
Report from Dagstuhl Seminar 19331

Software Protection Decision Support and Evaluation
Methodologies
Edited by
Bjorn De Sutter1, Christian Collberg2, Mila Dalla Preda3, and
Brecht Wyseur4

1 Ghent University, BE, bjorn.desutter@ugent.be
2 University of Arizona – Tucson, US, collberg@cs.arizona.edu
3 University of Verona, IT, mila.dallapreda@univr.it
4 Kudelski Group SA – Cheseaux, CH, brecht.wyseur@nagra.com

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 19331 “Software
Protection Decision Support and Evaluation Methodologies”. The seminar is situated in the
domain of software protection against so-called man-at-the-end attacks, in which attackers have
white-box access to the software that embeds valuable assets with security requirements such as
confidentiality and integrity. The attackers try to compromise those by reverse-engineering the
software and by tampering with it. Within this domain, the seminar focused mainly on three
aspects: 1) how to evaluate newly proposed protections and attackers thereon; 2) how to create
an appropriate benchmark suite to be used in such evaluations; 3) how to build decision support
to aid users of protection tool with the selection of appropriate protections. The major outcomes
are a structure for a white-paper on software protection evaluation methodologies, with some
concrete input collected on the basis of four case studies explored during the seminar, and a plan
for creating a software protection benchmark suite.

Seminar August 11–16, 2019 – http://www.dagstuhl.de/19331
2012 ACM Subject Classification Security and privacy → Software and application security
Keywords and phrases Benchmarks, Decision Support Systems, Evaluation Methodology, man-

at-the-end attacks, metrics, predictive models, reverse engineering and tampering, software
protection

Digital Object Identifier 10.4230/DagRep.9.8.1

1 Executive Summary

Christian Collberg
Mila Dalla Preda
Bjorn De Sutter
Brecht Wyseur

License Creative Commons BY 3.0 Unported license
© Christian Collberg, Mila Dalla Preda, Bjorn De Sutter, and Brecht Wyseur

Overview and Motivation
The area of Man-At-The-End (MATE) software protection is an evolving battlefield on which
attackers execute white-box attacks: They control the devices and environments and use
a range of tools to inspect, analyze, and alter software and its assets. Their tools include
disassemblers, code browsers, debuggers, emulators, instrumentation tools, fuzzers, symbolic
execution engines, customized OS features, pattern matchers, etc.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Software Protection Decision Support and Evaluation Methodologies, Dagstuhl Reports, Vol. 9, Issue 8, pp. 1–25
Editors: Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/19331
http://dx.doi.org/10.4230/DagRep.9.8.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 19331 – Software Protection Decision Support and Evaluation Methodologies

To meet the security requirements of assets embedded in software, i.e., valuable data and
code, many protections need to be composed. Those requirements include the confidentially
of secret keys and software IP (novel algorithms, novel deep learning models, ...), and the
integrity of license checking code and anti-copy protections. Attackers attack them through
reverse engineering and tampering, for which they use the aforementioned tools and for
which they often can afford spending time and effort on executing many, highly complex and
time-consuming, manual and automated analyses. The need for composing many protections
follows from the fact that advanced attackers can use all the mentioned tools and try many
different approaches. In other words, to be effective, the deployed protections need to protect
against all possible attack vectors.

As all protections come with overhead, and as many of them have downsides that
complicate various aspects of the software development life cycle (SDLC), the users of a
software protection tool cannot simply deploy all available protections. Instead, they have to
select the protections and their parameters for every single asset in a program, taking into
account non-functional requirements for the whole program and its SDLC.

The organizers of this workshop, and many experts in their network, consider the lack of
automated decision support for selecting the best protections, and the lack of a generally
accepted, broadly applicable methodology to evaluate and quantify the strength of a selected
combination, the biggest challenges in the domain of software protection. As a result, the
deployment of software protection is most often not trustworthy, error-prone, not measurable,
and extremely expensive because experts are needed and they need a lot of time, increasing
the time to market.

This situation is becoming ever more problematic. For example, connected intelligent
vehicles are quickly being deployed in the market now and autonomous vehicles are going
to be deployed in 3-5 years. Software protection evaluation and measurement research and
development must match up that pace to provide enough technology support for controllable
and scientific methods to manage the quality of automotive security as key part of vehicle
reliability and safety. There is hence a huge need to make progress w.r.t. software protection
decision support and evaluation methodologies, the topic of the proposed seminar.

Goals of the Seminar
Following a pre-seminar survey among the registered participants to focus the seminar
and to select the highest priority objectives among the many possible ones, the primary
goal of the seminar was determined to be the foundations of a white paper on software
protection evaluation methodologies, to be used as a best practices guideline by researchers
and practitioners when they evaluate (combinations of) defensive and/or offensive techniques
in the domain of MATE software protection. This can also serve as a guideline to reviewers
of submitted journal and conference papers in which novel techniques are proposed and
evaluated. A secondary goal was the establishment of good benchmarking practices, including
the choice of suitable benchmarks and the selection and generation thereof for use in future
research in MATE software protection. A third goal was to collect feedback and ideas on
how to push the state of the art in decision support systems.

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 3

Week Overview
Preparation

Prior to the seminar, the organizers set up a survey to collect the necessary information
for a seminar bundle that provided background information about and to all participants.
Moreover, they collected information regarding the potential outcomes that participants were
most interested in, to which ones they could likely contribute, and which potential outcomes
they considered most likely to make progress on. Furthermore, a reading list was presented
to the participants with the goal of getting everyone on the same page as much and as soon
as possible [1–8].

Whereas the schedule for the first two days was mostly fixed a priori, the schedule for
later days was more dynamic, as it was adapted to the feedback obtained by the organizers
during the early days, and to the outcomes of different sessions.

Monday

The first day was devoted to setting the scope of the seminar, and clarifying the seminar
goals, strategy, and plan. In the morning, three overviews were presented of man-at-the-end
software protection techniques in the scope of the seminar, as well as some attacks on them.
These presentations focused on obfuscation vs. static analysis, (anti-)tampering in online
games, and additional protections beyond the ones discussed in the first two presentations.

In the early afternoon, four deeper technical introductions were presented of four more
concrete classes of defensive and corresponding offensive techniques that would serve as case
studies throughout the seminar: 1) virtual machine obfuscation, 2) (anti-)disassembly, 3)
trace semantics based attacks, and 4) data obfuscation. The strategy for the week was to
brainstorm about these concrete techniques first, in particular on how the strength of these
techniques are supposed to be evaluated, e.g., in papers that present novel (combinations
of) techniques, or in penetration tests. Later, the concrete results for the individual case
studies would then be generalized into best practices and guidelines for software protection
evaluation methodologies.

Whereas the morning presentations and most of the case studies focused mostly on
defensive techniques, three presentations in the afternoon provided complementary insights
about offensive techniques, ranging from more academic semantics-based attack techniques,
over an industrial case study of deobfuscation of compile-time obfuscation, and offensive
techniques in binary analysis.

Thus, the scene was set in terms of both defensive and offensive techniques, and all
participants to a large degree spoke the same language before starting the brainstorm sessions
in the rest of the week.

Tuesday

Tuesday focused mostly on the seminar track of software protection evaluation methodologies.
In the early morning, additional input was provided on existing, already studied aspects

relevant to such methodologies. This included software protection metrics, empirical experi-
ments to assess protections, and security economics. These presentations provided useful
hooks for the next session, which consisted of parallel, small break-out brainstorm sessions
(three groups per case study) on the first two case studies. In these brainstorm sessions, the
goal was to provide answers to questions such as the following:

19331

4 19331 – Software Protection Decision Support and Evaluation Methodologies

What would a document similar to the SIGPLAN empirical evaluation checklist look like
for papers presenting new VM-based protections?
Which requirements or recommendations can we put forward with respect to the protected
objects (i.e., benchmarks) and their treatment (i.e., how they are created, compiled, ...)
for the evaluation?
What aspects of the attack models and which assumptions should be made explicit, which
ones should be justified, e.g., regarding attacker goals and attacker activities.
How should sensitivity to different inputs (e.g., random generator seeds, configuration
options, features of code samples, ...) be evaluated and discussed?
What threats to validity should be discussed?
What aspects of the protection should be evaluated (potency, resilience, learnability,
usability, stealth, renewability, different forms of costs, ...)?
Under what conditions would you consider the protection to be “real world” applicable?
What flaws (e.g., unrealistic assumptions) have you seen in existing papers that should
be avoided?
What are (minimal) requirements / recommendations regarding reproducibility?
What pitfalls can you list that we should share with people?

After the independent brainstorms in small groups and following lunch, the three groups per
case study came together to merge the results of their brainstorms, after which the merged
results were shared in a plenary session.

Later in the afternoon, additional ideas were presented on topics relevant for software
protection evaluation methodologies. The covered topics were benchmark generation, security
activities in protected software product life cycles, the resilience of software integrity protection
(work in progress), and a (unified) measure theory for potency. These topics were presented
after the initial brainstorms not to bias those brainstorms. Their nature was more forward
looking, covering a number of open challenges as well as potential directions for future
research. They offered the speakers a sound board to get feedback and could serve as the
starting point of informal discussions later in the seminar.

While the practice is discouraged by the Dagstuhl administration, we still decided to
organize an evening session on Tuesday. Afterwards, we realized that this made the seminar
a bit too dense, but it did serve the useful purpose of introducing the participants to the
seminar track on decision support tools for software protection early enough in the seminar
to allow enough time for informal discussions with and between researchers active on this
topic during the remainder of the week. This was especially useful to allow those academic
researchers to check the validity of some of their assumptions about real-world aspects with
the present practitioners from industry and with researchers from other domains.

Besides an overview of an existing design and implementation of a software protection
decision support system, a hands-on walk through of a practical attack on a virtual machine
protection (as in one of the case studies) was presented, as well as some ideas to make such
protection stronger.

Wednesday

Early on Wednesday morning, the focus shifted towards decision support tools, with three
presentations by practitioners in companies that provide software protection solutions. These
presentations focused on the support they provide to help their customers use their tools.

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 5

Later in the morning, case studies 3 and 4 were discussed in another round of parallel,
small group break-out brainstorm sessions.

In the afternoon, the social outing took place, which consisted of a visit to Trier and a
wine tasting at a winery where we also had dinner.1

Thursday

On Thursday morning, another round of break-out sessions was organized to structure the
outcomes of the first round. Based on inputs collected during the first three days, the
organizers drafted a structure for a white paper on software protection methodologies. In 4
parallel sessions, the participants brainstormed on how to fit the results of the first round
(i.e., bullet points with concrete guidelines and considerations for each case study) into that
structure, and which parts of those results could be generalized beyond the individual case
studies. In a plenary session, the results of these break-outs were then presented.

In addition, the specific topic of benchmarking was discussed, focusing on questions
regarding the required features of benchmarks (e.g., should or should they not contain actual
security-sensitive assets) as well as potential strategies to get from the situation today, in
which very few benchmarks used in papers are available for reproducing the results, to a
situation in which a standard set of benchmarks is available and effectively used in studies.

In the afternoon, several demonstrations of practical tools were given, including the
already mentioned decision support system of which the concepts had been presented on
Tuesday evening and the Binary Ninja disassembler that is rapidly gaining popularity. Two
presentations were also given on usable security and challenges and capabilities of modern
static analysis of obfuscated code. There provided additional insights useful for both designers
of decision support tools and evaluation methodologies.

Friday

The last morning started off with a potpourri of interesting topics that did not fit well in
the main tracks of general evaluation methodologies and decision support on the one hand,
and benchmarking on the other. Given the availability of many experts in the domain of
software protection, we decided that everyone that wanted to launch new ideas or collect
feedback on them in the broad domain of the seminar should have that chance. So the day
started with short presentations on the protection of machine learning as a specific new
type of application, on security levels for white-box cryptography, and on hardware/software
binding using DRAM.

Later in the morning, the seminar was wrapped up with a discussion of the outcomes so
far, and an agreement on plans to continue the work on the software protection evaluation
methodology white paper and the assembly of a benchmark collection.

References
1 S. Schrittwieser, S. Katzenbeisser, J.Kinder, G. Merzdovnik, and E. Weippl: Protecting

software through obfuscation: Can it keep pace with progress in code analysis? ACM
Comput. Surv., 49(1), 2016.

2 M. Ceccato, P. Tonella P, C. Basile, P. Falcarin, M. Torchiano, B. Coppens, and B. De Sut-
ter: Understanding the behaviour of hackers while performing attack tasks in a professional
setting and in a public challenge. Empirical Software Engineering 2018; 24(1):240–286.

1 For some reason, most of us don’t remember the rest of the evening in enough detail to report on it
reliably.

19331

6 19331 – Software Protection Decision Support and Evaluation Methodologies

3 B. Cataldo, D. Canavese, L. Regano, P. Falcarin, and B. De Sutter: A Meta-model for
Software Protections and Reverse Engineering Attacks. Journal of Systems and Software
150 (April): 3–21, 2019

4 B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray: A generic approach to auto-
matic deobfuscation of executable code. In: Proc. IEEE Symposium on Security and Pri-
vacy, pp. 674–691 (2015)

5 T. Blazytko, M. Contag, C. Aschermann, and T. Holz: Syntia: synthesizing the semantics
of obfuscated code. Proc. of the 26th USENIX Security Symposium (SEC’17), pp. 643–659.
2017

6 S. Banescu, C. Collberg, and A. Pretschner: Predicting the Resilience of Obfuscated Code
Against Symbolic Execution Attacks via Machine Learning. Proc. of the 26th USENIX
Conference on Security Symposium (SEC’17), pp. 661-678, 2017

7 C. Basile et al.: D5.11 ASPIRE Framework Report. Technical Report ASPIRE project.
https://aspire-fp7.eu/sites/default/files/D5.11-ASPIRE-Framework-Report.pdf

8 M. Ceccato et al.: D4.06 ASPIRE Security Evaluation Methodology – Security Eval-
uation. Technical Report ASPIRE project. https://aspire-fp7.eu/sites/default/files/D4.
06-ASPIRE-Security-Evaluation-Methodology.pdf

https://aspire-fp7.eu/sites/default/files/D5.11-ASPIRE-Framework-Report.pdf
https://aspire-fp7.eu/sites/default/files/D4.06-ASPIRE-Security-Evaluation-Methodology.pdf
https://aspire-fp7.eu/sites/default/files/D4.06-ASPIRE-Security-Evaluation-Methodology.pdf

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 7

2 Table of Contents

Executive Summary
Christian Collberg, Mila Dalla Preda, Bjorn De Sutter, and Brecht Wyseur 1

Overview of Talks
On the resilience of software integrity protection techniques (work in progress)
Mohsen Ahmadvand . 9

Automated Deobfuscation: A Tour on Semantic Attacks
Sébastien Bardin . 9

An Expert System for Software Protection
Cataldo Basile . 10

Hardening VM Semantics
Tim Blazytko and Moritz Contag . 10

An Introduction to Security Economics
Richard Clayton . 10

Introduction to the virtual machine obfuscation case study
Christian Collberg . 11

Software Protection Benchmark Generation
Christian Collberg . 11

Introduction to the (anti-)disassembly case study
Bart Coppens . 12

Securing workflows for industrial Use Cases
Jorge R. Cuéllar . 12

Introduction to the data obfuscation case study
Mila Dalla Preda . 13

Empirical Software Protection Experiments
Bjorn De Sutter . 13

Extra protections and attack in seminar scope
Bjorn De Sutter . 13

Introduction to the trace-semantics-based attack case study
Bjorn De Sutter . 14

Metrics for Software Protection Evaluation
Bjorn De Sutter . 14

A (unified) measure theory for potency?
Roberto Giacobazzi . 14

Security Activities in Protected SW Product Life Cycle
Yuan Xiang Gu . 15

Security Problems of AI/ML Applications
Yuan Xiang Gu, Mila Dalla Preda, and Roberto Giacobazzi 15

(State of) The Art of War: Offensive Techniques in Binary Analysis
Christophe Hauser . 16

19331

8 19331 – Software Protection Decision Support and Evaluation Methodologies

Hardware / Software Binding Using DRAM PUFs
Stefan Katzenbeisser . 16

Decision processes @ Guardsquare
Eric Lafortune . 17

Binary Ninja Demonstration
Peter Lafosse . 17

Usable Security
Katharina Pfeffer . 17

Case Study in Deobfuscation: Compile-Time Obfuscation
Rolf Rolles . 17

Protecting software through obfuscation: Can it keep pace with progress in code
analysis?
Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik,
and Edgar Weippl . 18

Software Protection, Cloakware Style
Bahman Sistany . 18

Security levels for white-box crypto
Atis Straujums . 19

Cheating in Online Games
Stijn Volckaert . 19

Modern Static Analysis of Obfuscated Code
John Wagner . 19

Kudelski Decision Support
Brecht Wyseur . 20

Seminar introduction
Brecht Wyseur . 20

Working groups on Software Evaluation Methodology White Paper
Class 1: (Anti-) Disassembly . 21

Class 2: Trace-based Attack Techniques . 23

Participants . 25

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 9

3 Overview of Talks

3.1 On the resilience of software integrity protection techniques (work
in progress)

Mohsen Ahmadvand (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Mohsen Ahmadvand

In this talk we present our ongoing work on a methodology for measuring the resilience
of software integrity protection techniques. Our methodology is comprised of catalogs of
attacks, defences, and metrics. Attacks aid attackers to detect and/or to disable protections.
Defences, on the other hand, hinder specific attacks and hence raise the bar. Metrics aim
to capture the effectiveness of attacks or defences. We use a combination of empirical and
analytical evaluations to measure the difficulty that is added by different combination of
defences against attacks. Lastly, we present some preliminary results of machine learning
based attacks on different composition of protections.

3.2 Automated Deobfuscation: A Tour on Semantic Attacks
Sébastien Bardin (CEA LIST, FR)

License Creative Commons BY 3.0 Unported license
© Sébastien Bardin

Joint work of Sébastien Bardin, Richard Bonichon, Jean-Yves Marion

MATE attacks aim at taking advantage of a program once access to its executable code is
granted. Typical goals include stealing critical assets (e.g., cryptographic keys or proprietary
code) or software tampering (e.g., bypassing security checks). Obfuscation aims at defending
against such attacks by turning the initial program into a very-hard-to-understand equivalent
code. Obfuscation has thus become highly important in IP protection, leading to a arm race
between obfuscation and deobfuscation techniques.

Recently, semantic analysis coming from source-level safety analysis have been proven
to be highly efficient against standard code protections, leading Schrittwieser et al. asking
whether “Obfuscation can keep pace with progress in code analysis”. Notably, Symbolic
Execution combines both the standard advantages of semantic methods (automatic inference
of values and triggers) with the robustness of dynamic analysis (allowing to bypass advanced
protections such as packing and self-modification).

In this talk, we will review recent advances in automated semantic deobfuscation, with
a special emphasis on Symbolic Execution and SMT solvers, together with an overview of
their strengths, limitations and potential mitigation.

References
1 S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner. Code obfuscation

against symbolic execution attacks. In Annual Conference on Computer Security Applica-
tions, ACSAC 2016, 2016.

2 Sébastien Bardin, Robin David, and Jean-Yves Marion. Backward-bounded DSE: targeting
infeasibility questions on obfuscated codes. In 2017 IEEE Symposium on Security and
Privacy, SP, 2017.

19331

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

10 19331 – Software Protection Decision Support and Evaluation Methodologies

3 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin. Automatically
identifying trigger-based behavior in malware. In Wenke Lee, Cliff Wang, and David Dagon,
editors, Botnet Detection: Countering the Largest Security Threat, volume 36 of Advances
in Information Security, pages 65–88. Springer, 2008.

4 J. Salwan, S. Bardin, and M.-L. Potet. Symbolic deobfuscation: from virtualized code back
to the original. In 5th Conference on Detection of Intrusions and malware & Vulnerability
Assessment (DIMVA), 2018.

5 S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and E. Weippl. Protecting
software through obfuscation: Can it keep pace with progress in code analysis? ACM
Comput. Surv., 49(1), 2016.

6 B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A generic approach to auto-
matic deobfuscation of executable code. In Symposium on Security and Privacy, SP, 2015.

3.3 An Expert System for Software Protection
Cataldo Basile (Polytechnic University of Torino, IT)

License Creative Commons BY 3.0 Unported license
© Cataldo Basile

This presentation presents the current status of the Decision Support System for Software
Protection developed during the EC-funded ASPIRE project and now maintained by the
Security Group of the Politecnico di Torino. Moreover, we present open issues and several
hints for new research and collaborations to be discussed during this seminar. In addition to
the presentation that discusses concepts of the decision support system, a live demonstration
was presented as well.

3.4 Hardening VM Semantics
Tim Blazytko (Ruhr-Universität Bochum, DE) and Moritz Contag (Ruhr-Universität Bochum,
DE)

License Creative Commons BY 3.0 Unported license
© Tim Blazytko and Moritz Contag

We discuss limitations of current VM-based obfuscation schemes and introduces automated
attacks that reveal the core semantics of VM instructions. Afterwards, we propose hardening
techniques which defeat the latter.

3.5 An Introduction to Security Economics
Richard Clayton (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Richard Clayton

This talk gave a very brief overview of the field of security economics as it has evolved over
the past twenty years. Technical analysis of security failures allows us to work out which part
of a system failed; security economics helps us understand why the system was built that

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 11

way in the first place – and hence how we can redesign it to be more resilient in the future.
The key economic ideas are: Incentives and Liability – if Alice is being protected by Bob,
then Bob will be far more motivated if he loses out, rather than Alice, should the system
fail. Externalities and Negative externalities – does a system naturally move towards a
monoculture; are you dumping costs onto other people? Moral Hazard – are you encouraging
bad behaviour? Asymmetric Information – Akerlof’s “Market for Lemons” applies to security
solutions just as much as to the market in used cars. Conflict Theory can be explained in
relation to the Island of Anarchia whose flood defences are as good as the “least efforts” of
the laziest family building their section of the sea wall; their ability to repel the Athenian
Navy depends on the skill of their “best shot”, but their trade surplus as a group will depend
on “sum of efforts”. This leads to an insight into software development – security depends
on the worst effort of the sloppiest programmer (who writes a buffer overflow), on the best
efforts of the security architect (so hire the best you can afford) and the sum of efforts of
the testers (the more testing you do, the fewer bugs you should ship). The talk finished
with some observations from a Security Economics perspective on CAPTCHAs, which have
been broken by simple “hacks” rather than by advances in AI or graphics; on a Connect 4
competition – where it was realised that the aim was to win the competition rather than to
play excellent Connect 4; and finally the story of “DVD Jon” whose DeCSS program “broke”
the DVD Content Scrambling System at the end of the last century.

3.6 Introduction to the virtual machine obfuscation case study
Christian Collberg (University of Arizona – Tucson, US)

License Creative Commons BY 3.0 Unported license
© Christian Collberg

In this talk I will give an overview of obfuscation by virtual machine generation. To virtualize
a function F in order to protect some asset A, we 1) create a unique and random virtual
instruction set I specific to F; 2) translate the F into the virtual instruction set I (the
bytecode array); and 3) construct an interpreter that can execute programs written in I. This
interpreter consists of an execution stack, a dispatch unit which issues the next instruction,
and one instruction handler per virtual instruction. We will discuss numerous ways to attack
a virtual machine by reverse engineering the instruction set, the dispatch, or the instruction
handlers. We will further discuss ways to protect the virtual machine against such attacks
using diversification of the instruction set, obfuscating instruction handlers and dispatch
units, or turning parts of virtual machines into dynamically generated code.

3.7 Software Protection Benchmark Generation
Christian Collberg (University of Arizona – Tucson, US)

License Creative Commons BY 3.0 Unported license
© Christian Collberg

Researchers in software protection and malware analysis face a similar problem: what
programs should they test their techniques on? Often, two different papers, solving similar
problems, will perform evaluation on vastly different sets of benchmark programs. Hence,
it becomes difficult to compare their results. Sometimes, researchers use performance

19331

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

12 19331 – Software Protection Decision Support and Evaluation Methodologies

benchmarks as security benchmarks. This is problematic, since they were not designed with
security in mind. For example, there is no specific “asset” to protect and hence no clear
meaning of when an attack has succeeded. In this talk we will discuss a how to automatically
generate security benchmark suites. The idea is that, to evaluate a new protection idea we
should 1) generate random benchmark programs, 2) run those through the protection tool,
and 3) attack these randomly generated challenges through a choice of reverse engineering
tools, Generating random programs turns out to be a challenging problem. A random
program P should, at minimum, fulfill the following requirements. P may contain different
types of assets; P should have simple I/O behavior, making it easy to automate attacks; P
should have “interesting” internal structure; P should terminate within a time bound; P
should not be guessable from its I/O behavior; P should resemble a real program; Finally,
it should be obvious when an attack has succeeded. In this talk we will present two types
of random program generators we have constructed: namely generators of random hash
functions, and generators of random CAPTCHA programs.

3.8 Introduction to the (anti-)disassembly case study
Bart Coppens (Ghent University, BE)

License Creative Commons BY 3.0 Unported license
© Bart Coppens

This talk has the purpose of bringing the audience to the same level of background knowledge
and terminology with regards to disassembly and anti-disassembly of binary programs. I
start with techniques for unobfuscated programs. First, I talk about the very basic difference
between linear sweep and recursive descent disassembly techniques. Then I explain how
the resulting disassembly can be leveraged to reconstruct the original programs at ever-
higher levels of abstractions. In particular, I talk about control flow recovery and how the
quality of the disassembly can influence the resulting control flow graph. Next, I talk about
anti-disassembly techniques, and how these can influence both the quality of the resulting
disassembly as well as the quality of the reconstructed control flow graph. Finally, I talk
about some advanced disassembly techniques whose purpose it is to deal correctly with
binaries that have had such anti-disassembly techniques applied to them.

3.9 Securing workflows for industrial Use Cases
Jorge R. Cuéllar (Siemens AG – München, DE)

License Creative Commons BY 3.0 Unported license
© Jorge R. Cuéllar

In industrial Use Cases it is often more important to secure the integrity of the process
(manufacturing, testing, collaborative design, cloud applications, Industrial IoT-based Control
Systems, Supply Chain, etc) than the confidentiality of the workflow itself. Different users
(employees of different companies, notification bodies, governmental stakeholders or NGOs)
collaborate, using smart devices like handhelds, to execute a workflow in a predefined form.
The proposal combines the use of Petri-Nets for modelling the workflows and a logic (divided
into 4 different layers: PKI, Trust reasoning, “Snippet”-reasoning, Accountability) that can be
used to exchange information (tokens, similar to ACE/OAUTH tokens) and to reason locally

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 13

about the tokens in order to secure the integrity of the workflow. The PKI layer determines
which certificates to verify for which secrets or public keys, the tust lacer determines which
parties may claim which assertions, the snippet layer verifies the single transactions of the
Petri Net and the accountability layer provides a method for a judge to find which server is
responsible for an incorrect decision.

3.10 Introduction to the data obfuscation case study
Mila Dalla Preda (University of Verona, IT)

License Creative Commons BY 3.0 Unported license
© Mila Dalla Preda

Data are important components of programs and their values, evolution and structure
provides important information for program understanding. With the term data obfuscation
we refer to those protection techniques that target data. In particular, data obfuscation
techniques often modify the encoding of data in order to prevent direct analysis and hide
the content of data. In this introduction, we presented a short overview to ensure that all
participants had a basic understanding of the subject.

3.11 Empirical Software Protection Experiments
Bjorn De Sutter (Ghent University, BE)

License Creative Commons BY 3.0 Unported license
© Bjorn De Sutter

We present an opverview of goals, pitfalls, issues and best practices in empirical experiments
for determining the strength of software protections. This includes the technical aspects such
as which protections are combined in the treatment of the objects, which tasks are given
to the subjects, but also methodological aspects such as learning effect testing, statistical
methods, threats to validity, etc.

3.12 Extra protections and attack in seminar scope
Bjorn De Sutter (Ghent University, BE)

License Creative Commons BY 3.0 Unported license
© Bjorn De Sutter

We present an overview of attacks and protections in the scope of the seminar to complement
the first two talks. This includes some of the tools that attackers use such as disassemblers,
emulators, and debuggers, as well as a short overview of automated methods for deobfuscation.
It also includes protections against all kinds of attacker-activities, such as anti-tampering,
anti-debugging, anti-taint-tracking, etc.

19331

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

14 19331 – Software Protection Decision Support and Evaluation Methodologies

3.13 Introduction to the trace-semantics-based attack case study
Bjorn De Sutter (Ghent University, BE)

License Creative Commons BY 3.0 Unported license
© Bjorn De Sutter

As an introduction to the breakout sessions on evaluation techniques, case study 3 comprises
two attack techniques: generic deobfuscation by Yadegari et al. and Syntia by Blazytko et al.
An overview of these techniques is presented, and some potential issues with the evaluation
are enumerated.

References
1 B. Yadegari, B. Johannesmeyer, B. Whitely and S. Debray. A Generic Approach to Auto-

matic Deobfuscation of Executable Code. 2015 IEEE Symposium on Security and Privacy,
San Jose, CA, 2015, pp. 674-691.

2 Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. Syntia: synthes-
izing the semantics of obfuscated code. In Proceedings of the 26th USENIX Conference
on Security Symposium (SEC’17), Engin Kirda and Thomas Ristenpart (Eds.). USENIX
Association, Berkeley, CA, USA, pp. 643-659.

3.14 Metrics for Software Protection Evaluation
Bjorn De Sutter (Ghent University, BE)

License Creative Commons BY 3.0 Unported license
© Bjorn De Sutter

We present an overview of opportunities and challenges for using quantitative metrics for
evaluation of software protections. This includes a discussion of some existing metrics from
the domain of software engineering, pitfalls in using them on protected software. We also
discuss the relation between attacker effort of individual steps of an attack path and features
such as potency and resilience.

3.15 A (unified) measure theory for potency?
Roberto Giacobazzi (University of Verona, IT)

License Creative Commons BY 3.0 Unported license
© Roberto Giacobazzi

We observe that there exists a potentially infinite set of metrics for measuring the potency
of code obfuscation. Any code attack can be encoded into an(abstract) interpreter-based
attack. Because there are infinitely many interpreters, this implies that there are infinitely
many metrics, one for each attack. This means that looking at standard SW engineering-like
metrics is clueless in this field. All these metrics have anyway some common aspects: They
are not measure of complexity in the sense of Blum’s and they all try to measure the level of
uncertainty that an attacker (i.e., an abstract interpreter) gets out of the performed analysis.
I think that we should shift the measure of potency from SW engineering-like metrics to
entropy. The presentation shows the main challenges in this direction.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 15

3.16 Security Activities in Protected SW Product Life Cycle
Yuan Xiang Gu (Irdeto – Ottawa, CA)

License Creative Commons BY 3.0 Unported license
© Yuan Xiang Gu

This talk is to aim a better understanding what the best industrial security practices may be
looking for from this seminar. First, we discuss three aspects of economics of security for a
protected SW product:
1) Challenges to design a secure System
2) Do security right at early stage
3) SW security debt

And then, we clarify 9 kinds of security activities during a protected SW product life
cycle from early stages of requirements, architecture design and implementation design, to
code stages of implementation, testing and assurance, to the post stages of deployment,
monitoring, update and renew. By these discussions, it is very clear that during different
development and maintenance stages of a protected SW product, security activities require
different kinds of security guidelines and evaluation approaches and supports to make right
decision. Also, based on our experience from our own practices in past more than 20 years,
we present some real constrains which security technologies, methods and approaches should
be compliant to and suitable for real adaption and uses.

3.17 Security Problems of AI/ML Applications
Yuan Xiang Gu (Irdeto – Ottawa, CA), Mila Dalla Preda (University of Verona, IT), and
Roberto Giacobazzi (University of Verona, IT)

License Creative Commons BY 3.0 Unported license
© Yuan Xiang Gu, Mila Dalla Preda, and Roberto Giacobazzi

This presentation is to introduce a new research subject on AI/ML security. AI/ML technology
is getting much more adaptions for many applications in past 10 years. Recently, more and
more high-stake applications start to adapt AI/ML as well. There are a couple of driving
forces for AI/ML’s recent success, but security is not a real important play factor yet. On
the other hand, researchers are focusing on very narrow AI/ML security on the adversarial
ML problem that is a special and serious issue. Our recently research shows that AI/ML
security has much broader security scope well beyond adversarial ML problem. Moreover,
we suggest that software protection can be adapted to address many security problems of
AI/ML application systems. This talk just gives some highlights of our findings and would
like to raise awareness by sharing them with a list of open questions and suggestions for how
to move this new research forward.

19331

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

16 19331 – Software Protection Decision Support and Evaluation Methodologies

3.18 (State of) The Art of War: Offensive Techniques in Binary
Analysis

Christophe Hauser (USC – Marina del Rey, US)

License Creative Commons BY 3.0 Unported license
© Christophe Hauser

Joint work of Christophe Hauser, Audrey Dutcher, Siji Feng, John Grosen, Christopher Kruegel, Mario Polino,
Christopher Salls, Yan Shoshitaishvili, Nick Stephens, Giovanni Vigna, and Ruoyu Wang

Main reference Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Krügel, Giovanni Vigna: “SOK:
(State of) The Art of War: Offensive Techniques in Binary Analysis”, in Proc. of the IEEE
Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pp. 138–157,
IEEE Computer Society, 2016.

URL https://doi.org/10.1109/SP.2016.17

Finding and exploiting vulnerabilities in binary code is a challenging task. The lack of
high-level, semantically rich information about data structures and control constructs makes
the analysis of program properties harder to scale. However, the importance of binary
analysis is on the rise. In many situations binary analysis is the only possible way to prove
(or disprove) properties about the code that is actually executed. In this paper, we present a
binary analysis framework that implements a number of analysis techniques that have been
proposed in the past. We present a systematized implementation of these techniques, which
allows other researchers to compose them and develop new approaches. In addition, the
implementation of these techniques in a unifying framework allows for the direct comparison
of these approaches and the identification of their advantages and disadvantages. The
evaluation included in this paper is performed using a recent dataset created by DARPA for
evaluating the effectiveness of binary vulnerability analysis techniques. Our framework has
been open-sourced and is available to the security community.

3.19 Hardware / Software Binding Using DRAM PUFs
Stefan Katzenbeisser (Universität Passau, DE)

License Creative Commons BY 3.0 Unported license
© Stefan Katzenbeisser

Joint work of Stefan Katzenbeisser, Wenjie Xiong, Andre Schaller, Jakub Szefer

Low-end computing devices are becoming increasingly ubiquitous, especially due to the
widespread deployment of Internet-of-Things products. There is, however, much concern
about sensitive data being processed on these low-end devices which have limited protection
mechanisms in place. This paper proposes a Hardware-Entangled Software Protection
(HESP) scheme that leverages hardware features to protect software code from malicious
modification before or during run-time. It also enables implicit hardware authentication.
Thus, the software will execute correctly only on an authorized device and if the timing of the
software, e.g., control flow, was not changed through malicious modifications. The proposed
ideas are based on the new concept of Dynamic Physically Unclonable Functions (PUFs).
Dynamic PUFs have time-varying responses and can be used to tie the software execution
to the timing of software and the physical properties of a hardware device. It is further
combined with existing approaches for code self-checksumming, software obfuscation, and
call graph and register value scrambling to create the HESP scheme. HESP is demonstrated
on commodity, off-the-shelf computing devices, where a DRAM PUF is used as an instance
of a Dynamic PUF.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 17

3.20 Decision processes @ Guardsquare
Eric Lafortune (Guardsquare – Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Eric Lafortune

Guardsquare develops software to protect mobile apps against reverse engineering and
tampering. Its users are engineers who need to integrate and configure the software to
process their apps, and then evaluate the results. The current approach is driven by the
technology. Required configuration to make sure processed Android apps continue to work is
facilitated by the widespread use of our open-source software ProGuard. Configuration to
actually harden the apps follows the same conventions. Based on our experience, configuration
to harden iOS apps works at a higher declarative level. External penetration testers typically
provide feedback.

3.21 Binary Ninja Demonstration
Peter Lafosse (Vector 35 – Melbourne, US)

License Creative Commons BY 3.0 Unported license
© Peter Lafosse

A hands-on demonstration was given of the disassembler tool Binary Ninja, a tool growing
in popularity for reverse engineering of binaries.

3.22 Usable Security
Katharina Pfeffer (SBA Research – Wien, DE)

License Creative Commons BY 3.0 Unported license
© Katharina Pfeffer

Usable security aims to investigate how IT systems can be designed so that end-users and
software developers use them correctly and the attack surface is minimized. In this talk we
present 2 research projects on usable security and discuss how the insights gained and the
methodology used can help defending MATE attacks and develop appropriate metrics for
prevention evaluation.

3.23 Case Study in Deobfuscation: Compile-Time Obfuscation
Rolf Rolles (Mobius Strip Reverse Engineering – San Francisco, US)

License Creative Commons BY 3.0 Unported license
© Rolf Rolles

Software obfuscation has always been a controversially discussed research area. While
theoretical results indicate that provably secure obfuscation in general is impossible, its
widespread application in malware and commercial software shows that it is nevertheless
popular in practice. Still, it remains largely unexplored towhat extent today’s software

19331

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

18 19331 – Software Protection Decision Support and Evaluation Methodologies

obfuscations keep up with state-of-the-art code analysis, and where we stand inthe arms
race between software developers and code analysts. The main goal of this survey is to
analyze the effectiveness of different classes of software obfuscation against the continuously
improving de-obfuscation techniques and off-the-shelf code analysis tools. The answer very
much depends on the goals of the analyst and the available resources. On the one hand, many
forms of lightweight static analysis have difficulties with even basic obfuscation schemes,
which explains the unbroken popularity of obfuscation among malware writers. On the
other hand, more expensive analysis techniques, in particular when used interactively by a
human analyst, can easily defeat many obfuscations. As a result, software obfuscation for
the purpose of intellectual property protection remains highly challenging.

3.24 Protecting software through obfuscation: Can it keep pace with
progress in code analysis?

Sebastian Schrittwieser (FH – St. Pölten, AT), Stefan Katzenbeisser (Universität Passau,
DE), Johannes Kinder, Georg Merzdovnik, and Edgar Weippl

License Creative Commons BY 3.0 Unported license
© Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik, and Edgar
Weippl

Main reference Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik, Edgar R.
Weippl: “Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code
Analysis?”, ACM Comput. Surv., Vol. 49(1), pp. 4:1–4:37, 2016.

URL https://doi.org/10.1145/2886012

Software obfuscation has always been a controversially discussed research area. While
theoretical results indicate that provably secure obfuscation in general is impossible, its
widespread application in malware and commercial software shows that it is nevertheless
popular in practice. Still, it remains largely unexplored towhat extent today’s software
obfuscations keep up with state-of-the-art code analysis, and where we stand inthe arms
race between software developers and code analysts. The main goal of this survey is to
analyze the effectiveness of different classes of software obfuscation against the continuously
improving de-obfuscation techniques and off-the-shelf code analysis tools. The answer very
much depends on the goals of the analyst and the available resources. On the one hand, many
forms of lightweight static analysis have difficulties with even basic obfuscation schemes,
which explains the unbroken popularity of obfuscation among malware writers. On the
other hand, more expensive analysis techniques, in particular when used interactively by a
human analyst, can easily defeat many obfuscations. As a result, software obfuscation for
the purpose of intellectual property protection remains highly challenging.

3.25 Software Protection, Cloakware Style
Bahman Sistany (Irdeto – Ottawa, CA)

License Creative Commons BY 3.0 Unported license
© Bahman Sistany

In this talk, we introduce Irdeto’s Cloakware Software Protection and go into some detail
about the Obfuscation engine and various obfuscations and transformations that it offers.
We present a summary of how guidance is given to users on the use of Irdeto’s Software

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1145/2886012
https://doi.org/10.1145/2886012
https://doi.org/10.1145/2886012
https://doi.org/10.1145/2886012
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 19

Protection to protect their assets. We discuss why there is a need to rank code/data entities
in terms of level/kind of protection needed and how performance and size considerations
are taken into account. We also cover how heuristics may be used to identify and rank
entities as low and high security and how we can draw further inferences about the whole
code units and use it as a basis for creating training datasets for Machine Learning based
security application. Finally some early research results in ML models and their datasets
were presented.

3.26 Security levels for white-box crypto
Atis Straujums (whiteCryption – Riga, LV)

License Creative Commons BY 3.0 Unported license
© Atis Straujums

We present a potential list of levels, assigned to our white-box algorithms based on their
strength. The level criteria don’t define a strict ordering but nevertheless help quickly assess
the strength of protection and decide whether to spend any more resources on improving it
for each algorithm.

3.27 Cheating in Online Games
Stijn Volckaert (KU Leuven – Ghent, BE)

License Creative Commons BY 3.0 Unported license
© Stijn Volckaert

In this talk, I presented an overview of the most prevalent types of cheats used in competitive
online games. I discussed the functionality of these cheats and explained which techniques
cheat coders use to construct them. I then shifted to cheat protection tools (so-called
anti-cheats). After reviewing the overall architecture of an anti-cheat, I zoomed in on my
own anti-cheat tool, ACE, which I built to protect Unreal Engine 1 games. I briefly talked
about ACE’s most prominent features and then reflected on things that have an have not
worked when rolling out new functionality.

3.28 Modern Static Analysis of Obfuscated Code
John Wagner (Vector 35 – Melbourne, US)

License Creative Commons BY 3.0 Unported license
© John Wagner

Static analysis tools have improved significantly in recent years. This talk is an exploration
of how modern static analysis tools analyze binary code and its impact on deobfuscation
techniques. Various obfuscation techniques are discussed, including those that have been
defeated by modern tools, those that are easier to defeat using the scripting features of these
tools, and those that are still very difficult to analyze.

19331

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

20 19331 – Software Protection Decision Support and Evaluation Methodologies

3.29 Kudelski Decision Support
Brecht Wyseur (Kudelski Group SA – Cheseaux, CH)

License Creative Commons BY 3.0 Unported license
© Brecht Wyseur

Kudelski has been developing Software Protection Tools internally. First for use on its
own products – to protect Digital TV applications on a wide variety of devices. Now this
has become also a product offering where Kudelski is helping its customers to protect its
applications. In this presentation, we elaborate on the constraints and requirements that
have been taken into account and how this has been managed in the product design and
development processes.

3.30 Seminar introduction
Brecht Wyseur (Kudelski Group SA – Cheseaux, CH)

License Creative Commons BY 3.0 Unported license
© Brecht Wyseur

At the start of the seminar, we presented an opening introduction presentation, setting the
scene and aligning on the seminar objectives. We also did a tour de table.

4 Working groups on Software Evaluation Methodology White Paper

As described in the executive summary, different groups brainstormed on evaluation meth-
odology best practices for different use cases, to serve as the initial input to a white paper.
The goal of this white paper is not to prescribe how exactly evaluations should be done, but
rather what aspects are relevant to consider explicitly in evaluations, which assumptions
might make sense and which might not. As a good way to convey, we consider the following
potential structure of a software protection paper:
1. Abstract & Introduction
2. Attack Model – Background – Related Work
3. Technical Contribution
4. Evaluation
5. Discussion
6. Availability
7. Conclusions

Our guidelines are not bound to such a structure, nor do we put forward this structure.
It simply allows us to put some structure in the many relevant aspects, as we can then
formulate advice on what aspects to consider and discuss in each section.

For each of those supposed sections, we can then formulate advice that would be relevant
for (almost all) papers in the domain of MATE software protection, or advice that would
only be relevant for papers focused on either offensive or defensive techniques, or advice that
would only be relevant for specific classes of techniques, such as trace-based techniques or
static analyses, or for specific tools, such as obfuscators or disassemblers. So on top of the
aforementioned structure, we structure the white paper itself into the following parts:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 21

1. Introduction – to the white paper.
2. Methodology – explaning the methodology followed to get to the white paper.
3. General Principles
4. Defensive Techniques
5. Offensive Techniques
6. Benchmarks – specific advice on the use of benchmarks.
7. Appendices – one per separate class of techniques.

As this is an evolving field, the white paper would be a living document.
For the four case studies discussed during the seminar, the initial input for the corres-

ponding appendices was collected, and potential plans were agreed upon to continue the
necessary work towards an initial publishable white paper. Here, we list, as an example,
a number of items for two of them: trace-based attack techniques on the one hand, and
(anti-)disassembly techniques on the other. Principles or practices considered to be clearly
more generally applicable are marked with an asterisk, even when some examples are given
to clarify them that clearly only apply to the technique at hand. We do not repeat such
generally applicable concepts in the second use case.

4.1 Class 1: (Anti-) Disassembly
4.1.1 Abstract & Introduction

* Explicitly mention the specific goals of the defense or attack methods that your technique
tries to overcome or to mitigate: disassembly, hiding code, identifying function starts,
letting the disassembler produce incomplete information (such as incomplete CFGs)
or letting it produce wrong information (i.e., incorrect graphs), identifying all basic
blocks within a function, hindering dataflow analysis, call graph reconstruction, increase
false-positive or false-negative rates of function starts, branches, function “ends”, etc
* Explicitly mention the advantages of your technique.
* Discuss upfront negative side-effects and impacts, as well as limitations
* Discuss upfront the maturity of the proposed technique (e.g., tested on state-of-the-art
combinations of protections or on single play version of one obfuscation, multiple platforms
or not)

4.1.2 Attack Model – Background – Related Work

* Describe the attack goals against which you defend, e.g., extracting instructions, function
starts, modifying code, symbolic execution, dataflow analysis, ...
* Discuss which attacks are out of scope, e.g., instruction tracing.
* Make assumptions explicit, e.g., regarding dynamic analysis being difficult or impossible
on some target, regarding the disassembler working on (the basis of) executable files on
disks, memory dumps, traces, regarding defender and attacker capabilities, limitations on
existing state-of-the-art techniques that you will use or build on.
* Discuss relevant, concrete (real-world) scenarios in which the proposed technique will
be demonstrated or is claimed to be useful, i.e., pushes the state of the art.
Discuss related work that and the extent to which it targets cases that your technique
can handle or is compatible with, such as overlapping instructions, polyglot code, dy-
namic jumps, self-modifying code, architectures designed against static disassembly (next
instruction depends on current one – see Malbolge), opaque predicates, edit distance as a
measure.

19331

22 19331 – Software Protection Decision Support and Evaluation Methodologies

4.1.3 Technical Contribution

* Explicitly discuss technical constraints, such as where in the build process is this
applied (compile time, link time, post-link, runtime, etc)? What platform (incl. OS) /
architecture / compilers / compiler options and other features are required or are the
techniques limited to (e.g., data in code or not).
* Explicitly discuss any diverges in the experimental setup / prototype implementation
from the relevant scenarios that were discussed in the attack model section.

4.1.4 Evaluation

* Explicitly mentioned the baseline you are comparing against.
* Measure performance on standard benchmarks.
* Advice in the form of “You can use metrics X, Y, and Z, for stealth, potency, performance,
cost, resilience, ... but not A, B, and C because they are useless”.
Consider scalability and sensitivity regarding program size, amount of indirection in it,
amount of aliasing in code when data flow analysis is used,...
Ideally use multiple disassemblers and not just the tools out-of-the-box, but, e.g., with
additional scripts that make up for the fact that the existing tools might not include
some simple heuristics they would have improved their performance on your binaries but
that were irrelevant before.
Ideally do not evaluate on on binaries with only your new protection, but in combination
with relevant protections taken from existing state of the art (commercial or academic).
You should look ahead a bit in the cat-and-mouse-game: not all possible attacks on a new
defense should be tested, but an analysis of some basic new attacks or small adaptations
to existing attacks should be discussed, and ideally already be evaluated (e.g., by writing
and running IDA Pro plugins that mimic simple heuristics that an attacker-improved
version of IDA Pro would include once attackers get to know your knew protection).
As long as the benchmarks span the relevant ranges as needed to assess scalability and
sensitivity, any benchmarks will typically do, such as SPEC (i.e., no assets required in
software).
Provide at least 1 set of ground truth experiments, account for false positives & false
negatives.
Moving towards a standard set of benchmarks would be good.

4.1.5 Discussion

* Discuss threats to validity
* In case there were divergences between real-world attack model and experimental setup,
the potential impact thereof should be discussed.

4.1.6 Availability

* Anything that matters for reproducibility and to let others build on your results should
be discussed, including the following items
* Our code is available under license XXX.
* Our benchmarks are standard, and available at ZZZ.
* Output data is available at ...
* Intermediate results are available ...
* Scripts for summarizing results from raw data are available ...

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 23

4.1.7 Conclusions

4.2 Class 2: Trace-based Attack Techniques
4.2.1 Attack Model – Background – Related Work

Explicitly describe and define the attack goals (e.g., finding keys, finding data value,
modifying data value, ...) in relation to legitimate software protection or malware. For
example, define what it means to “deobfuscate” in the context of your paper, and why
that is chosen as a goal (e.g., undo VM-based protection or analyse code at the bytecode
level).
Be explicit about the defenses and features thereof that you consider in scope or not, as
illustrated in the next bullets.
Depending on the type of tracing (including data flow analysis on the fly or not), different
types of tracing tools might be necessary, so limitations should be discussed if any exist
that relate to anti-emulation protections that can break the use of tools.
The granularity of traces should be discussed.
Stealth is very important to defend against these attacks (hide fragments or operations
that are relevant), so consider what stealth measures you can handle and how.
Taint-tracking is difficult to do because it is easy to thwart techniques, so if your method
depends on it, discuss this explicitly.
Hiding boundaries between relevant and irrelevant code is important and easy (e.g., by
inlining sensitive code) for many techniques, e.g., because the handle short sequences in
traces that need to be identified first. So benchmarks should span a wide range in terms
of stealth and complexity, but of course that also means we need a good definition of
stealth first.
It is okay to assume that a trace can always be collected, given the capabilities of modern
virtualization technologies.
It is okay to assume that deterministic replay of an execution on one input is possible.
Making the trace artificially different for different inputs can be a real problem, so don’t
assume delta-techniques are trivial.
If relevant, take into account in practice, deployed obfuscations might not be limited to
small parts (that are easily identifiable).
* The paper should explicitly cover whether or not the attacker is assumed to know the
obfuscator internals, and whether or not the paper assumes security through obscurity
(preferably not).

4.2.2 Evaluation

* Use microbenchmarks to measure performance (CPU and memory runtime overhead,
code size overhead)
* Also measure performance on standard benchmarks, for example taken from a competi-
tion.
* When analyzing obfuscations, it is important to measure the variability they introduce
in the execution and report averages and confidence intervals.
* Check scalability by measuring performance on benchmarks that covers a range (includes
program size & complexity, trace size & complexity), measure time, memory consumption
and anything else needed. Identify bottlenecks if there is an issue with scalability.

19331

24 19331 – Software Protection Decision Support and Evaluation Methodologies

* Both evaluation for specific protection-attack combinations (i.e., single protection) and
on more real-world relevant cases (with more protections combined) can be useful and
are ideally included. If you only chose one, explain why it’s enough.

4.2.3 Discussion

* Threads to validity should include how easy or difficult it is to port the proposed
techniques to different platforms or setups and to deploy them in other scenarios.
Coverage requirements should be discussed. What are the expectations in terms of
coverage and how does it affect the validity of the attack?

Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur 25

Participants

Mohsen Ahmadvand
TU München, DE

Sébastien Bardin
CEA LIST, FR

Cataldo Basile
Polytechnic University of
Torino, IT

Tim Blazytko
Ruhr-Universität Bochum, DE

Richard Bonichon
CEA LIST – Nano-INNOV, FR

Richard Clayton
University of Cambridge, GB

Christian Collberg
University of Arizona –
Tucson, US

Moritz Contag
Ruhr-Universität Bochum, DE

Bart Coppens
Ghent University, BE

Jorge R. Cuéllar
Siemens AG – München, DE

Mila Dalla Preda
University of Verona, IT

Bjorn De Sutter
Ghent University, BE

Laurent Dore
EDSI – Cesson-Sevigne, FR

Ninon Eyrolles
Paris, FR

Roberto Giacobazzi
University of Verona, IT

Yuan Xiang Gu
Irdeto – Ottawa, CA

Christophe Hauser
USC – Marina del Rey, US

Stefan Katzenbeisser
Universität Passau, DE

Eric Lafortune
Guardsquare – Leuven, BE

Peter Lafosse
Vector 35 – Melbourne, US

Patrik Marcacci
Kudelski Security –
Cheseaux, CH

J. Todd McDonald
University of South Alabama –
Mobile, US

Christian Mönch
Conax – Oslo, NO

Leon Moonen
Simula Research Laboratory –
Lysaker, NO

Jan Newger
Google Switzerland – Zürich, CH

Katharina Pfeffer
SBA Research – Wien, DE

Yannik Potdevin
Universität Kiel, DE

Uwe Resas
QuBalt GmbH, DE

Rolf Rolles
Mobius Strip Reverse
Engineering – San Francisco, US

Sebastian Schrittwieser
FH – St. Pölten, AT

Bahman Sistany
Irdeto – Ottawa, CA

Natalia Stakhanova
University of Saskatchewan –
Saskatoon, CA

Atis Straujums
whiteCryption – Riga, LV

Stijn Volckaert
KU Leuven – Ghent, BE

John Wagner
Vector 35 – Melbourne, US

Andreas Weber
Gemalto – München, DE

Brecht Wyseur
Kudelski Group SA –
Cheseaux, CH

Michael Zunke
SFNT Germany GmbH –
München, DE

19331

	Executive Summary Christian Collberg, Mila Dalla Preda, Bjorn De Sutter, and Brecht Wyseur
	Table of Contents
	Overview of Talks
	On the resilience of software integrity protection techniques (work in progress) Mohsen Ahmadvand
	Automated Deobfuscation: A Tour on Semantic Attacks Sébastien Bardin
	An Expert System for Software Protection Cataldo Basile
	Hardening VM Semantics Tim Blazytko and Moritz Contag
	An Introduction to Security Economics Richard Clayton
	Introduction to the virtual machine obfuscation case study Christian Collberg
	Software Protection Benchmark Generation Christian Collberg
	Introduction to the (anti-)disassembly case study Bart Coppens
	Securing workflows for industrial Use Cases Jorge R. Cuéllar
	Introduction to the data obfuscation case study Mila Dalla Preda
	Empirical Software Protection Experiments Bjorn De Sutter
	Extra protections and attack in seminar scope Bjorn De Sutter
	Introduction to the trace-semantics-based attack case study Bjorn De Sutter
	Metrics for Software Protection Evaluation Bjorn De Sutter
	A (unified) measure theory for potency? Roberto Giacobazzi
	Security Activities in Protected SW Product Life Cycle Yuan Xiang Gu
	Security Problems of AI/ML Applications Yuan Xiang Gu, Mila Dalla Preda, and Roberto Giacobazzi
	(State of) The Art of War: Offensive Techniques in Binary Analysis Christophe Hauser
	Hardware / Software Binding Using DRAM PUFs Stefan Katzenbeisser
	Decision processes @ Guardsquare Eric Lafortune
	Binary Ninja Demonstration Peter Lafosse
	Usable Security Katharina Pfeffer
	Case Study in Deobfuscation: Compile-Time Obfuscation Rolf Rolles
	Protecting software through obfuscation: Can it keep pace with progress in code analysis? Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik, and Edgar Weippl
	Software Protection, Cloakware Style Bahman Sistany
	Security levels for white-box crypto Atis Straujums
	Cheating in Online Games Stijn Volckaert
	Modern Static Analysis of Obfuscated Code John Wagner
	Kudelski Decision Support Brecht Wyseur
	Seminar introduction Brecht Wyseur

	Working groups on Software Evaluation Methodology White Paper
	Class 1: (Anti-) Disassembly
	Class 2: Trace-based Attack Techniques

	Participants

