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Abstract
From 18.08. to 23.08.2019, the Dagstuhl Seminar 19341 Algorithms and Complexity for Con-
tinuous Problems was held in the International Conference and Research Center (LZI), Schloss
Dagstuhl. During the seminar, participants presented their current research, and ongoing work
and open problems were discussed. Abstracts of the presentations given during the seminar can
be found in this report. The first section describes the seminar topics and goals in general. Links
to extended abstracts or full papers are provided, if available.
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This was already the 13th Dagstuhl Seminar on Algorithms and Complexity for Continuous
Problems over a period of 28 years. It brought together researchers from different communities
working on complexity of continuous problems. Such problems, which originate from numerous
areas, including physics, chemistry, finance, and economics, can almost never be solved
analytically, but rather only approximately to within some error threshold. The complexity
analysis ideally includes the construction of (asymptotically) optimal algorithms. Although
the seminar title has remained the same, many of the topics and participants change with
each seminar and each seminar in this series is of a very interdisciplinary nature. The current
seminar attracted 41 participants from nine different countries all over the world. About
30% of them were young researchers including PhD students. There were 34 presentations.
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The following topics were covered:

Tractability analysis of high-dimensional problems: Tractability analysis is an area of
applied mathematics and theoretical computer science that studies the minimal computational
resources needed for the approximate solution of problems with a huge number of variables,
and it can be seen as a unifying theme for the preceding seminars in this series. Many
concrete problems from applications have been analyzed in this context, new algorithms
were developed, approaches to break the curse of dimensionality were established, but there
remain a number of important open problems. Tractability analysis will serve as a guideline
and a tool for establishing complexity results and for constructing algorithms for infinite
dimensional problems.

Computational stochastics: The focus was on weak and strong approximation as well as
on the quadrature problem for stochastic ordinary or partial differential equations, i.e., on
models with a random dynamics in a finite- or infinite-dimensional state space. A major
topic was the complexity analysis for stochastic differential equations under non-standard
assumptions.

Computing and complexity in infinite dimensions: Computational problems with infinitely
many variables naturally arise in rather different application areas. Results and techniques
from tractability analysis are available and thus permit one to study infinite dimensional
problems as the limit of finite dimensional ones. Moreover, the availability of generic types
of algorithms, like the multivariate decomposition method or the multi-level approach,
will contribute to the complexity analysis and practical application in integration and
approximation problems of infinitely many variables.

Discrepancy theory: Classical discrepancy theory is concerned with the question how
uniformly finite point sets can be distributed. The geometric notion of discrepancy is
intimately connected to the complexity of integration for functions from certain function
classes. For problems in both fixed low dimension and high dimension, there are intriguing
open questions whose solution would impact both fields of discrepancy theory and tractability
studies.

Computational/applied harmonic analysis: Harmonic analysis plays an increasingly im-
portant role both in discrepancy theory and tractability analysis. One highlight is the proof
of the currently best known lower bound for the star discrepancy in fixed dimension, which
showed close connections between different areas, so similar techniques could be used to
establish better bounds for the celebrated small ball problem for Gaussian processes. Equally
important for the workshop is that many of the interesting spaces of functions occurring in
numerical problems are well suited to the application of harmonic analysis.

As we understand better and better, these subjects are highly interrelated, and they are
probably the most active and promising ones in the fields for the next decade. Bringing
together a mix of junior and senior researchers from these diverse but interrelated subjects in
a Dagstuhl seminar resulted in considerable progress both for the theory and the applications
in these areas.

Seminars in applied mathematics and theoretical computer science typically consist of
presentations, followed by short discussions in the plenum, and numerous informal discussions
in smaller groups. In this seminar, we added another new feature. A moderator was assigned
to three preselected talks (based on their particular relevance and on the experience of the
speaker) in order to inspire a longer, in-depth discussion in the plenum. The three speakers
were Jan Víbyral, Erich Novak, and Martin Hutzenthaler. The talks were scheduled as the
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first talks on Tuesday, Wednesday and Thursday. It was indeed very inspiring to witness
the long and deep discussions following these special talks. We feel that this format was
successful and should be used also in other workshops and conferences of the community.

The work of the attendants was supported by a variety of funding agencies. This includes
the Deutsche Forschungsgemeinschaft, the Austrian Science Fund, the National Science
Foundation (USA), and the Australian Research Council.

As always, the excellent working conditions and friendly atmosphere provided by the
Dagstuhl team have led to a rich exchange of ideas as well as a number of new collaborations.
Selected papers related to this seminar will be published in a special issue of the Journal of
Complexity.
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3 Overview of Talks

3.1 Bound on the expected number of function evaluations required to
approximate the minimum of a smooth Gaussian process

James M. Calvin (NJIT – Newark, US)

License Creative Commons BY 3.0 Unported license
© James M. Calvin

We consider the problem of approximating the minimum of a function using sequentially
chosen points at which to evaluate the function. Given a random function, we want an
algorithm that approximates the minimum to a prescribed accuracy with few function
evaluations on average.

In this talk we consider the function to be a centered stationary Gaussian process on
the unit interval with three-times continuously differentiable paths. We assume that the
covariance function of the process has positive second and fourth spectral moments.

We describe an algorithm that takes as input an error tolerance ε and confidence level γ,
and stops when the probability that the error exceeds ε is at most γ. For our probability
model and algorithm, the expected number of function evaluations required, in terms of the
error tolerance ε, is of order log(1 + 1/ε) log log(1 + 1/ε).

3.2 Lattice Algorithms for Multivariate Approximation in Periodic
Spaces with General Weight Parameters

Ronald Cools (KU Leuven, BE), Frances Y. Kuo (UNSW Sydney, AU), Dirk Nuyens (KU
Leuven, BE), and Ian Sloan

License Creative Commons BY 3.0 Unported license
© Ronald Cools, Frances Y. Kuo, Dirk Nuyens, and Ian Sloan

Main reference Ronald Cools, Frances Y. Kuo, Dirk Nuyens, Ian H. Sloan: “Lattice algorithms for multivariate
approximation in periodic spaces with general weight parameters”, CoRR, Vol. abs/1910.06604,
2019.

URL http://arxiv.org/abs/1910.06604

This talk summarizes a recent manuscript by the authors on the theoretical foundation for
the construction of lattice algorithms for multivariate L2 approximation in the worst case
setting, for functions in a periodic space with general weight parameters. Our construction
leads to an error bound that achieves the optimal rate of convergence for lattice algorithms.
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3.3 Convergence in Hölder and Sobolev norms for approximations of
Gaussian fields

Sonja Cox (University of Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Sonja Cox

Joint work of Sonja Cox, Kristin Kirchner
Main reference Sonja G. Cox, Kristin Kirchner: “Regularity and convergence analysis in Sobolev and Hölder

spaces for generalized Whittle-Matérn fields”, CoRR, Vol. abs/1904.06569, 2019.
URL https://arxiv.org/abs/1904.06569

In models involving a Gaussian field one frequently assumes the covariance operator to be
given by a negative fractional power of a second-order elliptic differential operator of the form
L := −∇ · (A∇) + κ2. Whittle-Matérn fields form an well-known example of such a model.
Such covariance operators allow for a reasonable amount of model flexibility (adjustable
correlation length and the smoothness of the field) whilst being relatively easy to simulate.
In our work we established optimal strong convergence rates in Hölder and Sobolov norms
for Galerkin approximations of such Gaussian random fields. More specifically, we considered
both spectral Galerkin methods and finite element methods. The latter, although significantly
more tedious to analyse, are more suitable for non-stationary fields on non-standard domains.

3.4 CLTs for stochastic approximation schemes under non-standard
assumptions

Steffen Dereich (Universität Münster, DE)

License Creative Commons BY 3.0 Unported license
© Steffen Dereich

We establish new CLTs for Ruppert-Polyak averaged stochastic gradient descent schemes.
Instead of isolated attractors we consider attracting manifolds. On the event of convergence
we prove a stable limit theorem which is of the optimal order n−1/2.

3.5 The spectral decomposition of discrepancy kernels on manifolds
Martin Ehler (Universität Wien, AT)

License Creative Commons BY 3.0 Unported license
© Martin Ehler

We study the spectral decomposition of discrepancy kernels when restricted to compact
kernels of Rd. For restrictions to the Euclidean ball in odd dimensions, to the rotation group
SO(3), and to the Grassmannian manifold, we compute the kernel’s Fourier coefficient and
determine their asymptotics.
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3.6 Nested multilevel Monte Carlo and use of approximate random
variables

Michael Giles (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Michael Giles

Joint work of Mike Giles, Oliver Sheridan-Methven
Main reference Michael B. Giles: “Multilevel Monte Carlo methods”, Acta Numer., Vol. 24, pp. 259–328, 2015.

URL http://dx.doi.org/10.1017/S096249291500001X

The multilevel Monte Carlo (MLMC) method has been used for a wide variety of stochastic
applications. In this talk we consider its use in situations in which input random variables
can be replaced by similar approximate random variables which can be computed much
more cheaply. A nested MLMC approach is adopted in which a two-level treatment of the
approximated random variables is embedded within a standard MLMC application. We
analyse the resulting nested MLMC variance in the specific context of an SDE discretisation in
which Normal random variables can be replaced by approximately Normal random variables,
and provide numerical results to support the analysis.

3.7 Mixed Randomized Sequences, Negative Dependence, and
Probabilistic Discrepancy Bounds

Michael Gnewuch (Universität Osnabrück, DE)

License Creative Commons BY 3.0 Unported license
© Michael Gnewuch

Joint work of Michael Gnewuch, Benjamin Doerr, Nils Hebbinghaus, Marcin Wnuk

We consider sampling schemes in the d-dimensional unit cube [0, 1]d. A simple example
would be Monte Carlo (MC) points X := (Xi)ni=1, which are independent and uniformly
distributed in [0, 1]d. It is known that MC points satisfy the probabilistic star discrepancy
bound

disc∗(X) ≤ c
√
d/n (1)

with positive probability (Heinrich et al. 2001, Aistleitner 2011), where the smallest value for
the constant so far, c = 2.5287, was achieved in [2]. This bound is a pre-asymptotic bound,
since it gives useful information for a moderate number of points n (only depending linearly
on d) and the dependence of all constants on the number of points n and the dimension d is
made explicit. So far there is no sampling scheme known that satisfies a better pre-asymptotic
bound for the star discrepancy.

Our goal is to identify those sampling schemes X := (Xi)ni=1, whose points are “well
spreaded” in [0, 1]d in the sense that the probabilistic bound for the star discrepancy of
X1, . . . , Xn is (essentially) not worse than bound (1). One sufficient condition is that the
sampling scheme satisfies certain negative dependence properties.

If X satisfies, e.g., a certain negative dependence property with respect to arbitrary
axis-parellel boxes anchored in 0, then a discrepancy bound of the form

disc∗(X) ≤ c
√
d/n

√
ln(1 + n/d),

c small, holds with positive probability, see [3].
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If X satisfies even the corresponding negative dependence property with respect to
arbitrary differences of axis-parellel boxes anchored in 0, then a discrepancy bound of the
form (1) for small c holds with positive probability, see [2].

Examples of sampling schemes that satisfy these negative dependence properties include,
apart from MC points, Latin hypercube sampling, see [2], generalized stratified sampling or
certain mixed randomized sequences, see [3].

The notion of negative dependence used is a relaxation of the notion of (upper and
lower) negative orthant dependence. The relaxation allows for a parameter γ ∈ [1,∞) that
in the case of negative orthant dependence is fixed to be one. In a project started at the
Dagstuhl seminar 19341, we recently have been able to show that the negative dependence
property for Latin hypercube samples proved in [2] for parameters γ = γ(d) = ed can
actually only be proved for a γ = γ(d) that grows at least of the order Ω(

√
d) as d tends

to infinity, see [1]. That is, although Latin hypercube sampling definitely does not satisfy
negative orthant dependence with respect to arbitrary differences of axis-parellel boxes
anchored in 0, it satisfies the corresponding new relaxed negative dependence property with
(dimension-dependent) parameter γ.

References
1 B. Doerr, M. Gnewuch. On negative dependence properties of Latin hypercube samples

and scrambled nets. In preparation.
2 M. Gnewuch, N. Hebbinghaus. Discrepancy bounds for a class of negatively dependent

random points including Latin hypercube samples. Preprint 2018 (submitted).
3 M. Wnuk, M. Gnewuch, N. Hebbinghaus. On negatively dependent sampling schemes, vari-

ance reduction, and probabilistic upper discrepancy bounds. Preprint, arXiv:1904.10796.
(To appear in: D. Bylik, J. Dick, F. Pillichshammer (Eds.), Proceedings of the RICAM
Special Semester on Multivariate Algorithms and their Foundations in Number Theory,
Linz 2018, DeGruyter.)

3.8 Multilevel Monte Carlo methods for estimating the expected value
of sample information

Takashi Goda (University of Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Takashi Goda

Joint work of Michael B. Giles, Takashi Goda, Tomohiko Hironaka, Howard Thom
Main reference Michael B. Giles, Takashi Goda: “Decision-making under uncertainty: using MLMC for efficient

estimation of EVPPI”, Statistics and Computing, Vol. 29(4), pp. 739–751, 2019.
URL http://dx.doi.org/10.1007/s11222-018-9835-1

Motivated by applications to medical decision making, we study Monte Carlo estimation of
the expected value of partial perfect information (EVPPI) and the expected value of sample
information (EVSI). Both EVPPI and EVSI are defined as nested expectations, for which
the standard (nested) Monte Carlo methods requires O(ε−3) or O(ε−4) computational costs
to achieve the root-mean-square accuracy ε. To reduce these costs to O(ε−2), we introduce
antithetic multilevel Monte Carlo (MLMC) estimators for these quantities in this study.
Under some assumptions on decision models, the antithetic property of the MLMC estimator
enables to prove such a computational complexity for estimating EVPPI (Giles and Goda,
2019). The result can be extended to EVSI, by directly using the Bayes’ formula and showing
auxiliary results on the MLMC estimation of nested ratio expectations (Hironaka, Giles,
Goda and Thom, in preparation). Numerical experiments support our theoretical analysis.
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3.9 Adaptive Quantile Computation for Brownian Bridge in
Change-Point Analysis

Mario Hefter (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Mario Hefter

Joint work of Mario Hefter, Jürgen Franke, André Herzwurm, Klaus Ritter, Stefanie Schwaar

In change-point analysis, weighted partial sum processes are used to detect changes. A
well-known test statistic for change-points is their maximum. Asymptotically, its distribution
is specified by the supremum of a weighted Brownian bridge, for which the distribution
function is not known in general such that critical values have to be calculated numerically
by simulation. We construct an adaptive Monte Carlo algorithm for generating weighted
Brownian bridges with the goal of approximating the distribution of their suprema. We
compare the new method with the classical algorithm based on evaluating the stochastic
process on an equidistant grid. For prescribed approximation quality, the new algorithm
provides a much faster calculation of, e.g., critical values.

3.10 Overcoming the curse of dimensionality for parabolic PDEs
Martin Hutzenthaler (Universität Duisburg-Essen, DE)

License Creative Commons BY 3.0 Unported license
© Martin Hutzenthaler

Joint work of Weinan E, Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, Philippe von
Wurstemberger

Main reference Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, Philippe von
Wurstemberger: “Overcoming the curse of dimensionality in the numerical approximation of
semilinear parabolic partial differential equations”, CoRR, Vol abs/1807.01212, 2018.

URL https://arxiv.org/abs/1807.01212

For a long time it is well-known that high-dimensional linear parabolic partial differential
equations (PDEs) can be approximated by Monte Carlo methods with a computational effort
which grows polynomially both in the dimension and in the reciprocal of the prescribed
accuracy. In other words, linear PDEs do not suffer from the curse of dimensionality.
For general semilinear PDEs with Lipschitz coefficients, however, it remained an open
question whether these suffer from the curse of dimensionality. This talk explains a new
numerical approximation algorithm introduced in [1] and [2] which overcomes the curse of
dimensionality in the numerical approximation of general semilinear heat equations with
gradient-independent nonlinearities.

References
1 E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. Linear scaling algorithms

for solving high-dimensional nonlinear parabolic differential equations. arXiv:1605.00856
(2016).

2 Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T. A., and von Wurstem-
berger, P. Overcoming the curse of dimensionality in the numerical approximation of
semilinear parabolic partial differential equations. arXiv preprint arXiv:1807.01212 (2018).
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3.11 Quasi-Monte Carlo Methods and Artificial Neural Networks
Alexander Keller (NVIDIA, DE)

License Creative Commons BY 3.0 Unported license
© Alexander Keller

Joint work of Gonçalo Mordido, Matthijs Van Keirsbilck, Alexander Keller
URL https://developer.nvidia.com/gtc/2019/video/S9389

The average human brain has about 1011 nerve cells, where each of them may be connected
to up to 104 others. We therefore investigate the question whether there are algorithms
for artificial neural networks that are linear in the number of neurons, while the number of
connections incident to a neuron is bounded by a constant.

Representing artificial neural networks by paths, we offer two approaches to answer this
question: First, we derive an algorithm that quantizes a trained artificial neural network such
that the resulting complexity is linear [1]. Second, we demonstrate that training networks,
whose connections are determined by uniform sampling can achieve a similar precision as
using fully connected layers. Due to sparsity upfront, these networks can be trained much
faster. Finally, we explain how generating the paths using quasi-Monte Carlo methods,
especially the Sobol’ low discrepancy sequence, leads to a new parallel hardware architecture
for artificial neural networks.

References
1 Gonçalo Mordido, Matthijs Van keirsbilck, Alexander Keller. Instant Quantization of

Neural Networks using Monte Carlo Methods. https://arxiv.org/abs/1905.12253, 2019

3.12 Fast simulation of non-stationary Gaussian random fields
Kristin Kirchner (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
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Joint work of Lukas Herrmann, Kristin Kirchner, Christoph Schwab
Main reference Lukas Herrmann, Kristin Kirchner, Christoph Schwab: “Multilevel Approximation of Gaussian

Random Fields: Fast Simulation”, Mathematical Models and Methods in Applied Sciences(ja),
2019.

URL http://dx.doi.org/10.1142/S0218202520500050

We propose and analyze multilevel algorithms for the fast simulation of possibly non-stationary
Gaussian random fields (GRFs for short) indexed, e.g., by a bounded domain D ⊂ Rd or
by a compact d-manifoldM. A colored GRF Z, admissible for our algorithms, solves the
stochastic fractional-order equation AβZ =W for some β > d/4, where A is a linear, local,
second-order elliptic differential operator in divergence form and W is white noise. We thus
consider GRFs with covariance operators of the form C = A−2β .

The proposed algorithms numerically approximate samples of Z on nested sequences
{T`}`≥0 of regular, simplicial partitions T` of D andM, respectively. Work and memory to
compute one approximate realization of the GRF Z on the triangulation T` with consistency
O(N−ρ` ), for some consistency order ρ > 0, scale essentially linear in N` = #(T`), independent
of the possibly low regularity of the GRF. The algorithms are based on a sinc quadrature for
an integral representation of (the application of) the negative fractional-order elliptic operator
A−β . For the proposed numerical approximation, we prove bounds of the computational cost
and the consistency error.
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3.13 The power of random information
David Krieg (Johannes Kepler Universität Linz, AT), Aicke Hinrichs (Johannes Kepler
Universität Linz, AT), Erich Novak (Universität Jena, DE), Joscha Prochno (Universität
Graz, AT), and Mario Ullrich (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© David Krieg, Aicke Hinrichs, Erich Novak, Joscha Prochno, Mario Ullrich

Main reference Aicke Hinrichs, David Krieg, Erich Novak, Joscha Prochno, Mario Ullrich: “On the power of
random information”, CoRR, Vol. abs/1903/006081, 2019.

URL https://arxiv.org/abs/1903.00681

We study problems like recovering a function from a finite number of function values. Usually,
it is assumed that these function values can be computed at arbitrary points. In this talk, we
assume that we do not get to choose the points. We compare the quality of random sampling
points with the quality of optimal sampling points. How much do we loose?

References
1 Aicke Hinrichs, David Krieg, Erich Novak, Joscha Prochno, Mario Ullrich. Random sections

of ellipsoids and the power of random information. arXiv:1901.06639 [math.FA]
2 Aicke Hinrichs, David Krieg, Erich Novak, Joscha Prochno, Mario Ullrich. On the power

of random information. arXiv:1903.00681 [math.NA]
3 David Krieg, Mario Ullrich. Function values are enough for L2-approximation.

arXiv:1905.02516 [math.NA]

3.14 Exponential tractability of linear tensor product problems
Peter Kritzer (Österreichische Akadamie der Wissenschaften – Linz, AT)

License Creative Commons BY 3.0 Unported license
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Joint work of Fred J. Hickernell, Peter Kritzer, Henryk Wozniakowski
Main reference Fred J. Hickernell, Peter Kritzer, Henryk Wozniakowski: “Exponential tractability of linear tensor

product problems”, CoRR, Vol. abs/1811.05856, 2018.
Main reference https://arxiv.org/abs/1811.05856

We consider the approximation of compact linear operators defined over tensor product
Hilbert spaces. Necessary and sufficient conditions on the singular values of the problem
under which we can or cannot achieve different notions of exponential tractability were given
by Papageorgiou, Petras, and Wozniakowski in 2017. Here we present an alternative proof
method based on a more recent result to obtain these conditions. As opposed to the algebraic
setting, several tractability notions cannot be achieved for non-trivial cases in the exponential
setting.
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3.15 Optimal confidence for Monte Carlo integration of smooth
functions

Robert J. Kunsch (RWTH Aachen, DE) and Daniel Rudolf (Universität Göttingen, DE)

License Creative Commons BY 3.0 Unported license
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Main reference Robert J. Kunsch, Daniel Rudolf: “Optimal confidence for Monte Carlo integration of smooth
functions”, CoRR, Vol. abs/1809/09890, 2018.

URL https://arxiv.org/abs/1809.09890

We study the information-based complexity of approximating integrals of smooth functions
at absolute precision ε > 0 with confidence level 1−−δ ∈ (0, 1) using function evaluations
within randomized algorithms. The probabilistic error criterion is new in the context of
integrating smooth functions. In previous research, Monte Carlo integration was studied
in terms of the expected error (or the root mean squared error), for which linear methods
achieve optimal rates of the error e(n) in terms of the number n of function evaluations. In
our context, usually methods that provide optimal confidence properties exhibit non-linear
features. The optimal probabilistic error rate e(n, δ) for multivariate functions from classical
isotropic Sobolev spaces W r

p (G) with sufficient smoothness on bounded Lipschitz domains
G ⊂ Rd is determined. It turns out that the integrability index p has an effect on the
influence of the uncertainty δ in the complexity. In the limiting case p = 1 we see that
deterministic methods cannot be improved by randomization. In general, higher smoothness
reduces the additional effort for diminishing the uncertainty. Finally, we add a discussion
about this problem for function spaces with mixed smoothness.

3.16 Uniform Recovery Guarantees for Least Squares Approximtion
Lutz Kämmerer (TU Chemnitz, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Lutz Kämmerer, Tino Ullrich, Toni Volkmer
Main reference Lutz Kämmerer: “Multiple Lattice Rules for Multivariate L∞ Approximation in the Worst-Case

Setting”, CoRR, Vol. abs/1909.02290, 2019.
URL http://arxiv.org/abs/1909.02290

We recapitulate recent results for least squares approximation using random point sets. In
particular, for the L(

2Td) approximation of functions from periodic Sobolev spaces Hs
mix(Td)

of dominating mixed smoothness s, the uniform recovery guarantees sup‖f‖Hsmix
‖f − f̃‖L2 .

n−s logds n hold, which is an improvement compared to best known so far sparse grid
algorithms for small smoothness. Furthermore, the L∞(Td) approximation using a set of
rank-1 lattices as sampling nodes provides an efficient approximation algorithm that uses
several least squares solutions in order to build up an approximation. This approach achieves
the best possible main rate s− 1/2 in 1/n of the sampling error.
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3.17 In the search for all zeros of smooth functions
Leszek Plaskota (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
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We report results obtained in an on going research on the problem of finding the set of
all zeros of functions f ∈ Cr([0, 1]), r ∈ {0, 1, 2, . . .}, such that f (r) is Hölder continuous
with exponent % ∈ (0, 1]. We also allow r = +∞, in which case f is infinitely many times
continuously differentiable. Possible algorithms use information about values of f and/or its
derivatives at n points. The error between the true solution Z(f) and approximate solution
Zn(f) is measured via the Hausdorff distance dH(Z(f), Zn(f)) between sets. We construct
a nonadaptive algorithm using function evaluations at equally spaced points whose error
converges to zero as n → +∞, for all functions f from our class. On the other hand, the
convergence is arbitrarily slow. Specifically, for any sequence {Zn}n≥1 of approximations and
for any positive sequence {τn}n≥1 converging to zero there are functions f∗ having exactly
one zero for which the errors dH(Z(f∗), Zn(f∗)) do not converge to zero or converge slower
than τn.

We also note that the same results hold for finding zeros of functions from the corres-
ponding class of multivariate functions, and for other problems, such as finding all fixed
points or finding all global minima.

These results confirm a common belief that smoothness itself is not enough to have faster
convergence of algorithms for those problems.

3.18 Convergence order of the Euler-Maruyama scheme in dependence
of the Sobolev regularity of the drift

Michaela Szölgyenyi (Alpen-Adria-Universität Klagenfurt, AT)

License Creative Commons BY 3.0 Unported license
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Joint work of Michaela Szölgyenyi, Andreas Neuenkirch

We study the strong convergence rate of the Euler-Maruyama scheme for scalar SDEs with
additive noise and irregular drift. We provide a framework for the error analysis by reducing
it to a weighted quadrature problem for irregular functions of Brownian motion. By analysing
the quadrature problem we obtain for abitrarily small ε > 0 a strong convergence order
of (1 + κ)/2 − ε for a non-equidistant Euler-Maruyama scheme, if the drift has Sobolev-
Slobodeckij-type regularity of order κ ∈ (0, 1).
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3.19 On strong approximation of SDEs with a discontinuous drift
coefficient

Thomas Müller-Gronbach (Universität Passau, DE) and Larisa Yaroslavtseva (Universität
Passau, DE)

License Creative Commons BY 3.0 Unported license
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Recently a lot of effort has been invested in the literature to analyze the Lp-error of the
Euler-Maruyama scheme in the case of stochastic differential equations (SDEs) with a drift
coefficient that may have discontinuities in space. For scalar SDEs with a piecewise Lipschitz
drift coefficient and a Lipschitz diffusion coefficient that is non-zero at the discontinuity
points of the drift coefficient so far only an Lp-error rate of at least 1/(2p)− has been proven
in the literature. In this talk we show that under the latter assumptions on the coefficients
of the SDE the Euler-Maruyama scheme in fact achieves an Lp-error rate of at least 1/2 for
all p ∈ [1,∞) as in the case of SDEs with Lipschitz coefficients. We furthermore present
a numerical method, which achieves an Lp-error rate of at least 3/4 for all p ∈ [1,∞) if,
additionally to the assumptions stated above, both the drift and the diffusion coefficients are
piecewise differentiable with Lipschitz derivatives.

3.20 Algorithms and Complexity for Functions on General Domains
Erich Novak (Universität Jena, DE)

License Creative Commons BY 3.0 Unported license
© Erich Novak

Error bounds and complexity bounds in numerical analysis and information-based complexity
are often proved for functions that are defined on very simple domains, such as a cube, a
torus, or a sphere. We study optimal error bounds for the approximation and integration
and only assume that the domain is a bounded Lipschitz domain in Rd. It is known that
for many problems the order of convergence does not depend on the domain. We present
examples for which the following is true:
1) Also the asymptotic constant does not depend on the shape of the domain, only of its

volume.
2) There are explicit and uniform lower (or upper, respectively) bounds for the error that

are only slightly smaller (or larger, respectively) than the asymptotic error bound.

3.21 Lattice algorithms for approximation: new constructions
Dirk Nuyens (KU Leuven, BE), Ronald Cools (KU Leuven, BE), Ian H. Sloan, and Frances
Y. Kuo (UNSW Sydney, AU)

License Creative Commons BY 3.0 Unported license
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We derive a new CBC algorithm for the construction of good generating vectors for rank-1
lattice point sets which can be used for approximation in the Korobov space with general
weights. The good news is that this construction is independent of the index set on which we
represent our approximated function which makes for nice and fast construction algorithms
in the case of product, POD and SPOD weights.
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3.22 Randomized Euler scheme for strong approximation of SDEs
under Sobolev-Slobodeckij smoothness

Paweł Przybyłowicz (AGH Univ. of Science & Technology-Krakow, PL)

License Creative Commons BY 3.0 Unported license
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Joint work of Paweł Przybyłowicz, Raphael Kruse

We investigate the problem of strong approximation of solution of the following scalar SDE{
dX(t) = a(t,X(t))dt+ b(t)dW (t), t ∈ [0, T ],
X(0) = η,

(2)

driven by a standard one-dimensional Wiener process W = (W (t))t∈[0,T ]. We assume that
a = a(t, y) and b = b(t) are only measurable with respect to the time variable t, and a is
globally Lipschitz with respect to the space variable y.

We investigate behavior of the randomized Euler scheme XRE
n , which evaluates a and

b at randomly chosen points. By using Information-Based Complexity framework we show
that randomized Euler scheme converges to the solution X of the underlying SDE but the
convergence of XRE

n to X may be arbitrarily slow ([5]). In order to get positive results we
assume that b belongs to the Sobolev-Slobodeckij space Wσ,p, σ ∈ (0, 1), p > 2. In this
case we show that the L2(Ω)-error of the algorithm XRE

n is O(n−min{ 1
2−

1
p ,σ}). Moreover, we

investigate corresponding lower bounds ([3]). In particular, this extends the results from [1],
[2], [4], and [6], obtained for the randomized Euler scheme.
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3.23 Tractability properties of discrepancy
Friedrich Pillichshammer (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
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Joint work of Josef Dick, Aicke Hinrichs, Friedrich Pillichshammer

Discrepancies are quantitative measures for the irregularity of distribution of point sets in
[0, 1]d which are closely related to the error of quasi-Monte Carlo (QMC) integration rules.
Classical results consider discrepancy with respect to its asymptotic dependence when the
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size N of a point set tends to infinity. In this sense optimal results are known, but often
these results give no information on the pre-asymptotic scale, especially when the dimension
d is large.

In 2001 Heinrich, Novak, Wasilkowski and Woźniakowski [1] initiated the study of
the dependence of discrepancy on the dimension d with a remarkable result for the star
discrepancy. They showed that for every N and d there exists a N -point set in [0, 1]d with
classical star discrepancy of at most C

√
d/N , where C is a positive constant independent

of N and d. Since then a lot of papers on this topic with exciting results have appeared.
Nevertheless, a lot of problems are still open.

In this talk we give a review of this topic and present some new results concerning the
periodic L2 discrepancy and the discrepancy with respect to the exponential Orlicz norm.

References
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3.24 Large deviations in geometric functional analysis
Joscha Prochno (Universität Graz, AT)
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Joint work of Joscha Prochno, Zakhar Kabluchko, Christoph Thäle

Large deviations are a classical topic in probability theory, but have only recently entered
the scene of asymptotic geometric analysis. After giving a short introduction to the theory
of large deviations, we present a large deviations principle for the q-norm length of a random
vector chosen uniformly at random from the unit ball of `np . More precisely, we show that for
1 ≤ p <∞ and q > p, the sequence (n1/p−1/q‖X‖q)n∈N satisfies a large deviations principle
with speed np/q and rate

I(z) =
{

1
p (zq −−Mp(q))p/q for zq ≥Mp(q),
∞ else.

We shall also mention large deviations results that can be proved in the noncommutative
setting of Schatten classes. In this case, the rate function is essentially the logarithmic energy
plus some perturbation by a constant strongly connected to the famous Ullman distribution.
As a consequence of the Sanov-type large deviations, one obtains a strong law of large
numbers showing that the empirical spectral measure converges weakly almost surely to the
Ullman distribution.
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3.25 Wasserstein contraction and spectral gap of simple slice sampling
Daniel Rudolf (Universität Göttingen, DE)
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Main reference Viacheslav Natarovskii, Daniel Rudolf, Björn Sprungk: “Quantitative spectral gap estimate and

Wasserstein contraction of simple slice sampling”, CoRR, Vol abs/1903/03824, 2019.
URL https://arxiv.org/abs/1903.03824

We provide results on Wasserstein contraction of simple slice sampling for approximate
sampling w.r.t. distributions with log-concave and rotational invariant Lebesgue densities.
This leads to an explicit quantitative lower bound of the spectral gap of simple slice sampling.
In addition to that this lower bound carries over to more general target distributions depending
only on the volume of the (super-)level sets of their unnormalized density.

3.26 Complexity of stochastic integration
Stefan Heinrich (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
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We study the complexity of stochastic integration with respect to the Wiener sheet measure∫
[0,1]d f(t)dWt of stochastic functions f = f(t, ω) with Besov Brpp([0, 1]d) and Bessel potential
Hr
p([0, 1]d) regularity in t. We determine the complexity in the deterministic and randomized

setting, which includes finding and analyzing algorithms of optimal order and proving
matching lower bounds.

3.27 Potential Theory, inverse Laplacians and new Low(?)-Discrepancy
Sequences

Stefan Steinerberger (Yale University – New Haven, US)

License Creative Commons BY 3.0 Unported license
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Main reference Stefan Steinerberger: “A Nonlocal Functional Promoting Low-Discrepancy Point Sets”, CoRR,
Vol. abs/1902.00441, 2019.

URL https://arxiv.org/abs/1902.00441
Main reference Stefan Steinerberger: “Dynamically Defined Sequences with Small Discrepancy”, CoRR,
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Main reference Florian Pausinger: “Greedy energy minimization can count in binary: point charges and the van
der Corput sequence”, CoRR, Vol. abs/1905.09641, 2019.

URL https://arxiv.org/abs/1905.09641

We discuss a new way to construct sequences in the unit interval with very favorable
distribution properties. Our construction is based on a greedy algorithm that uses the Green
function of the fractional Laplacian as a kernel; we can prove that the discrepancy of this set
is at least N−1/2 log(N) but presumably much stronger results hold true (and this is also
backed up by numerical investigations). This seems to open several different lines of research.
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3.28 Dimension-independent convergence of Gaussian process
regression

Aretha Teckentrup (University of Edinburgh, GB)
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We consider the problem of interpolating a function f : [0, 1]s → R, where the input dimension
s is potentially large. In particular, we study kernel based meshless methods such as kernel
based interpolants and Gaussian process emulators. Using results from high-dimensional
quadrature, we prove error estimates that are independent of s. The errors are measured in
the L2-norm or the supremum norm.

3.29 Sampling discretization error of integral norms for function classes
Vladimir N. Temlyakov (University of South Carolina – Columbia, US)

License Creative Commons BY 3.0 Unported license
© Vladimir N. Temlyakov

The new ingredient of this paper is that we consider infinitely dimensional classes of functions
and instead of the relative error setting, which was used in previous papers on norm
discretization, we consider the absolute error setting. We demonstrate how known results
from two areas of research – supervised learning theory and numerical integration – can be
used in sampling discretization of the square norm on different function classes.

3.30 Discrepancy, Dispersion and Fixed Volume Discrepancy
Mario Ullrich (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
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Joint work of Vladimir N. Temlyakov, Mario Ullrich
Main reference Vladimir N. Temlyakov, Mario Ullrich: “On the fixed volume discrepancy of the Fibonacci sets in

the integral norms”, CoRR, Vol. abs/1908.04658, 2019.
URL http://arxiv.org/abs/1908.04658

We present a bunch of recent results on the discrepancy and dispersion, especially in high
dimensions, and give an introduction to a new geometric quantity – the fixed volume
discrepancy. One of the implications that can be obtained from this new quantity can be
stated like this: “Bad boxes” for the discrepancy cannot be “too small”.
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3.31 Approximation of shallow neural networks
Jan Vybíral (Czech Technical University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Jan Vybíral

Joint work of Jan Vybíral, Massimo Fornasier, Ingrid Daubechies, Karin Schnass, Tino Ullrich, Sebastian Mayer
Main reference Massimo Fornasier, Jan Vybíral, Ingrid Daubechies: “Identification of Shallow Neural Networks by

Fewest Samples”, CoRR, Vol. abs/1804.01592, 2018.
URL http://arxiv.org/abs/1804.01592

We address the structure identification and the uniform approximation of sums of ridge
functions f(x) =

∑m
i=1 gi(ai · x) on Rd, representing a general form of a shallow feed-forward

neural network, from a small number of query samples. Higher order differentiation, as
used in our constructive approximations, of sums of ridge functions or of their compositions,
as in deeper neural network, yields a natural connection between neural network weight
identification and tensor product decomposition identification. We prove that in the case of
the shallowest feed-forward neural network, second order differentiation and tensors of order
two (i.e., matrices) suffice. Based on multiple gathered approximated first and second order
differentials, our general approximation strategy is developed as a sequence of algorithms to
perform individual sub-tasks. We first perform an active subspace search by approximating
the span of the weight vectors a1, . . . , am. Then we use a straightforward substitution, which
reduces the dimensionality of the problem from d to m. The core of the construction is
then the stable and efficient approximation of weights expressed in terms of rank-1 matrices
ai⊗ai, realized by formulating their individual identification as a suitable nonlinear program.
We prove the successful identification by this program of weight vectors being close to
orthonormal and we also show how we can constructively reduce to this case by a whitening
procedure, without loss of any generality.

3.32 Randomized Smolyak Algorithm: Explicit Cost Bounds and an
Application to Infinite-Dimensional Integration

Marcin Wnuk (Universität Kiel, DE)
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Joint work of Michael Gnewuch, Marcin Wnuk
Main reference Michael Gnewuch, Marcin Wnuk: “Explicit error bounds for randomized Smolyak algorithms and

an application to infinite-dimensional integration”, CoRR, Vol. abs/1903/02276, 2019.
URL https://arxiv.org/abs/1903.02276

The Smolyak method is a generic tool to tackle tensor product problems. Let d ∈ N.
Generally, for n = 1, . . . , d, separable Hilbert spaces of functions F (n), separable Hilbert
spaces G(n), and bounded linear operators S(n) : F (n) → G(n) are given. The tensor product
problem is defined by the solution operator Sd =

⊗d
n=1 S

(n), so for Fd =
⊗d

n=1 F
(n) and

Gd =
⊗d

n=1 G
(n) we have

Sd : Fd → Gd.

Suppose that for every n = 1, . . . , d, one has a sequence of algorithms (U (n)
j )j∈N meant to

approximate S(n). Usually, with growing j the algorithms U (n)
j give better approximation, but

are at the same time more expensive. The algorithms (U (n)
j ) are often referred to as building
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blocks. Define the algorithm differences ∆(n)
j = U

(n)
j −−U (n)

j−1, j ≥ 2 and ∆(n)
1 = U

(n)
1 . The

d-variate Smolyak method of level L ≥ d is now given by

A(L, d) =
∑

j∈Q(L,d)

d⊗
n=1

∆(n)
jn
,

where Q(L, d) = {j = (j1, . . . , jd) ∈ Nd |
∑
n jn ≤ L}. One speaks of a randomized Smolyak

method if the (U (n)
j )n,j are randomized algorithms.

In this talk, as an error criterion we consider the randomized error given by

eran(Sd, A(L, d)) =
[

sup
f∈Fd,‖f‖Fd=1

E‖(Sd −−A(L, d))f‖2
Gd

] 1
2

,

and show under some regularity conditions on the building blocks that if for every n = 1, . . . , d,
the convergence rate of (U (n)

j )j is of the order O( 1
Nα ) then one also has for some positive

constants C0, C1, not depending on N nor d

eran(A(L, d), Sd) ≤ C0C
d
1

(
1 + log(N)

d− 1

)(d−1)(α+1)
N−α, d ≥ 2, . (3)

Here N denotes the cardinality of information used by the respective algorithms.
Our interest in the Smolyak method is twofold. Firstly, the upper bound (3) shows that

the Smolyak method is quite an efficient generic tool to tackle tensor product problems in
moderate dimension d. Secondly, even if d is very large, Smolyak method may be used as a
building block of more complicated algorithms.

We illustrate the second statement with an example of inifinite-dimensional integration
on weighted function spaces. There one considers input from some Hilbert space

H =
∞⊗
n=1

Hn,

where for each n ∈ N, Hn is a reproducing kernel Hilbert space. Moreover, with growing
n the spaces Hn are assigned decreasing weights, meaning basically that even though one
is considering as input functions of infinitely many variables, the impact of variables from
higher coordinates gets smaller and smaller. Under some technical assumptions in this setting
one may define in a sensible way the integral of functions from H. The problem is now to
approximate the integral with the help of randomized algorithms. It turns out that our bound
(3) in combination with the results of Plaskota and Wasilkowski on multivariate decomposition
methods (MDMs) [3] and the embedding results of Gnewuch, Hefter, Hinrichs and Ritter [1]
allows us to show that multivariate decomposition methods using our randomized Smolyak
algorithms as building blocks achieve optimal convergence rate.

Details and further results may be found in [2].
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3 Plaskota Leszek, Wasilkowski Grzegorz, ’Tractability of infinite-dimensional integration in
the worst case and randomized settings’, Journal of Complexity, Volume 27, 2011



Dmitriy Bilyk, Aicke Hinrichs, Frances Y. Kuo, and Klaus Ritter 47

3.33 Tractability for Volterra problems with convolution kernels
Henryk Wozniakowski (Columbia University – New York, US)
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We show that the information complexity of the Volterra problems considered in this talk is
the same (essentially) as the information complexity of multivariate approximation. Therefore
the Volterra problems enjoy the same notions of tractability.

We also analyze the combinatory cost of Picard’s algorithm for the Volterra problems.
The bounds we obtain are not necessarily optimal.

3.34 Approximation complexity for additive random fields
Marguerite Zani (Université d’Orléans, FR)

License Creative Commons BY 3.0 Unported license
© Marguerite Zani
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We study the approximation complexity of additive random fields. For example for Yd(t) =∑d
j=1 Xj(t) where the Xj are uncorrelated, square-integrable, centered random processes of

dimension 1.
The complexity nYd(ε) in the average case setting is considered here. We give asymptotics

for lognYd(ε) when ε is fixed and d goes to infinity. We give results in case constant 1 is an
eigenfunction of the covariance function associated to Yd, and if not we can boil down to this
situation.
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