of mine popped up during dinner conversations [1].

Interpretability is currently a very fashionable topic in machine learning. Our work
particularly focuses on the aspect that although rules are inherently comprehensible, in the
sense that they can be read and interpreted, their interpretability should nevertheless not be
taken for granted and requires a deeper investigation. In particular, we have challenged the
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view that shorter rules should be preferred and argued instead that in many cases, longer
rules may yield better explanations, even in cases when the discriminative power of both
rules is approximately the same [8]. We have shown in a crowd-sourcing study that humans
do not necessarily prefer shorter rules [3], and have argued for an interpretability bias in rule
learning algorithms [2].

In multi-label rule learning, the key challenge is that labels can occur both in the head of
the rules, but also as potential inputs in the body of the rules [5]. This gives rise to several
interesting challenges that appear in similar form in ILP, such as multi-predicate learning
and the challenge of learning mutually recursive rules. Our work so far includes adaptations
of the covering strategy [4] as well as pruning techniques for efficiently determining the best
multi-label head to a rule body [7].

Finally, a significant portion of the discussion revolved about chess endgame and strategy
learning as a test bed for inductive programming, which reminded me of (unpublished) work
I did in the mid-90s. Since then, we have continued to work on strategy learning in chess,
albeit not relying on IP. For example, we have attempted to learn evaluation functions
for players of different strengths, where some of the qualitative results seemed reasonable
(important positional features received more recognition by stronger players, whereas material
values were approximately evaluated the same), but the overall playing strength was found
to be dominated by the search algorithm [6]. The adaptation of search strategies to different
playing strengths is still an open problem. In another work, we used preference learning to
learn evaluation functions from annotated chess games [9].
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4.12 What is (Machine) Teaching with Universal Languages? PbE, IP
or more?

José Hernández-Orallo (Technical University of Valencia, ES)
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One classical view of Inductive Logic Programming (ILP) places it at the intersection between
Logic and Learning, while Inductive Programming (IP) would be at the intersection between
Programming and Learning. In both cases, there are two remarkable advantages over some
other inductive techniques and general machine learning methods: learning can work from
very few examples and the models are interpretable. However, when we look at the range of
learning scenarios, they go from the common situation where there is no control of the data
by the learner, as in many machine learning applications, to situations where the learner
has some control (active learning and reinforcement learning), but also to situations where
there is a teacher that can select these examples. (Note that learning by demonstration
can fall in any of these three categories). Interestingly, when we have a teacher (or user)
that wants to demonstrate a concept or a procedure (to a machine), we have a teaching
situation, and if coupled with a representation based on programs, we end up in the area
of Programming by Example (PbE), the learner is able to write the program that has the
behaviour that is shown by a few examples carefully selected by a teacher (or user). In the
presentation I gave a short introduction to the area of machine teaching, which has derived
theoretical results about the efficiency of teaching in terms of the teaching dimension, defined
as the minimum number of examples that are required so that the learner identifies the
concept unequivocally. I argued that in the machine teaching field there were no results for
rich languages, defined as those that manipulate structured objects and recursions, which
are those that are common in PbE, ILP and IP. I then presented the key ideas of a recent
paper [1] that shows results for Turing Machines and Finite State Automata for the expected
value of a variant of the teaching dimension that assumes a strong learning prior based on
simplicity and a similar sampling prior for the teacher. We make the priors explicit and show
why they are important, arguing that we will not teach computers efficiently if we cannot
align priors. As potential applications, we do not need to consider both learner and teacher
as machines. So we could look at teaching from a more general perspective: theoretical or
computational teaching rather than machine teaching. If the learner is a machine and the
teacher is a human, we have a common situation where humans have to teach computers,
and in the case of inductive programming this is fully identified with PbE, where we can
now better understand what examples the human should select and why. If the learner is a
human and the teacher is a machine, we are in an explanation situation, and this can be
used to understand how key examples must be chosen so that the human can identify the
concept or behaviour that is hidden behind the machine. Finally, some of the problems that
we found appear because we ignore the size of the examples, which finally leads us to the
new notion of teaching size, introduced in a different paper [2] and presentation.
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4.13 Can Meta-Interpretive Learning outperform Deep Reinforcement
Learning of Evaluable Game Strategies?

Céline Hocquette (Imperial College London, GB) and Stephen H. Muggleton (Imperial College
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World-class human players have been outperformed in a number of complex two person
games (Go, Chess, Checkers) by Deep Reinforcement Learning systems. However, owing to
tractability considerations minimax regret of a learning system cannot be evaluated in such
games. In this work we consider simple games (Noughts-and-Crosses and Hexapawn) in which
minimax regret can be efficiently evaluated. We use these games to compare Cumulative
Minimax Regret for variants of both standard and deep reinforcement learning against two
variants of a new Meta-Interpretive Learning system called MIGO. In our experiments all
tested variants of both normal and deep reinforcement learning have worse performance
(higher cumulative minimax regret) than both variants of MIGO on Noughts-and-Crosses
and Hexapawn. Additionally, MIGO’s learned rules are relatively easy to comprehend,
and are demonstrated to achieve significant transfer learning in both directions between
Noughts-and-Crosses and Hexapawn.

4.14 DreamCoder: Growing Deep Domain Expertise with Wake/Sleep
Program Learning

Kevin Ellis (MIT – Cambridge, US)
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Tenenbaum, Armando Solar-Lezama

Human domain expertise hinges upon both explicit, declarative concepts and implicit, pro-
cedural skill in deploying those concepts to solve new problems. We present a computational
model that jointly acquires both these kinds of domain expertise. The model represents
solutions to problems as programs, meaning that its domain-expertise takes the form of
knowledge about how to write code. It learns this domain expertise through a wake/sleep
algorithm, alternating between writing code (during waking) and improving its declarative
knowledge (during sleep) by growing out a library of reused library routines. During sleep
the model also trains a neural network on randomly generated programs, or “dreams”, where
the network is trained to guide program search, capturing features of implicit procedural skill
in writing code. The learned library routines build on one another, forming a deep hierarchy
of explicit declarative knowledge.
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4.15 Facilitating research on explainability of (RDF) rule learning:
Interactive software systems and crowdsourcing studies

Tomáš Kliegr (University of Economics – Prague, CZ)
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This talk covered several interactive academic machine learning software systems based on
association rule learning, which is an algorithmic approach for generating exhaustive sets of
rules from data that meet user-specified quality requirements. We also report on algorithmic
research aimed at reduction of size of rule models, and on cognitive experiments focused
on understanding interpretability of rules discovered with association rule learning. Finally,
subject of ongoing work is finalization of a rule editor aimed at cognitive science experiments
with rules. This will allow to transition from questionnaire-based data elicitation setup to a
more realistic setting.

EasyMiner [6] is an interactive rule learning system for discovering association rules.
EasyMiner uses the Classification-based on Associations algorithm (CBA) [1] to generate
rule-based classification models from tabular data. A comparison of CBA with follow-up
association rule classification algorithms shows that CBA provides very good balance between
speed of learning, predictive performance, and understandability of the resulting models.
Possibly the biggest limitation of CBA is that it tends to generate larger models in terms of
rule count than some related algorithms. We presented the Quantitative CBA algorithm
(QCBA) [3], which makes CBA models smaller by recovering some of the information lost
during discretization of numeric attributes.

RDF Rules [7] is a framework for extracting horn clauses from RDF-style knowledge
bases that is based on the the AMIE+ [2] algorithm. Experiments presented in [2] show
that AMIE+, an association rule learning approach, can be orders of magnitude faster than
ALEPH, which is based on principles of Inductive Logic Programming (ILP). The main
enhancements in RDF Rules compared to AMIE+ include support for preprocessing of
numerical data, top-k approach and a new pattern language for limiting the search space.
These new features make the framework more practical to use and even faster on some types
of tasks. The RDF Rules reference implementation also contains a web-based user interface.

The second part of the presentation was devoted to on-going experimental research on
explainability of rule models. We briefly summarized two working papers. The first paper
[5] reviews possible effects of about twenty cognitive biases on interpretation of rule-based
machine learning models. The second paper [4] reports on several user studies aimed at
assessing effect of selected psychological phenomena on plausibility of learnt rules. There was
also a brief demo of currently developed functionality of EasyMiner, which is a rule editor
with features specifically designed for crowdsourced experiments on explainability.

A discussion followed on the possibilities for adapting presented association rule learning
frameworks for current challenges facing ILP.
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4.16 Inductive Learning of Answer Set Programs
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In recent years, non-monotonic Inductive Logic Programming (ILP) has received growing
interest. Specifically, several new learning frameworks and algorithms have been introduced
for learning under the answer set semantics, allowing the learning of common-sense knowledge
involving defaults and exceptions, which are essential aspects of human reasoning.

The first part of this talk will present our recent advances which have extended the
theory of ILP and yielded a new collection of algorithms, called ILASP (Inductive Learning
of Answer Set Programs), which are able to learn ASP programs consisting of normal rules,
choice rules and both hard and weak constraints. Learning such programs allows ILASP to
be applied in settings which had previously been outside the scope of ILP. In particular, weak
constraints represent preference orderings, and so learning weak constraints allows ILASP to
be used for preference learning.

In the second part, we will present a recent noise-tolerant version of ILASP, which has
been successful at learning both from synthetic and from real data sets. In particular, we
have shown that on many of the data sets ILASP achieves a higher accuracy than other ILP
systems that have previously been applied to those same data sets.
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4.17 Representing and Learning Grammars in Answer Set
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In this paper, we introduce an extension of context-free grammars called answer set grammars
(ASGs). These grammars allow annotations on production rules, written in the language
of Answer Set Programming (ASP), which can express context-sensitive constraints. We
investigate the complexity of various classes of ASG with respect to two decision problems:
deciding whether a given string belongs to the language of an ASG and deciding whether
the language of an ASG is non-empty. Specifically, we show that the complexity of these
decision problems can be lowered by restricting the subset of the ASP language used in the
annotations. To aid the applicability of these grammars to computational problems that
require context-sensitive parsers for partially known languages, we propose a learning task
for inducing the annotations of an ASG. We characterise the complexity of this task and
present an algorithm for solving it. An evaluation of a (prototype) implementation is also
discussed.

4.18 Using Association Rule Learning for Verification of Configuration
Files

Ruzica Piskac (Yale University – New Haven, US)
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Traditionally software synthesis is trying to automatically derive code that corresponds to
some specification. The specification can be given explicitly, or it is stated in the form of
given input-output examples illustrating the intentional code behavior. However, sometimes
the main challenge is actually to derive the specification itself.

Using verification for configuration files as our main motivation, we learn specification
from a given set of configuration files. This set might also contain faulty configuration files.
Software failures resulting from configuration errors have become commonplace as modern
software systems grow increasingly large and more complex.

We describe a framework which analyzes data sets of correct configuration files and learns
rules for building a language model from the given data set. Our framework is based on a
generalized association rule learning.
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4.19 Generating Explanations for IP Learned Models
Ute Schmid (Universität Bamberg, DE)
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Inductive (logic) programming provides interpretable, human-inspectable, explicitly repres-
ented models. However, a symbolic model per se might not be easily comprehensible for
humans, especially such humans without a background in programming. To make models
comprehensible to domain experts and other end-users, it is therefore necessary to explain
model decisions. I will argue that a variety of explanation modes – verbal, visual, and
example-based – should be made available to accomodate different personal and situational
needs. A current challenge is to combine verbal explanations with visual information. Here
we explore different strategies to automatically infer perceptual/spatial features and relations
which can be used in the context of symbolic models.
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4.20 Semantically Aware Data Wrangling
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We show how to use predictive synthesis for automatically wrangling spreadsheets into
machine learning formats, introduce semantic spreadsheet segmentation as a way to provide
feedback during wrangling and explore how such a predictive synthesizer can be trained from
scratch.
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5 Discussion groups

5.1 Neuro-symbolic integration
Richard Evans (Google DeepMind – London, GB), Eli Bingham (Uber AI Labs – San
Francisco, US), Eneldo Loza Mencía (TU Darmstadt, DE), Harald Ruess (fortiss GmbH –
München, DE), Johannes Rabold (Universität Bamberg, DE), Kevin Ellis (MIT – Cambridge,
US), Ute Schmid (Universität Bamberg, DE)
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We discussed two different approaches to neuro-symbolic integration. In the first, we try to
extract interpretable features from standard neural networks (MLPs, CNNs, RNNs). In the
second, we implement a hybrid neuro-symbolic architecture that was designed in advance to
allow extraction of interpretable features.

When considering the first approach, standard neural networks tend to suffer from what
McCarthy called the “propositional fixation”: insofar as they learn rules at all, they tend to
be rules of propositional logic, not first-order logic. This means the rules do not generalize
well. E.g. you train an RNN to reverse a list of length 5, and test it on lists of length 7,
and it fails. This means that if we want to extract logical information from a standard
neural network, it should be propositional logic, not first-order logic. So we should look at
extracting propositional rules, decision-trees, or state-machines – not full first-order rules.

Related work on this approach includes: LIME, LRP (Layerwise Relevance Propagation),
www.heatmapping.org, prototype-based neural network layers: https://arxiv.org/abs/1812.
01214, neural stethoscopes: https://arxiv.org/abs/1806.05502, interpretable CNNs: https:
//arxiv.org/abs/1901.02413, and extracting decision trees from NNs: https://papers.nips.cc/
paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf.

In the second approach, the key question is: what form should the hybrid architecture
take? One homogenous system for both low-level features and high-level rules, or two distinct
systems that communicate? We considered various options. (1) End-to-end differentiable.
Create a differentiable ILP system and learn the high-level rules and the low-level classifiers
jointly using SGD. Example: https://arxiv.org/abs/1711.04574. (2) End-to-end SMT. Model
the neural classifiers in SMT and learn the high-level rules and low-level classifiers jointly
using SMT. Example: https://homes.cs.washington.edu/~bornholt/post/nnsmt.html. (3)
End-to-end SAT solver. Binarize the neural net classifier and learn the high-level rules
and low-level classifiers jointly using SAT. Example of using SAT for binarized networks:
https://arxiv.org/pdf/1710.03107.pdf. (4) Two distinct systems: we have a neural net for
classifiers and a separate symbolic ILP system for learning rules. We hope the classifications
learned by the net are useful for the ILP system.

Related work for the second approach includes:
DeepProbLog: https://arxiv.org/pdf/1805.10872.pdf
Learning Explanatory Rules from Noisy Data: https://arxiv.org/abs/1711.04574
The Neural Theorem Prover: https://arxiv.org/pdf/1705.11040.pdf
Neural-symbolic integration: https://arxiv.org/abs/1711.03902
NeSy: http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=74066
&copyownerid=108715
Neural Logic Machines: https://openreview.net/forum?id=B1xY-hRctX
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Combining LIME with ILP for relational explanations: https://link.springer.com/chapter/
10.10072F978-3-319-99960-9_7
Investigating human priors for general game playing: https://arxiv.org/abs/1802.10217

5.2 Language primitive bias engineering for generality
José Hernández-Orallo (Technical University of Valencia, ES), Eli Bingham (Uber AI Labs
– San Francisco, US), Lidia Contreras-Ochando (Technical University of Valencia, ES),
Andrew Cropper (University of Oxford, GB), Kevin Ellis (MIT – Cambridge, US), Tomáš
Kliegr (University of Economics – Prague, CZ), Michael Siebers (Universität Bamberg, DE),
and Gust Verbruggen (KU Leuven, BE)
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In this working group we explored different ways in which a knowledge base or library of
predicates or functions (we will use the term primitive) can be improved so that we get
results for a general range of problems, by the introduction or invention of new ones, their
abstraction or by the selection (or forgetting) of those that are least useful. Note that this is
different from the common situation in which we choose the appropriate domain knowledge
for a particular example, or the most appropriate schemas or meta-rules for one or more
problems. Here we want to explore the way in which the primitives that can be used to reduce
the depth of the search space in a learning problem, while keeping breadth at a reasonable
level. All this is related to some ideas in psychology or AI (empowerment, curiosity, intrinsic
motivation, meta-learning, self-play, etc.) and compositionality (and of course learning to
learn).

We started with a discussion on some novel ways in which the use of self-generation or
playing with tasks and examples can make these libraries improve. Note that by sampling
tasks and “playing” with them we can improve the bias, even if we are not given domain
knowledge. Basically we can create new more abstract primitives that we can reuse and
the system is better learning new (and especially more complex) problems. This is possible
because there are many redundant programs and a few components appear in many programs,
especially those that compress the examples, and also because search cost has breadth as the
base and depth in the exponent.

For the approach of generating a sample and use learning as a way of improving the
library, we addressed a few issues during the discussion:

What we sample. There are two main alternatives: to sample on the data (problem space)
or by sampling programs (solution space) and using them to get the data. If we sample the
data, we can use a uniform distribution on limited-size inputs and outputs (e.g., Andrew’s
paper [1]), or some other distribution for more complex cases (interactive settings). If we
sample the programs, we can use a distribution that is inspired by the domain (e.g., a
stochastic grammar, Kevin’s paper [2]), or we can use a different distribution, but still
the system can learn to learn (or we can use a language for generating programs that is
different from the language we are using for learning them). In both cases if we adjust
the bias to be more efficient for the generated data, we have a system that gets better
incrementally. But would this converge?
How can we do this sampling better than random? This is motivated because even
playing has a cost, and we don’t want to play (or mind play) with millions of examples.

https://link.springer.com/chapter/10.10072F978-3-319-99960-9_7
https://link.springer.com/chapter/10.10072F978-3-319-99960-9_7
https://arxiv.org/abs/1802.10217
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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The distribution may generate very similar cases again and again: this is the same as in
sampling theory where we want to cover the space with very few instances. One idea is a
diversity of tasks. How can diversity be measured?
What are good examples for trying this? There are potential problem domains suitable
for playing, and building new Lego designs seemed especially promising. Rebrickable
(https://rebrickable.com/) is a web site with lots of existing Lego build instructions. A
similar (simpler) setting is Build Battle in Malmo, where different configurations of bricks
have to be reproduced by the agent (see, e.g., http://microsoft.github.io/malmo/blog/
BuildBattle/Introduction/)

Then we explored the actual ways in which we can improve the (use of) the background
knowledge (or the library)? We discussed whether forgetting (dropping least useful primitives
or predicates) could be useful. Where in humans and other previous studies (e.g., gErl, [3])
it works. In other systems (e.g., Metagol, [1]) it doesn’t help much. There may be some
reasons for this, such as noise, or perhaps the fact that some of these systems are simply
robust to overfitting. Also, we remember that breadth is on the base and not the exponent
of the search cost.

So perhaps this is why ranking or selecting primitives by relevance is more useful and
general than forgetting ([2], [4]). One interesting question in this approach is whether we
need two “modules”: one for solving the learning problem and another one for calculating
the relevance? Could we think of an integrated system instead? Or something behind, such
as causal model of the world that could exclude many primitives or knowledge rules?

In any case, the choice of relevance for this process is key. Do we agree on the metrics
for the second module, i.e., for relevance? There are dependencies (e.g., primitive A is
useless if you introduce primitive B) so a single score (as the one used for the rankings)
is a simple option, but some other structures could be more powerful (a relevance graph
with dependencies). Apart from the relevance metrics, we want metrics to analyse if the
knowledge we extract gets more coherent or abstract, or more explainable.

As an action from this group we suggested to explore metrics for relevance (e.g., a primitive
is relevant if removing it makes search deeper, a primitive is relevant if adding it makes
average depth shorter) and generality (e.g., a primitive is generally useful = aggregation of
relevance for a wide range of problems).

So solving this optimisation problem depends on finding the size (and composition) of
this set of primitives in terms of the time (or effort, measured in bits of the solution) for
solving a range of problems (see Figure 2).
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Figure 2 The plot shows that the optimal curve has a minimum, but we may only discover/ap-
proximate a curve above (through sampling or assuming a strong prior) that may have a different
minimum.
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We are interested into learning strategies for a variety of games, that can be played with
one or several players. Chess endgames are rich and challenging enough which allow to
demonstrate convincing results. Another advantage is that minimax databases can be
computed and provide a basis for learning, and a baseline for comparison. Examples of such
endgames are KRK or KPRKR. Games are equivalent to fully quantified boolean formula.
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Determining a strategy is proving the truth of such sentences, for instance with SAT-solving
approaches.Incomplete information games such as card games can be solved following an
extension of the minimax algorithm. A minimax game tree can be build for each possible
world. The strategy is then to minimize the expectation of the regret over several worlds.
Another categories of games interesting for the AI community is video games, for which a
standing example is the Atari games.
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