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The Graph Colouring problem is to label the vertices of a graph with the smallest possible
number of colours in such a way that no two neighbouring vertices are identically coloured.
Graph Colouring has been extensively studied in Computer Science and Mathematics due
to its many application areas crossing disciplinary boundaries. Well-known applications of
Graph Colouring include map colouring, job or timetable scheduling, register allocation,
colliding data or traffic streams, frequency assignment and pattern matching. However,
Graph Colouring is known to be computationally hard even if the number of available colours
is limited to 3.

The central research aim of our seminar was to increase our understanding of the
computational complexity of the Graph Colouring problem and related NP-complete colouring
problems, such as Precolouring Extension, List Colouring and H-Colouring. The approach
followed at the seminar for achieving this aim was to restrict the input of a colouring problem
to some special graph class and to determine wether such a restriction could make the
problem tractable.

As input restriction, the main focus was to consider hereditary graph classes, which
are those classes of graphs that are closed under vertex deletion. Hereditary graph classes

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Graph Colouring: from Structure to Algorithms, Dagstuhl Reports, Vol. 9, Issue 6, pp. 125–142
Editors: Maria Chudnovsky, Daniel Paulusma, and Oliver Schaudt

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/19271
http://dx.doi.org/10.4230/DagRep.9.6.125
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de


126 19271 – Graph Colouring: from Structure to Algorithms

provide a unified framework for a large collection of well-known graph classes. The reason
for this is that a graph class is hereditary if and only if it can be characterized by a (unique)
set H of minimal forbidden induced subgraphs. This property enables a systematic study
into the computational complexity of a graph problem under input restrictions. For instance,
one can first restrict the input to some hereditary graph class for which H is small, say H
has size 1 or 2, or for which H consists of small graphs only.

In line with the seminar’s research aim, the seminar brought together researchers from
Discrete Mathematics, working in structural graph theory, and researchers from Theoretical
Computer Science, working in algorithmic graph theory. In total, 45 participants participated
from 14 different countries.

The scientific program of the seminar consisted of 23 sessions: 4 one-hour survey talks,
17 contributed talks of at most thirty minutes and 2 open problem sessions. This left ample
time for discussions and problem solving.

Each of the four survey talks covered a particular structural or algorithmic key aspect of
the seminar to enable collaborations of researchers with different backgrounds. On Monday,
Sophie Sprikl presented a state-of–the-art summary of the Graph Colouring problem for
H-free graphs and gave the main ideas and techniques behind an important, recent result in
the area, namely a polynomial-time algorithm for colouring P6-free graphs with at most four
colours. On Tuesday, Marcin Pilipczuk gave a tutorial on the framework of minimal chordal
completions and potential maximal cliques. This technique plays a crucial role for solving
the Maximum Independent Set problem on some hereditary graph classes, but has a much
wider applicability. On Wednesday, Bart Jansen gave a presentation on the parameterized
complexity of the Graph Colouring problem and related colouring problems. Due to a large
variety of possible parameterizatons, Jansen’s talk covered a wide range of open problems.
On Thursday, Konrad Dabrowski gave an introduction to the clique-width of hereditary
graph classes. If a graph class has bounded clique-width, then Graph Colouring and many
other NP-hard problems become polynomial-time solvable. Hence, as a first step in the
design of a polynomial-time algorithm, one may first want to verify if the clique-width (or
any equivalent width parameter) of the graph class under consideration is bounded.

The two general open problem sessions took place on Monday and Tuesday afternoon.
Details of the presented problems can be found in the report, together with abstracts of all
the talks.
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3 Overview of Talks

3.1 Revisiting a theorem by Folkman on graph colouring
Marthe Bonamy (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Marthe Bonamy

Joint work of Marthe Bonamy, Pierre Charbit, Oscar Defrain, Gwenaël Joret, Aurélie Lagoutte, Vincent
Limouzy, Lucas Pastor, Jean-Sébastien Sereni

Main reference Marthe Bonamy, Pierre Charbit, Oscar Defrain, Gwenaël Joret, Aurélie Lagoutte, Vincent
Limouzy, Lucas Pastor, Jean-Sébastien Sereni: “Revisiting a theorem by Folkman on graph
colouring”, CoRR, Vol. arXiv:1907.11429, 2019.

URL https://arxiv.org/abs/1907.11429v1

We give a short proof of the following theorem due to Jon H. Folkman [1]: The chromatic
number of any graph is at most 2 plus the maximumover all sub-graphs of the difference
between half the number of vertices and the independencenumber.

References
1 Folkman, J. H.. An upper bound on the chromatic number of a graph (No. RM-5808-PR).

RAND CORP SANTA MONICA CALIF, 1969.

3.2 On an augmenting graph approach for the maximum-weight
independent set problem

Christoph Brause (TU Bergakademie Freiberg, DE)

License Creative Commons BY 3.0 Unported license
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The augmenting graph technique is an approach that solves the maximum independent
set problem in various graph classes polynomially. Although we know a little about this
technique, our knowledge about implementations for the maximum-weight independent set
problem is very limited.

In this talk, we present a polynomial-time augmenting graph approach for the weighted
version and some suitable graph classes, e.g. subclasses of S1,k,k-free graphs, and consider a
combination with decompositions by clique separators.

3.3 Introduction to Clique-width and Open Problems
Konrad Dabrowski (Durham University, GB)

License Creative Commons BY 3.0 Unported license
© Konrad Dabrowski

Joint work of Konrad K. Dabrowski, Matthew Johnson, Daniël Paulusma
Main reference Konrad K. Dabrowski, Matthew Johnson, Daniël Paulusma: “Clique-Width for Hereditary Graph

Classes,” London Mathematical Society Lecture Note Series 456:1-56, Cambridge University Press,
2019.

URL https://doi.org/10.1017/9781108649094.002

Graphs classes of bounded clique-width are interesting from a computational perspective,
because many problems, such as Colouring, are polynomial-time solvable on such classes. I will
give an introduction to clique-width and explain some of the techniques at our disposal when
dealing with this parameter. I will also present a number of open problems on boundedness
of clique-width for various graph classes and some related problems on Colouring. See also
our survey https://arxiv.org/abs/1901.00335
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3.4 Coloring graphs by forbidden induced subgraphs
Chinh T. Hoàng (Wilfrid Laurier University – Waterloo, CA)

License Creative Commons BY 3.0 Unported license
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Joint work of Yingjun Dai, Dallas J. Fraser, Angèle M. Hamel, Chính T. Hoàng, Frédéric Maffray
Main reference Dallas J. Fraser, Angèle M. Hamel, Chính T. Hoàng, Frédéric Maffray: “A coloring algorithm for

-free line graphs”, Discrete Applied Mathematics, Vol. 234, pp. 76–85, 2018.
URL https://doi.org/10.1016/j.dam.2017.06.006

Let F4 be a set of four-vertex graphs. For any set F4, it is known that COLORING F4-free
graphs is NP-hard or solvable in polynomial time, except when F4 is one of the following
three sets: {claw, 4K1}, {claw, 4K1, co-diamond}, {4K1, C4}. In this talk, we survey recent
advances on these three open problems. We will discuss the two tools that have been proved
to be useful in attacking the problems: perfect graph theory, and the theory of clique width.

3.5 Shitov’s Counterexample to Hedetniemi Conjecture
Shenwei Huang (Nankai University – Tianjin, CN)

License Creative Commons BY 3.0 Unported license
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Hedetniemi conjecture is a well-known conjecture in the study of graph coloring. It remained
open for 53 years until two months ago Shitov came up with a counterexample and hence
disproved the conjecture. The proof is basic but elegant. In this talk, we will present the
proof of Shitov’s counterexample.

3.6 Parameterized Complexity of Graph Coloring Problems
Bart Jansen (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Bart Jansen

This talks surveys various aspects of the parameterized complexity of graph coloring problems.
The goal is to understand how certain complexity parameters contribute to the difficulty
of finding exact solutions to such problems. We discuss results in various parameterized
algorithmic regimes, and point out open problems wherever possible. The regimes we consider
are:

Fixed-parameter tractable algorithms, for parameterizations that capture the structural
complexity of the input graph. We will look at questions such as: if graph G is only k
vertex deletions away from belonging to a graph class where coloring is easy, then can
the coloring problem on G by solved in f(k)nc time for some function f and constant c?
Fixed-parameter tractable algorithms that work on a decomposition of the input graph.
Given a graph G and a tree decomposition of width w, one can test the q-colorability of
G in time O∗(qw), which is essentially optimal assuming the Strong Exponential Time
Hypothesis. We will see how working over a linear layout of cutwidth w allows the
problem to be solved much faster, by exploiting an interesting connection to the rank a
matrix that encodes the compatibility of colorings on two sides of small edge cut.
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Fixed-parameter tractable algorithms for parameterizations that measure how far the
input graph violates conditions that guarantee the existence of a good coloring. Brooks’
theorem guarantees that any graph G that is not a clique or odd cycle, can be colored
with ∆(G) colors. Hence it is easy to test if a graph whose vertices have degree at most
q, can be q-colored. How hard is it to test if G has a coloring with q colors, when only k
vertices of G have degree more than q?
Kernelization algorithms. Let k be a parameter that captures the structural complexity
of the input graph – for example, the size of a minimum vertex cover. Is it possible to
preprocess an input G in polynomial time, obtaining a graph G′ of size polynomial in k,
so that G has a 3-coloring if and only if G′ has one? What is the best upper-bound on
the size of G′ in terms of k?

3.7 Classes with no long cycle as a vertex-minor are polynomially
chi-bounded

O-joung Kwon (Incheon National University, KR)

License Creative Commons BY 3.0 Unported license
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Joint work of O-joung Kwon, Ringi Kim, Sang-Il Oum, Vaidy Sivaraman

A class G of graphs is χ-bounded if there is a function f such that for every graph G ∈ G and
every induced subgraph H of G, χ(H) ≤ f(ω(H)). In addition, we say that G is polynomially
χ-bounded if f can be taken as a polynomial function. We prove that for every integer n ≥ 3,
there exists a polynomial f such that χ(G) ≤ f(ω(G)) for all graphs with no vertex-minor
isomorphic to the cycle graph Cn. To prove this, we show that if G is polynomially χ-bounded,
then so is the closure of G under taking the 1-join operation.

3.8 The size Ramsey number of graphs with bounded treewidth
Anita Liebenau (UNSW Sydney, AU)

License Creative Commons BY 3.0 Unported license
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Joint work of Anita Liebanau, Nina Kamcev, David R Wood, Liana Yepremyan
Main reference Nina Kamcev, Anita Liebenau, David Wood, Liana Yepremyan: “The size Ramsey number of

graphs with bounded treewidth”, CoRR, Vol. abs/1906.09185, 2019.
URL http://arxiv.org/abs/1906.09185

A graph G is Ramsey for a graph H if every 2-colouring of the edges of G contains a
monochromatic copy of H (not necessarily induced). The size Ramsey number of H is the
smallest number of edges of a graph G that is Ramsey for H. This parameter received a lot
of attention, in particular for sparse graphs H. We generalise earlier work and show that
if the maximum degree and treewidth of H are bounded, then the size Ramsey number is
linear in |V (H)|.
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3.9 Cliquewidth III: The Odd Case of Graph ColoringParameterized by
Cliquewidth

Daniel Lokshtanov (University of California – Santa Barbara, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, Meirav Zehaviv
Main reference Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi:

“Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring”, ACM Trans.
Algorithms, Vol. 15(1), pp. 9:1–9:27, 2019.

URL https://doi.org/10.1145/3280824

Max-Cut(MC), Edge Dominating Set(EDS), Graph Coloring(GC) and Hamiltonian Path(HP)
on graphs of bounded cliquewidth have received significant attention, as they can be formu-
lated in MSO2 (and therefore have linear-time algorithms on bounded treewidth graphs by
the celebrated Courcelle’s theorem), but cannot be formulated in MSO1 (which would have
yielded linear-time algorithms on bounded cliquewidth graphs by a well-known theorem of
Courcelle, Makowsky, and Rotics). Each of these problems can be solved in time g(k) nf(k)

on graphs of cliquewidth k. Fomin et al. [Intractability of Clique-Width Parameterizations.
SIAM J. Comput. 39(5): 1941-1956 (2010)] showed that the running times cannot be
improved to g(k)nO(1) assuming W [1] 6= FPT . However, this does not rule out non-trivial
improvements to the exponent f(k) in the running times. In a follow-up paper, Fomin et
al. [Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width. SIAM J.
Comput. 43(5): 1541-1563 (2014)] improved the running times for EDS and MC to nO(k),
and proved g(k)no(k) lower bounds for EDS, MC and HP assuming the ETH. Recently,
Bergougnoux, Kante and Kwon [WADS 2017] gave an nO(k)-time algorithm for HP. Thus,
prior to this work, EDS, MC and HP were known to have tight nΘ(k) algorithmic upper and
lower bounds. In contrast, GC has an upper bound of nO(2k) and a lower bound of merely
no(k1/4) (implicit from the W[1]-hardness proof). Here we close the gap for GC by proving a
lower bound of n2o(k) . This shows that GC behaves qualitatively different from the other
three problems. To the best of our knowledge, GC is the first natural problem known to
require exponential dependence on the parameter in the exponent of n.

3.10 Flexibility of Planar Graphs
Tomáš Masařík (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Tomáš Masařík

Joint work of Zdenek Dvorák, Tomás Masarík, Jan Musílek, Ondrej Pangrác
Main reference Zdenek Dvorák, Tomás Masarík, Jan Musílek, Ondrej Pangrác: “Flexibility of triangle-free planar

graphs”, CoRR, Vol. abs/1902.02971, 2019.
URL https://arxiv.org/abs/1902.02971

Proper graph coloring assigns different colors to adjacent vertices of the graph. Usually, the
number of colors is fixed or as small as possible. Consider applications (e.g. variants of
scheduling) where colors represent limited resources and graph represents conflicts, i.e., two
adjacent vertices cannot obtain the same resource. In such applications, it is common that
some vertices have preferred resource(s). However, unfortunately, it is not usually possible
to satisfy all such preferences. The notion called flexibility was recently defined by Dvořák,
Norin, and Postle [1]. There instead of satisfying all the preferences the aim is to satisfy at
least a constant fraction of any request.
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We introduce main technical tools in the area and we present a structural statement for:
Planar graphs without 4-cycles and with lists of size at least five [4].
Planar graphs without triangles and with lists of size at least four [3].
Planar graphs of girth at least 6 and with lists of size at least three [2].

We derive the following statement for all of them. Let G be an above-defined graph with
a list assignment L. There exists an absolute constant such that for any (weighted) choice of
preferred colors for some of the vertices, there is an L-coloring respecting at least a constant
fraction of the preferences.

References
1 Z. Dvořák, S. Norin, and L. Postle, List coloring with requests, Journal of Graph

Theory, (2019).
2 Z. Dvořák, T. Masařík, J. Musílek, and O. Pangrác, Flexibility of planar graphs

of girth at least six, arXiv:1902.04069 (2019).
3 Z. Dvořák, T. Masařík, J. Musílek, and O. Pangrác, Flexibility of triangle-free

planar graphs, arXiv:1902.02971 (2019).
4 T. Masařík, Flexibility of planar graphs without 4-cycles, Accepted to Eurocomb 2019,

arXiv:1903.01460 (2019).

3.11 The Erdős-Hajnal property for graphs with no fixed cycle as a
pivot-minor

Sang-il Oum (IBS – Daejeon, KR)

License Creative Commons BY 3.0 Unported license
© Sang-il Oum

Joint work of Sang-il Oum, Jaehoon Kim

We prove that for every integer k, there exists ε > 0 such that every n-vertex graph with no
pivot-minors isomorphic to Ck, the cycle graph on k vertices, has a pair of disjoint sets A, B
of vertices such that |A|, |B| ≥ εn and A is complete or anticomplete to B. This proves the
analog of the Erdős-Hajnal conjecture for the class of graphs with no pivot-minors isomorphic
to Ck.

3.12 Computing the chromatic number of a ring
Irena Penev (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Irena Penev

Joint work of Frédéric Maffray, Irena Penev, Kristina Vušković
Main reference Frédéric Maffray, Irena Penev, Kristina Vušković: “Coloring rings”, CoRR, Vol. arXiv:1907.11905,

2019
URL https://arxiv.org/abs/1907.11905

A ring is a graph R whose vertex set can be partitioned into k ≥ 4 nonempty sets X1, . . . , Xk

such that for all i ∈ {1, . . . , k} the set Xi can be ordered as Xi = {u1
i , . . . , u

|Xi|
i } so that

Xi ⊆ NR[u|Xi|
i ] ⊆ · · · ⊆ NR[u1

i ] = Xi−1 ∪Xi ∪Xi+1,
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with subscripts taken modulo k. Under such circumstances, we say that the ring R is of
length k. An odd (resp. even) ring is a ring of odd (resp. even) length.

Truemper configurations are prisms, pyramids, thetas, and wheels. Rings have played an
important role in the study of a couple of classes defined by excluding certain Truemper
configurations as induced subgraphs. A maximum clique and a maximum stable set of a
ring can be computed in polynomial time, as can an optimal vertex-coloring of an even ring.
However, odd rings present obstacles for coloring.

Our main result is that every ring R satisfies

χ(R) = max{χ(H) | H is a hyperhole in R}.

We present several corollaries of this result. One corollary is that the chromatic number of a
ring can be computed in polynomial time.

3.13 Tutorial on Potential Maximal Cliques
Marcin Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Marcin Pilipczuk

In the tutorial, I presented the framework of finding maximum (weighted) independent set
via minimal chordal completions and potential maximal cliques. The talk contained most
of the details of the polynomial-time algorithm in the class of P5-free graphs (Lokshtanov,
Vatshelle, Villanger [2]). I also highlighted the main contribution of the seminal work of
Bouchitté and Todinca [1] and difficulties in generalizing from P5-free graphs to P6-free
graphs [3].
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3.14 Ck-coloring of F -free graphs
Paweł Rzążewski (Warsaw University of Technology, PL)

License Creative Commons BY 3.0 Unported license
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Joint work of Maria Chudnovsky, Shenwei Huang, Paweł Rzążewski, Sophie Spirkl, Mingxian Zhong
Main reference Maria Chudnovsky, Shenwei Huang, Paweł Rzążewski, Sophie Spirkl, Mingxian Zhong:

“Complexity of Ck-Coloring in Hereditary Classes of Graphs”, in Proc. of the 27th Annual
European Symposium on Algorithms (ESA 2019), LIPIcs, Vol. 144, pp. 31:1–31:15, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

URL http://dx.doi.org/10.4230/LIPIcs.ESA.2019.31

For a graph F , a graph G is F -free if it does not contain an induced subgraph isomorphic
to F . For two graphs G and H, an H-coloring of G is a mapping f : V (G) → V (H) such
that for every edge uv ∈ E(G) it holds that f(u)f(v) ∈ E(H). We are interested in the
complexity of the problem H-Coloring, which asks for the existence of an H-coloring of an
input graph G. In particular, we consider H-Coloring of F -free graphs, where F is a fixed
graph and H is an odd cycle of length at least 5. This problem is closely related to the well
known open problem of determining the complexity of 3-Coloring of Pt-free graphs.

We show that for every odd k ≥ 5 the Ck-Coloring problem, even in the precoloring-
extension variant, can be solved in polynomial time in P9-free graphs. On the other hand, we
prove that the extension version of Ck-Coloring is NP-complete for F -free graphs whenever
some component of F is not a subgraph of a subdivided claw.

References
1 M.Chudnovsky, S. Huang, P. Rzążewski, S. Spirkl, M. Zhong, Complexity of Ck-coloring

in hereditary classes of graphs, to appear in ESA 2019 Proc.

3.15 Polynomial Chi-binding functions and forbidden induced
subgraphs: A survey

Ingo Schiermeyer (TU Bergakademie Freiberg, DE)

License Creative Commons BY 3.0 Unported license
© Ingo Schiermeyer

A graph G with clique number ω(G) and chromatic number χ(G) is perfect if χ(H) = ω(H)
for every induced subgraph H of G. A family G of graphs is called χ-bounded with binding
function f if χ(G′) ≤ f(ω(G′)) holds whenever G ∈ G and G′ is an induced subgraph of
G. In this talk we will present a survey on polynomial χ-binding functions. Especially we
will address perfect graphs, hereditary graphs satisfying the Vizing bound (χ ≤ ω + 1),
graphs having linear χ-binding functions and graphs having non-linear polynomial χ-binding
functions. Thereby we also survey polynomial χ-binding functions for several graph classes
defined in terms of forbidden induced subgraphs, among them 2K2-free graphs, Pk-free
graphs, claw-free graphs, and diamond-free graphs.
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3.16 Detecting an odd hole
Paul Seymour (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Paul Seymour

Joint work of Maria Chudnovsky, Alex Scott, Paul Seymour, Sophie Spirkl

A hole is a graph is an induced subgraph of length at least four, and an antihole is a hole in
the complement. Odd holes are of particular interest, because of the strong perfect graph
theorem, that says a graph is perfect if and only if it has no odd hole or odd antihole. A
poly-time algorithm to test if a graph has an odd hole or odd antihole was found in 2006 [1],
but detecting an odd hole, without stopping on discovery of an odd antihole, has remained
open. We have now found a poly-time algorithm to test for odd holes [2]. Its running time is
the same as the old algorithm, but in fact the details are much simpler.

References
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3.17 4-coloring P6-free graphs
Sophie Spirkl (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Maria Chudnovsky, Mingxian Zhong, Sophie Spirkl

I talked about a recent polynomial-time algorithm for deciding if a given graph with no
induced six-vertex path is four-colorable, and I discussed some of the methods used in the
proof.

This is joint work with Maria Chudnovsky and Mingxian Zhong.

3.18 3-coloring with forbidden paths and cycles
Maya Jakobine Stein (University of Chile – Santiago de Chile, CL)

License Creative Commons BY 3.0 Unported license
© Maya Jakobine Stein

Joint work of Maya Jakobine Stein, Alberto Rojas

Graph coloring is hard, even if the number of colors is fixed. Therefore much effort has
gone into determining the complexity of k-coloring special classes of graphs, in particular
H-free graphs, where H is a fixed graph (and k is also fixed). It turns out that the problem
remains NP-complete whenever H is not a linear forest, and for k ≥ 4, the complexity of
k-coloring Pt-free graphs has been determined for all values of t. There are polynomial time
algorithms for 3-coloring Pt-free graphs for t ≤ 7, but it is not known if such algorithms exist
for t = 8, 9, 10, ..... The algorithm given in [1] for P7-free graphs was found by improving an
earlier version which only worked for (P7, C3)-free graphs, so it seems natural to attack the
problem by excluding one or more cycles in addition to the path Pt. We found a polynomial
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time algorithm for 3-coloring (P9, C5, C3)-graphs. A variation of this algorithm works for all
graphs having no induced P2t+1, no induced odd cycle of length up to 2t− 1, and no induced
C8.

References
1 Bonomo, Flavia; Chudnovsky, Maria; Maceli, Peter; Schaudt, Oliver; Stein, Maya; Zhong,

Mingxian Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on
Seven Vertices.Combinatorica (2018) 38: 779. https://doi.org/10.1007/s00493-017-3553-8

3.19 Layered wheels
Nicolas Trotignon (ENS – Lyon, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Ni Luh Dewi Sintiari, Nicolas Trotignon
Main reference Ni Luh Dewi Sintiari, Nicolas Trotignon: “(Theta, triangle)-free and (even hole, K4)-free graphs.

Part 1 : Layered wheels”, CoRR, Vol. abs/1906.10998, 2019.
URL https://arxiv.org/abs/1906.10998

We present a construction called layered wheel. Layered wheels are graphs of arbitrarily large
treewidth and girth. They might be an outcome for a possible theorem characterizing graphs
with large treewidth in term of their induced subgraphs (while such a characterization is well
understood in term of minors). They also provide examples of graphs of large treewidth and
large rankwidth in well studied classes, such as (theta, triangle)-free graphs and even-hole-free
graphs with no K4 (where a hole is a chordless cycle of length at least 4, a theta is a graph
made of three internally vertex disjoint paths of length at least 2 linking two vertices, and
K4 is the complete graph on 4 vertices).

3.20 Vertex colorings of interval hypergraphs
Zsolt Tuza (Alfréd Rényi Institute of Mathematics – Budapest, HU)

License Creative Commons BY 3.0 Unported license
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Joint work of Csilla Bujtás, Zsolt Tuza
Main reference Csilla Bujtás, Zsolt Tuza: “Color-bounded hypergraphs, VI: Structural and functional jumps in

complexity”, Discrete Mathematics, Vol. 313(19), pp. 1965–1977, 2013.
URL https://doi.org/10.1016/j.disc.2012.09.020

The classical notion of proper coloring requires a color assignment to the vertices in such a
way that no hyperedge is monochromatic (Erdős & Hajnal, mid-1960’s). Equivalently this
means at least two colors in each hyperedge. In C-coloring the restriction is put from the
other side, namely that every hyperedge e is allowed to contain at most |e| − 1 colors (Berge
/ Sterboul, early 1970’s). In the more complex model of mixed hypergraps both types of
hyperedges may occur (Voloshin, early 1990’s). A generalization of this structure class is
obtained by putting lower and/or upper bounds on the largest cardinality of monochromatic
subsets of – and/or on the number of colors occurring in – each hyperedge (Bujtás & Tuza,
mid-2000’s).

Despite that lots of results are known, some simple questions are still open, even on
interval hypergraphs. (An interval hypergraph is a collection of hyperedges e1, . . . , em whose
underlying vertex set admits an ordering such that each hyperedge ei consists of consecutive
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vertices without gap in that order.) As an example of problems unsolved for over a decade,
assume that for each ei there is a color which appears on at least a given number ai of
vertices inside ei. The task is to determine the largest possible number of colors. Is this
optimization problem polynomial-time solvable or NP-hard?

In the talk we mention open questions concerning the chromatic polynomial, too.

4 Open problems

4.1 Parameterized complexity of the coloring problems for H-free
graphs

Petr A. Golovach (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Petr A. Golovach

Only very few parameterized results for Coloring on H-free graphs are known. We refer
to [2] for the detailed survey of the known results and open problems. Here we underline two
problems that we believe to be the most interesting.

It is a very long standing open problem whether the 3-Coloring problem for P`-free
graphs admits a polynomial algorithm for every positive ` or it becomes NP-complete for
some ` ≥ 8. Currently, it is known that the problem can be solved in polynomial time for
` ≤ 7 [1]. This leads to the following question.

Is 3-Coloring W[1]-hard on P`-free graphs when parameterized by `?

The next problem was first stated by Hoàng et al. [3]. They proved that that k-Coloring
can be solved in polynomial time on P5-free graphs for every positive integer k, that is the
problem is in XP when parameterized by k, but left open the question whether there is a
matching lower bound or their result may be improved.

Is k-Coloring FPT on P5-free graphs when parameterized by k?

The question whether k-Coloring parameterized by k is FPT is also open and interesting
for 2P2-free graphs that compose a subclass of P5-free graphs.
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4.2 The Dilworth number of a graphs
Chinh T. Hoàng (Wilfrid Laurier University – Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Chinh T. Hoàng

Given a graph G, a vertex x dominates a vertex y if every neighbor of y, different from x,
is a neighbor of x. Vertex x is comparable to vertex y, if x dominates y, or y dominates x.
The domination relation is a partial order. The Dilworth number of a graph G is the largest
number of pairwise incomparable vertices in G.

Problem 1. Is it true that there is a polynomial time algorithm to optimally color all graphs
with bounded Dilworth number?

Problem 2. Is it true that if a graph G has bounded Dilworth number then it has bounded
clique width? After I posed this problem, it was pointed out to me that the answer is NO.
The authors Korpelainen, Lozin, and Mayhill constructed a graph with Dilworth number
two and with arbitrarily high clique width.
(https://link.springer.com/content/pdf/10.1007/s00373-013-1290-3.pdf)

4.3 Colouring Graphs of Bounded Diameter
Daniel Paulusma (Durham University, GB)

License Creative Commons BY 3.0 Unported license
© Daniel Paulusma

It is known that k-Colouring is NP-complete for graphs of diameter at most d for all pairs
(k, d) with k ≥ 3 and d ≥ 2 except when (k, d) = (3, 2): determining the computational
complexity of 3-Colouring for graphs of diameter 2 is a long-standing open problem. The
following related problems are also open:

Determine the computational complexity of 3-Colouring and Colouring (where k is part
of the input) for triangle-free graphs of diameter 2.

It can be observed that for all integers d, k, r ≥ 1, the k-Colouring problem is constant-time
solvable for K1,r-free graphs of diameter d and that Colouring is NP-complete for K1,4-free
graphs. However, the following problem is open:

Determine the computational complexity of Colouring restricted to K1,3-free graphs of
diameter d for every d ≥ 2.

The above observations and open problems can all be found in [1].

References
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4.4 Odd cycle transversal in P5-free graphs
Paweł Rzążewski (Warsaw University of Technology, PL)

License Creative Commons BY 3.0 Unported license
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Joint work of Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, Giacomo Paesani, Daniël Paulusma, Paweł
Rzążewski

Main reference Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, Giacomo Paesani, Daniël Paulusma, Paweł
Rzążewski: “On Cycle Transversals and Their Connected Variants in the Absence of a Small
Linear Forest”, CoRR, Vol. abs/1908.00491, 2019.

URL http://arxiv.org/abs/1908.00491

It is known that the Odd Cycle Transversal is polynomial-time solvable in P4-free
graphs, but is NP-complete in P6-free graphs [1]. What is the complexity of the problem in
P5-free graphs?

References
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4.5 Computing disjoint paths
Nicolas Trotignon (ENS – Lyon, FR)

License Creative Commons BY 3.0 Unported license
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Consider the following problem:
Input: A graph G and a, b, c, d four vertices of G.
Question: Does there exist two paths, vertex disjoint, with no edges between them and

such that their ends are all in {a, b, c, d}?
The complexity of this problem is not known.

Remarks:
The problem is trivial when {a, b, c, d} is not a stable set of size four. In a solution, each
of a, b, c and d must be an end of exactly one of the paths.
Deciding whether there exit a path from a to b and a path from c to d, vertex-disjoint
and with edges between them is NP-complete as shown by Bienstock. So, to solve the
problem, it is hopeless to try the three possible ways the paths may exist separately (a-b
+ c-d; a-c + b-d; a-d + b-c).

The problem is motivated by the detection of induced minors, see the references.
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4.6 Precoloring extension of graphs
Zsolt Tuza (Alfréd Rényi Institute of Mathematics – Budapest, HU)

License Creative Commons BY 3.0 Unported license
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The decision problem t-PrExt is the following subproblem of Precoloring Extension.

Input: Graph G = (V,E), nonnegative integer k, proper coloring of an induced subgraph
H ⊂ G, such that each color occurs at most t times in H.

Question: Can the coloring of H be extended to a proper k-coloring of the entire G?

Clearly, 0-PrExt means k-colorability, hence it is linear-time solvable on bipartite graphs.
However, already 1-PrExt is NP-complete on bipartite graphs [2]. Further, on interval
graphs 1-PrExt is solvable in polynomial time, but 2-PrExt is NP-complete [1].

PROBLEM 1. For t > 1, find graph classes in which t-PrExt is polynomial-time solvable
and (t+ 1)-PrExt is NP-complete.

PROBLEM 2. On interval graphs, design a linear-time algorithm for 1-PrExt, or prove
that every 1-PrExt algorithm is superlinear in |V |+ |E|.

References
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