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Abstract
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One-dimensional structures embedded in higher-dimensional spaces are ubiquitous in both
the natural and artificial worlds: examples include DNA strands, migration paths, planetary
orbits, rocket trajectories, robot motion planning, chip design, and many more. These are
studied in different areas of mathematics and computer science, under many names: knots,
curves, paths, traces, trajectories, graphs, and others. However, researchers in many areas are
just beginning to apply algorithmic techniques to find efficient algorithms for these structures,
especially when more fundamental mathematical results are required. Broad examples of
such problems include:

classical algorithms on trajectories like the Fréchet distance as a way to formalize a
distance measure as a curve changes;
morphing between two versions of a common graph, which again tracks a higher dimen-
sional space that corresponds to movement of a one-dimensional object;
drawing and manipulating objects in three-manifolds, such as graphs, curves, or surfaces;
and
perhaps the simplest problem posed (in different ways) in all these areas, “how does one
draw and morph a nice curve on a nice surface?”

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Computation in Low-Dimensional Geometry and Topology, Dagstuhl Reports, Vol. 9, Issue 8, pp. 84–112
Editors: Maarten Löffler, Anna Lubiw, Saul Schleimer, and Erin Moriarty Wolf Chambers

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/19352
http://dx.doi.org/10.4230/DagRep.9.8.84
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de


Maarten Löffler, Anna Lubiw, Saul Schleimer, and Erin Moriarty Wolf Chambers 85

This seminar was the second in a series. In the first seminar, the goal was to identify
connections and seed new research collaborations along the spectrum from knot theory and
topology, through to computational topology and computational geometry, and all the way
to graph drawing. After the success of the first seminar, the goal for this second round was to
continue and extend prior work, in particular by focussing on how objects change over time.

The seminar began with three overview talks from researchers in different areas (trajectory
analysis, algorithmic topology, and graph drawing) to motivate and introduce problems which
would fit the theme of changes over time in the representations of low-dimensional objects in
higher dimensional spaces. We then invited all participants to describe open problems (most
of which were circulated in advance of the meeting) that fit with the topic of the workshop
and could benefit from broad expertise. For the remainder of the workshop we split into
small working groups each focussed on a particular open problem.

Throughout the workshop we used Coauthor, a tool for collaboration designed by Erik
Demaine (MIT), to share progress and updates among all the working groups. This, together
with twice-daily progress reports, allowed us to share ideas and expertise among all parti-
cipants, which was very effective. Another advantage was that we had a record of the work
accomplished when the workshop ended.

Below, we (the organizers) describe the main working group topics and how they connected
to the overarching theme. The abstracts of talks in the seminar and preliminary results from
the working groups are also outlined later in this report.

One group worked on open questions that were motivated by 3-manifolds. In particular,
they considered lower bounds for deciding the complexity of a knot or link equivalence, with
a goal of finding specific knots that require many simplification moves. Their work involved
both designing smaller examples, as well as doing larger scale exhaustive search using the
software tool Regina.

Another group considered representations of graphs and hypergraphs by touching polygons
in 3-d. They were able to leverage the dual graph of the polyhedral complex in 3d, and make
progress on classifying which types of graphs could (or could not) be realized. Their problem
was primarily combinatorial, but the techniques used included several interesting topological
arguments about embeddings of manifolds into 3d or into 3-manifolds.

Several groups considered problems about flows or morphs of curves in various settings.
One question centered on visualizing actual embedded homotopies on a given surface; there
is considerable prior work on how to compute such homotopies between curves quickly, but
it generally focuses on computing the complexity of the homotopy as opposed to the actual
sequence of simplifications needed. The group looked more closely at this algorithm, and was
able to outline a proof that in fact an extension of that algorithm would generate the actual
homotopy, for a slightly higher time cost. A second group considered curves in the plane,
and investigated options for computing a “nice” morph between them. As the question was
more vague, the group did quite a bit of background investigation on prior work, and then
discussed a new technique based on 3-manifolds and normal surface theory which might lead
to a new family of morphs. A third group looked at the problem of preprocessing a given
curve so that the Fréchet distance to any other query curve could be efficiently computed,
and were able to obtain improved time bounds for several variants of the problem.

In summary, the workshop fostered a highly collaborative environment where combining
the expertise and knowledge of researchers from different communities allowed us to solve
problems of common interest across those communities. A major theme was how connected
the various problems could be; often, a proof technique or piece of literature suggested by a
member of a different community proved useful or insightful to a group working in a different
domain.
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3 Overview of Talks

3.1 One-Dimensional Structures in Low-Dimensional Algorithmic
Topology

Arnaud de Mesmay (University of Grenoble, FR)

License Creative Commons BY 3.0 Unported license
© Arnaud de Mesmay

In this talk, I survey algorithms to test the topological equivalence of one-dimensional objects
in dimensions two and three. More precisely, I focus on algorithms to test homotopy of curves
on surfaces (and connected topics), and isotopy of knots in R3. I explain in particular why
hyperbolic geometry helps for these problems, how researchers have come up with approaches
to combinatorialize it into efficient algorithms in two dimensions, and how this is lacking in
3d. We also foray into implementations.

3.2 Curves, Distance Measures, and Homotopies
Carola Wenk (Tulane University – New Orleans, US)

License Creative Commons BY 3.0 Unported license
© Carola Wenk

We study distance measures for curves, their relation to homotopies, and curve simplification.
In particular we consider Hausdorff and Fréchet distances, and discuss algorithmic and
hardness results for curve simplification under these distances. As a distance measure for
metric spaces we consider the Gromov Hausdorff distance in Euclidean space. Finally we
study the minimum homotopy area for a closed curve in the plane and as a distance measure
for two curves.

3.3 Survey on Graph and Hypergraph Drawing
André Schulz (FernUniversität in Hagen, DE) and Alexander Wolff (Universität Würzburg,
DE)

License Creative Commons BY 3.0 Unported license
© André Schulz and Alexander Wolff

In this talk we review the basic concepts and the methodology of Graph Drawing, which is
an active research area in the intersection of Graph Theory, Computational Geometry, and
Information Visualization. Graph Drawing is about finding algorithms that map abstract,
combinatorial objects (graphs or hypergraphs) to drawings, that is, “tangible” geometric
objects. The goal is to find algorithms that guarantee a provable geometric quality measure
in the worst case. For example, there are algorithms that draw any planar graph on a grid
whose size is quadratic in the number of vertices of the graph. Other than in areas such as
Information Visualization, the evaluation is usually not task-driven.

The Graph Drawing problem has numerous incarnations: supported graph classes (e.g.,
trees, outerplanar, planar, or bipartite graphs), drawing styles (e.g., orthogonal, straight-line,
Bézier), quality measures (e.g., number of bends, number of crossings, crossing resolution),
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the embedding space (2D or 3D), and the type of representation (node–link diagrams, contact
or intersection representations). Often, optimizing one measure leads to drawings that are
bad in other measures. There is a lack of algorithms that are “pretty good” or at least “not
too bad” in many aspects.

There is a (surprisingly small) set of standard techniques for drawing graphs. For example,
if the graph class for which we want to design a drawing algorithm has a recursive definition,
an obvious approach is to construct drawings recursively. A prominent example are orthogonal
straight-line drawings of binary trees. It turns out that they can be drawn in a compact way;
on a grid of size O(n logn), where n is the number of vertices of the given tree [4]. Similarly,
if a graph class has an inductive definition, we may try to draw the given graph of that class
inductively. Such an approach is used to show that every n-vertex planar 3-tree can be drawn
using 2n− 4 segments [6]. Finally, there are two at first glance very different approaches for
drawing planar graphs on a grid of quadratic size. One approach, the shift algorithm [5],
constructs the drawing incrementally; the other approach [11] counts some combinatorial
objects (using a Schnyder wood) and then turns the resulting numbers into coordinates. A
more careful analysis, however, reveals structural similarities between the two approaches.

Topics that have received considerable attention over the last few years are simultaneous
embedding, morphing of graphs, drawings with large crossing angles, drawings of beyond-
planar graphs, and visual complexity. The visual complexity of a drawing is measured by
the number of geometric objects needed to compose or cover the drawing. For example, the
segment number of a planar graph is the smallest number of straight-line segments whose
union represents a straight-line drawing of the given graph [6]. The arc number [12] is defined
accordingly with respect to circular-arc drawings, which often allow for less complex or more
compact representations. Another recent generalization [10] are variants of the segment
number for nonplanar graphs, either admitting crossings or embedding in 3D. The plane
cover number [2, 3] asks for the smallest number of planes needed to cover a straight-line
drawing of a given graph in 3D. Accordingly, one can define the line cover number in 2D
(for planar graphs) or in 3D (for arbitrary graphs), which is obviously upperbounded by
the corresponding segment number. Also weak versions of these numbers have been studied
where only the vertices of a crossing-free straight-line drawing of the graph need to covered.
While it is not hard to see that any outerplanar graph has weak line cover number 2 [2], even
some cubic, 3-connected, bipartite planar graphs have unbounded weak line cover number
(exceeding 3

√
n, where n is the number of vertices) [7]. On the other hand, every 4-connected

plane triangulation on n vertices has weak line cover number at most
√

2n [9].
This seminar’s topic – Computation in Low-Dimensional Geometry and Topology – is in

line with a recent effort to better understand the drawing of graphs and hypergraphs in 3D.
For example, we now know that every graph has a contact representation in 3D where vertices
are represented by pairwise interior-disjoint convex polygons and edges by vertex–vertex
contacts between the corresponding polygons [8]. On the other hand, the 3-uniform complete
hypergraph with six (or more) vertices does not admit a representation where vertices are
represented by points and hyperedges by (pairwise interior-disjoint) triangles connecting the
corresponding points [1].
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4 Working groups

4.1 Frechet Distance Data Structures
Maike Buchin (Ruhr-Universität Bochum, DE), Tim Ophelders (Michigan State University,
US), Lena Schlipf (FernUniversität in Hagen, DE), Rodrigo I. Silveira (UPC – Barcelona,
ES), Frank Staals (Utrecht University, NL), and Ivor van der Hoog (Utrecht University, NL)
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The Fréchet distance is a well known distance measure between two polygonal curves P and
Q. It is also well known that computing the Fréchet distance can be done in O(nm log(nm))
time, where n and m are the number of vertices in the curves P and Q respectively [1].
Furthermore, it is unlikely that a significantly faster algorithm is possible [2]. We consider a
version of the problem in which we are given one of the curves, say P , in advance, and we
can preprocess and store it so that for a query curve Q we can more quickly compute the
Fréchet distance between P and Q. Moreover, like previous results [3], we focus on the case
in which Q is a single line segment. We report on some preliminary results:

In case of the discrete Fréchet distance we can preprocess P in O(n logn) time and space
so that we can report the discrete Fréchet distance in O(log3 n) time.
In case of the weak Fréchet distance we can preprocess P in O(n logn) time and space so
that we can report the discrete Fréchet distance in O(log2 n) time.
In case the query segments are restricted to be horizontal, we can build a data structure
of size O(n3/2) that can report the (real) Fréchet distance between P and Q in O(logn)
time. This improves the existing result by de Berg et al. [4] that requires O(n2) space.
In case the query segment may have an arbitrary orientation, we can answer queries in
O(log2 n) time, using O(n4+ε) time. Furthermore, we are hopeful that an extension of
our technique for horizontal query segments leads to an improved data structure using
only O(n7/2) space.
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4.2 Lower Bounds for the Complexity of Knot and Link Equivalence
Benjamin Burton (The University of Queensland – Brisbane, AU), Hsien-Chih Chang (Duke
University – Durham, US), Arnaud de Mesmay (University of Grenoble, FR), Francis Lazarus
(GIPSA Lab – Grenoble, FR), Maarten Löffler (Utrecht University, NL), Clément Maria
(INRIA – Valbonne, FR), Saul Schleimer (University of Warwick – Coventry, GB), Eric
Sedgwick (DePaul University – Chicago, US), and Jonathan Spreer (University of Sydney,
AU)
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A knot is a piecewise-linear embedding of S1 into R3. A link is a piecewise-linear embedding
of a disjoint union of S1s into R3. Two knots/links are considered equivalent if there is a
continuous deformation (an isotopy) between them that does not induce any crossing.

Open problem: Prove complexity lower bounds for the problem of deciding knot or link
equivalence.

A little background: Deciding efficiently the equivalence of two knots or links is arguably
one of the biggest problems in knot theory, see for example the survey of Lackenby [8]. All
the existing algorithms are terribly inefficient (at least in theory), the only one with an
analyzed complexity seems to be brute-forcing Reidemeister moves using the humongous
bound of Lackenby and Coward [2]: this algorithm takes time exp(cn)(n) Reidemeister moves,
where c = 101000000, and the notation exp(∗) denotes a tower of exponential of height ∗.

Finding new and improved algorithms probably requires some new insights and break-
throughs – this open problem aims at proving lower bounds instead. Strikingly no com-
putational lower bound at all is known for this problem, even for links. While proving
NP-hardness is a natural goal, even the seemingly humble result of proving that the link
equivalence problem is at least as hard as Graph Isomorphism is open (see Lackenby [10],
page 2). Note that testing homeomorphism of 3-manifolds is known to be at least as hard as
Graph Isomorphism [5, 10].

Outputs: The objectives of the group were to investigate the complexity of testing knots
and links equivalence, from two perspectives. The first one was about algorithmic complexity,
and aimed at proving computational lower bounds for the problem. The second one was
combinatorial, and aimed at finding instances of hard knots, i.e., knots for which any
simplifying sequence of Reidemeister moves incurs a substantial increase in the number of
crossings.

Despite our efforts, we could not progress on the first problem, and focused our attention
to the second one, after pondering that it is consistent with current knowledge and not
implausible that the knot equivalence problem lies in NP and coNP, and thus, under classical
complexity hypotheses, would not be NP-hard, and possibly not even Graph Isomorphism-
hard.

Hard knot diagrams

We consider the following problem: Are there diagrams of the unknot that require a substantial
increase in the number of crossings in order to be simplified by Reidemeister moves to the
trivial diagram? One can also consider related simplification problems, such as disconnecting
diagrams of split links.
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Figure 1 A hard unknot diagram [6].

This question is fundamental in algorithmic knot theory as simplifying diagrams comes
as very first step in any computation on knots. The increase in the size of intermediate
diagrams measures the difficulty of the search for a diagram with fewer crossings.

Dynnikov’s work on arc presentation [4] implies the existence of a super polynomially long
sequence of Reidemeister moves on an unknot diagram with n crossings, leading to the trivial
diagram, and for which all intermediate diagrams have at most (n−1)2/2 crossings. A similar
result holds for disconnecting the diagram of a split link. More recently, Lackenby [9] proved
that unknot and split link diagrams can be simplified in polynomially many Reidemeister
moves (specifically O(n11) moves) without exceeding a quadratic number of crossings (O(n2)).

In practice however, the “hardest” unknot diagrams known require only 1 extra crossing
after which they monotonically simplify. The examples in the literature [7] purporting to
require two additional crossings were observed to be erroneous. Further claims of the existence
of a family of unknots requiring an arbitrarily large number of additional crossings [7] are
suspect.

Constructing hard unknots from any knot K

Figure 1 pictures a classical hard unknot diagram, which has been studied in the context of
the energy minimization approach to the unknotting problem [6]. It can be constructed and
generalized with the following procedure. For a knot K,
1. double the knot K (along the blackboard framing),
2. cut it open. We now have four ends coming in two pairs.
3. Take two mirror symmetric pairs of ends and stretch them out as two parallel strands,
4. take the remaining pair of ends and wrap them around those two strands before connecting

them up,
5. mirror a second copy of this tangle and build the connect sum in the obvious way.

Figure 1 shows the construction for the trefoil knot K. We were able to show, by brute
force computation with Regina [1], that in the case of the trefoil, this construction gives an
unknot that requires 3 extra crossings to be unknotted. The constructions for more complex
knots K are under investigation.

Generalizing the Goeritz unknot

A classical example of a hard unknot due to Goeritz is pictured in Figure 2 on the top left.
It can be thought of (see the rest of Figure 2) as the concatenation of two inverse braids with
two flypes inserted in between on both of its strands. Undoing these flypes requires turning
the braid which can be shown experimentally to require at least one additional crossing.

We generalized this approach to braids with more strands in the braids, in order to
increase the number of additional crossings needed. The framework pictured in Figure 3
seems promising, where ∆1 and ∆2 are the analogues of flypes, and can be readily generalized
to higher number of strands.
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Figure 2 The Goeritz unknot.

Figure 3 Harder unknots.

An exhaustive computer search with Regina [1] shows that for a good choice of a four-
strand pseudo-Anosov braid B, more than two additional crossings are required to simplify
such unknots. Figure 4 pictures such an example. Proving lower bounds for generalizations
of this example as the number of strands goes to infinity is the object of ongoing work.
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Figure 4 An example of a hard(er) unknot. Figure created with SnapPy [3].
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A fundamental problem in computational topology is to test if a given loop in a space is
contractible, or more generally if two loops are homotopic. The problem is known to be
intractable in general but has a relatively simple solution when restricting the space to a
2 dimensional surface: there is a linear time algorithm that takes as input a combinatorial
description of the surface and one or two closed paths in its 1-skeleton graph [1, 3]. This
algorithm was implemented (and will be available in the next release of CGAL) and can be
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considered as a black box that may be used for more complex algorithms. Suppose that we
want to convince an outside observer that two curves are indeed homotopic or contractible,
without just relying on the answer returned by the above algorithm. It seems that the most
intuitive certificate is to exhibit an actual (combinatorial) homotopy. Such a homotopy can
be decomposed into elementary homotopies that consist of

adding or removing a spur,
replacing a piece of a facial walk by the complementary piece.

Elementary homotopies directly translate into PL homotopies that can be further visual-
ized.

The problem is thus to design an efficient algorithm that outputs a sequence
of elementary homotopies.

During this Dagstuhl seminar, we resolved the problem by providing a simple optimal
algorithm. The idea is to simulate the linear time algorithm in [1]. Let S be an input
combinatorial surface of genus g and let G be its 1-skeleton (vertex-edge graph). In [1, 3]
a preprocesing step is to transform S into a quadrangulation Q composed of 2 vertices
and 4g edges. Any walk γ in G can then be transformed into a homotopic walk c in Q of
length at most 2|γ|. Such a walk c admits a canonical representative in its homotopy class
that corresponds to the shortest and rightmost homotopic walk in Q. In [1], this canonical
representative is obtained by producing a sequence of elementary homotopies for c in Q. It
remains to translate those elementary homotopies in G. We propose the following algorithm.

We first compute a representation of Q in G where each edge of Q is represented by a
path in G. For this, we compute a system of loops in O(gn) time (n = |G|) using a spanning
tree and 2g additional chordal edges. One can also compute a shortest system of loops in
O(n logn + gn) time as described in [2]. Note that each edge of G appears at most twice
in a loop and so at most 4g times in the whole system of loops. We then cut S through
the loops. We get a polygonal schema with the same number of faces as G, although the
boundary has size O(gn). The basepoint of the loops appears 4g times along this boundary.
Pick any vertex in this polygonal schema and join it to the 4g copies of the basepoint using
shortest paths. We make those 4g paths correspond to the edges of the system of quads. Let
Q′ be the union of those paths. Q′ cuts S into 2g quadrilaterals regions, each comprising
O(n) faces of G.

We next “push” the given walk γ into Q′, thus getting a homotopic curve γ′ (corresponding
to the above c) composed of at most 2|γ| concatenations of the paths in Q′. We finally
simulate the moves in Q by sweeping quadrilateral regions. We thus obtain a canonical
representative in G that can be further homotoped to a curve δ, applying the reverse sequence
of moves that brings δ to the canonical representative.

Analysis: Sweeping a single quad costs O(n) elementary homotopies. We observe by a
simple analysis of the algorithm in [1] that the total length (number of quads) swept by
the canonisation of c in Q is O(|c|) = O(|γ|). Indeed, referring to the terminology in [1], it
appears that the shortcut part of a bracket cannot be part of another bracket oriented the
same way as this would imply a degree 4 vertex in Q. The linear bound on the number of
swept quads easily follows. We thus get a sequence of O(n|γ|) elementary homotopies to
obtain a "canonical" form for γ in G. This number of elementary homotopies is tight: if
the surface S has a subpart with the shape of a big "mushroom" and if γ surrounds its foot
many times, we have to sweep over that mushroom that many times, enforcing a sequence of
Ω(n|γ|) moves. A similar lower bound can be obtained from two homotopic walks winding
around the ends of a long cylinder in S.
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The above observation seems to imply that the computation of a canonical form does not
require the run length encoding of the curve used in the paper by Erickson and Whittelsey [1].
A simple forward traversal of the curve should allow to shorten it without backtracking more
that once when we shortcut brackets.

References
1 J. Erickson and K. Whittelsey, Transforming curves on surfaces redux., Proc. 24th

ACM-SIAM Symp. Discrete Alg. (SODA), 2013, pp. 1646–1655.
2 J. Erickson and K. Whittelsey, Greedy optimal homotopy and homology generators.,

Proc. 16th ACM-SIAM Symp. Discrete Alg. (SODA), 2005, pp. 1646–1655, pp. 1038–1046.
3 F. Lazarus and J. Rivaud, On the homotopy test on surfaces., Proc. 53rd IEEE Symp.

Found. Comput. Sci. (FOCS), 2012, pp. 440–449.

4.4 Simple Graph Cycle in Homotopy Class
Hsien-Chih Chang (Duke University – Durham, US), Arnaud de Mesmay (University of
Grenoble, FR), Vincent Despré (INRIA Nancy – Grand Est, FR), Francis Lazarus (GIPSA
Lab – Grenoble, FR), and Erin Moriarty Wolf Chambers (St. Louis University, US)

License Creative Commons BY 3.0 Unported license
© Hsien-Chih Chang, Arnaud de Mesmay, Vincent Despré, Francis Lazarus, and Erin Moriarty
Wolf Chambers

Problem definition

Let Σ be a compact surface and G be a graph embedded in Σ. Let γ = {γ1, . . . , γk} be a
collection of closed curves on Σ. Is there a polynomial-time algorithm to compute a set of
simple closed walks C = {C1, . . . , Ck} in G, such that each Ci is homotopic to γi?

Result

It turns out that Schrijver [1] had studied this problem before and obtained the following
characterization, which is conjectured by Lovász and Seymour [2, Section 76.7]. So instead
of reporting on our discussions, we present a sketch of Schrijver’s proof.

Given an embedded graph G and two closed curves γ and δ on Σ, define cr(G; δ) to
be the number of crossings between G and δ, and mincr(γ; δ) be the minimum number of
crossings between γ′ and δ′, where γ′ is homotopic to γ and δ is homotopic to δ′. A closed
curve δ is doubly-odd with respect to G and multicurve γ if δ = δ1 · δ2 for some closed
curves δ1 and δ2, satisfying

cr(G; δ1) 6≡
∑
i

cr(γi, δ1) (mod 2), and

cr(G; δ2) 6≡
∑
i

cr(γi, δ2) (mod 2).

The double point of δ is equal to δ1(0) = δ2(0).

I Theorem 1 (Schrijver [1]). Let Σ be a compact surface and G be a graph embedded in Σ.
Let γ = {γ1, . . . , γk} be a collection of closed curves on Σ. There are simple closed walks
C = {C1, . . . , Ck} in G where each Ci is homotopic to γi if and only if the all the following
properties hold:
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1. there are pairwise disjoint simple closed curves γ′1, . . . , γ′k on surface Σ (not necessarily
in G),

2. for each closed curve δ on Σ,

cr(G; δ) ≥
∑
i

mincr(γi, δ); and

3. for each doubly-odd closed curve δ = δ1 · δ2 whose double point is not on G,

cr(G; δ) >
∑
i

mincr(γi, δ).

In the book by Schrijver [2, Section 76.7] it is also claimed that such a characterization
leads to a polynomial-time algorithm. However this is not immediately clear from the
characterization. We give a short exposition on Schrijver’s proof using modern language in
discrete and computational topology.

Sketch of proof

Necessity. First we prove the easy direction that the three conditions in Theorem 1 are
all necessary. Let C1, . . . , Ck be the simple closed walks in G promised by the theorem.
Condition 1 is satisfied easily by taking γ′1, . . . , γ′k to be C1, . . . , Ck. Condition 2 is also
straightforward:

cr(G; δ) ≥
∑
i

cr(Ci, δ) ≥
∑
i

mincr(γi, δ),

where the second inequality follows by the fact that Ci is homotopic to γi for all i. As for
Condition 3, let δ = δ1 · δ2 be any doubly-odd closed curve whose double point is not on G.
For both j ∈ {1, 2}, one has cr(G; δj) ≥

∑
i cr(Ci, δj) immediately, and the inequality must

be strict because

cr(G; δj) 6≡
∑
i

cr(γi, δj) ≡
∑
i

cr(Ci, δj) (mod 2)

because δ is doubly-odd and parity of number of intersections is unchanged under homotopy.
Thus,

cr(G; δ) = cr(G; δ1) + cr(G; δ2)

>
∑
i

cr(Ci, δ1) +
∑
i

cr(Ci, δ2)

=
∑
i

cr(Ci, δ)

≥
∑
i

mincr(Ci, δ).

Sufficiency. Here we present the proof when γ is a single closed curve and the goal is to
find one simple closed walk C; the proof for the general case is a rather straightforward
extension. Without loss of generality we can assume that Σ is orientable and not topologically
a sphere [1, Claim 2], and G is cellularly embedded in Σ [1, Claim 1]. We can also safely
assume that the closed curve δ in conditions of Theorem 1 does not cross G or its dual G∗ at
the edges. This implies that cr(G; δ) = cr(G∗; δ). We can recast the problem to the dual
graph G∗; the existence of disjoint simple closed walk C in G is equivalent to the following:
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There is a simple closed curve C∗ not intersecting the vertices of G∗, such that C∗ is
homotopic to γ and each face of G∗ is traversed by C∗ at most once.

Now we describe how to construct the set of simple closed walk C∗ satisfying the above
properties. Let γ be the input closed curve. By Condition 1 we can assume without loss of
generality that γ itself is a simple closed curve and not intersecting any vertices of G∗; we
also assume that γ has transverse intersections with G∗. In other words, γ is a normal curve
with respect to G∗. Consider a face f of G∗ together with the portion of γ intersecting f ; we
call the collection of arcs from the intersection the curve parts of f . For each component κ
of the curve parts, draw an infinitesimally short segment crossing κ in a way that all short
segments are disjoint. We call the collection of endpoints of all short segments as terminals
and denoted as T . The two endpoints of the same segment are called a terminal pair.

We are going to set up a linear program with variables ψ(·) indexed by T , and set the
constraints properly so that a solution to the linear program gives us hint on how to find the
correct homotopy to turn γ into C∗. Consider the following linear program:

min
∑
t∈T
|ψ(t)|

s.t. ψ(t) + ψ(t̄) = 0 for each terminal pair t and t̄,
ψ(t) + ψ(t′) ≤ λ(tt′) for each pair of t and t′ in T ,

where λ(tt′) := minπ cr(G∗;π)−1, with the minimum taking over all paths π on Σ connecting
t to t′, such that the two endpoints of the lift π̂ of π in the universal cover Σ̂ connects
different lifts of γ, and π̂ lies in the same component of Σ̂ subtracting γ̂. Schrijver showed
that the existence of a solution to the above linear program is equivalent to the properties in
Theorem 1 [1, Section 2 and Claim 3].

Now here comes the important definitions. Recall that Σ̂ is the universal cover of Σ and
everything with a hat is a lift of the corresponding object in Σ. Let Σ̊γ be the cyclic cover
of Σ with respect to γ. Lifts G̊ and γ̊ are defined accordingly. Notice that γ̊ is a simple closed
curve in Σ̊. The notion of terminals and function ψ(·) associated with the linear program
can be lifted and defined with respect to the universal cover and cyclic cover as well.

For any lift ` of γ and any lift f̂ of a face f of G∗, define

Π`(f̂) := min
π̂

(
cr(Ĝ∗; π̂)− ψ(π(0))

)
,

where π̂ ranging over all paths in Σ that starts at some lift of a terminal corresponding to a
curve part from ` that projects to π(0) and ends in f̂ , and crosses ` an even number of times.
Notice by definition if some f̂ intersects ` then Π`(f̂) ≤ 0. Define zero (dual) faces F0(`)
to be the collection of faces f̂ in Ĝ∗ with Π`(f̂) = 0. Define non-positive (dual) vertices
V≤0 to be the collection of vertices v of G̊∗ that has a path π̊ starting from a terminal in Σ̊
that projects to π(0) and ending at v that crosses γ̊ an even number of times, such that

cr(G̊∗; π̊)− ψ(π(0)) ≤ 0.

Based on the upper bound on cr(G̊; π̊), the number of non-positive vertices in V≤0 must be
finite.

Equipped with these definitions we are now ready to describe the construction of C. Let
[̊γ] be the representative of the homology class of γ̊ over Z2; as γ does not intersect vertices
of G∗, γ̊ can be viewed as a closed walk in G̊. Here we abuse the type and refer to [̊γ] as a
subset of edges of G̊. Define E0 to be the symmetric difference between [̊γ] and the (dual)
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edge cut formed by V≤0 (which is a collection of cycles, a valid homology class). Among
the simple cycles of E0 in G̊, there is at least one simple cycle C̊ homotopic to γ̊ on Σ̊ [1,
Claim 6]. Project C̊ back to Σ to obtain the desired cycle C in G. Important properties of
these definitions are
1. if C̊ passes through some face f̊ in G̊∗, then any lift of f̊ must be in F0(`) [1, Claims 6

and 7]; and
2. each pair of F0(`) and F0(`′) are disjoint if ` 6= `′ [1, Claim 5].

Finally it is sufficient to show that C is indeed simple (or, vertex-disjoint); in other words,
C∗ never passes through any dual face in G∗ more than once. The construction guarantees
that C̊ is simple, so it must be the case that two faces f̊ and g̊ of G̊∗ passed by C̊ projects
to the same face in G∗. Now F0(`) must contain both f̂ and ĝ by Property (1). Consider
the deck transformation φ on Σ̂ that maps face f̂ to ĝ. Now φ(`) is another lift of γ. Since
ĝ = φ(f̂) ∈ φ(F0(`)) = F0(φ(`)) as well, by Property (2) above ` and φ(`) must be the same
lift of γ. This implies that after projecting to Σ̊ the two faces f̊ and g̊ must be identical.
Therefore, C∗ never passes through any dual face in G∗ more than once.

Efficient implementation

To carry out a polynomial-time algorithm, a few questions remain.
How do we compute every λ(tt′) in polynomial-time to set up the linear program?
How to compute cycles C̊ and C? In particular, how to construct non-positive vertices
V≤0?
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We considered the problem of how to draw “beautiful curves on beautiful surfaces”.
That is, suppose we are given a closed connected oriented surface S in the form of a very

nice mesh in R3. Suppose that we are also given a simple closed curve α in S, say as the
(circular) sequence of mesh edges it crosses. We wish to find a “beautiful” representative
of α.

Curves on the torus

For the torus, we can argue that the Clifford torus (stereographically projected from the
three-sphere) is the “best” geometric torus. Now, for any curve α there is an optimal position,
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Figure 5 From page 38 of A topological picturebook by George Francis [1].

Figure 6 From page 421 of On the geometry and dynamics of diffeomorphisms of surfaces by
William Thurston [2].

making α both as straight as possible and also as well-spaced as possible. To see this, consider
the Clifford torus in S3 and stereographically project it to R3. Since the Clifford torus is
square, there are “obvious” representatives (straight, going through the origin). These are
best both in terms of straightness and well-spacedness.

Higher genus

In higher genus things are less clear-cut. It is much harder to argue for a particular “best”
geometric surface. Note that in the picture by Thurston the surface is a bit pinched along
the outer two non-separating curves.

It is also now much harder to decide what constitutes a “best” representive of a given
isotopy class of curve. Thurston’s curve shows some of the issues involved, especially when
compared to the standard short curves. Note that in Thurston’s curve it is not so easy to
“see” the number of components, or the topological type.

Also, Thurston has preferred to make the curve “well-spaces” rather than “straight”. This
gives a few places where the geodesic curvature is “too high”. Thus we see that there is a
tension between drawing the curve straight and having good “interarc” spacing. The former
takes us towards geodesic laminations, the latter towards quadratic differentials.
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Teruaki

One implemented solution (in genus two) is given by Kazushi Ahara as part of his game
Teruaki exploring the mapping class group.

http://www.aharalab.sakura.ne.jp/teruaki.html
This is makes for a very interesting game! Note that if you perform large powers of Dehn

twists, then the programme gets confused; curves may crash into themselves and may also
drift off of the surface.

Plans of attack

We can think about two ways to approach the problem. Fix a good triangular mesh ∆ of the
surface S ⊂ R3. Our first approach concentrates on making the curves straight.

Hyperbolic geometry: Cut open ∆; this gives a fundamental domain D. Lay D out
conformally in the hyperbolic plane. Compute the resulting Fuchsian group. Given an
element of π1(S) draw all of its intersections D. Push these forward to ∆ ⊂ R3.

Our second approach concentrates on making the curves well-spaced.

Quadratic differentials: For any simple closed curve α ⊂ S, the Strebel differential q = qα
is the unique quadratic differential in the conformal class of S, of area one, so that all
non-singular flowlines are isotopic to α. So the periods of q are given and we must solve for
the differential. Now compute the “core-curve” of the maximal cylinder in q.
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Given a closed curve γ embedded in the plane, can we compute a “nice” homotopy in
polynomial time that minimizes the homotopy area contracting γ to a point?

Chambers and Wang have introduced the notion of minimum-area homotopies as a
distance measure between two curves [1]. They presented a polynomial-time dynamic
programming algorithm for the case that the winding numbers, induced by the closed curve
composed of the two open curves, are consistent (i.e., all non-negative or all non-positive).
For the general case, Nie has presented a polynomial-time algorithm [2] that is algebraic in
nature and results in homotopies with degeneracies. Recently it has been shown that one
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can express Nie’s algorithm entirely using such (degenerate) homotopies that either collapse
a face or cancel around a face [3]. On the other hand, it has been shown that there is always
a minimum-area homotopy that can be represented as a decomposition of self-overlapping
curves [4]. Contracting each self-overlapping curve in such a decomposition to a point then
results in a “nice” homotopy. However, the algorithm in [4] to compute such a decomposition
is exponential. A related paper on combinatorial properties of self-overlapping curves and
interior boundaries [5], that introduces the notions of obstinance and wrapping, helps in
understanding the relationships between minimum area homotopies and self-overlappingness
of curves in the plane.

Some of the insights and related problems discussed during the Dagstuhl seminar are as
follows:
1. Can we check whether a curve is self-overlapping in less than O(N3) time? Here, N

is the number of vertices of a polygonal input curve. Shor and Van Wyk’s dynamic
programming algorithm [6] runs in O(N3) time.

2. If we know how many times a face is swept in a minimum-area homotopy (e.g., from
Nie’s algorithm), can we compute an area-optimal self-overlapping curve decomposition?
Alternatively, is computing an area-optimal self-overlapping decomposition NP-hard?

Insights:
Blank’s algorithm [7] for computing whether a curve is self-overlapping runs in time
quadratic to the depth-sum of the curve, and is therefore faster than Shor and van Wyk’s
for shallow curves.
All 2→ 0 moves and two of the three 0→ 2 moves preserves self-overlappingness; the
last 0→ 2 move requires the local potentials to be positive.
Any tree-like self-overlapping curve [8, 9] is simple. A possible strategy: First add a
“shell” to the input curve, then use regular homotopy to shrink the curve. With enough
shelling all 2↔ 0 moves can be executed safely.

Other questions that were discussed were how to decide self-overlappingness of a curve
that is embedded on a surface, for a example on a sphere or on a higher genus surfaces. For
curves in the plane it was discussed whether the casings by Eppstein and Mumford [10] help
in determining that a curve is self-overlapping. In this case a 2-move must stay consistent,
both over-over or under-under; is there a relation to Morse theory to find a height function?
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Figure 7 The optimal isotopy for the simple zigzag. (The green trajectories are actually straight-
line; they are drawn as curves for better visibility.) For further details see [7].

9 F. Aicardi. Tree-like curves. Advances in Soviet Mathematics 21, 1994.
10 D. Eppstein and E. Mumford. Self-overlapping curves revisited. 20th ACM-SIAM Symp.

Discrete Algorithms: 160-169, 2009.

4.7 Nice Morphs and Isotopic Frechet Distance
Erin Moriarty Wolf Chambers (St. Louis University, US), Vincent Despré (INRIA Nancy –
Grand Est, FR), Linda Kleist (TU Braunschweig, DE), Maarten Löffler (Utrecht University,
NL), Anna Lubiw (University of Waterloo, CA), Tim Ophelders (Michigan State University,
US), Hugo Parlier (University of Luxembourg, LU), Stephan Tillmann (University of Sydney,
AU), Birgit Vogtenhuber (TU Graz, AT), and Carola Wenk (Tulane University – New Orleans,
US)
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Introduction

Fréchet distance is a way of measuring the distance between two simple (i.e., non-self-
intersecting) curves γ0 and γ1 in the plane. Informally, we want the minimum leash length
that allows a person to travel along γ0 while their dog travels along γ1. Either one may vary
their speed but neither may back up. There is a polynomial time algorithm to compute
Fréchet distance between two curves [2]. Any travel plan that realizes the minimum leash
length yields a Fréchet matching between the points of γ0 and the points of γ1. This in
turn determines a continuous deformation from γ0 to γ1, as each point moves along the taut
leash (say at uniform speed) between the matched points. However, in the course of this
continuous deformation, the curve will not remain simple in general.

Adding the further constraint that the curve should remain simple throughout the
deformation yields the notion of isotopic Fréchet distance, which can be defined as follows. A
morph from γ0 to γ1 is a continuous family of simple curves γt, indexed by time t, 0 ≤ t ≤ 1
so that the curve at time t = 0 is γ0 and the curve at time t = 1 is γ1. A morph determines a
trajectory p(t), 0 ≤ t ≤ 1 of each point p = p(0) in γ0 to its destination point p(1) in γ1. The
minimum over all morphs of the maximum trajectory length is the isotopic Fréchet distance,
first introduced in [3]. An example is shown in Figure 7.

We explored the problem of finding a “nice” morph between γ0 and γ1 to realize or
approximate the isotopic Fréchet distance.
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Figure 8 (a) γ0 morphs to γ1 as vertices travel on the blue trajectories in the order specified; (b)
no morph is possible for these trajectories because the segment of γ0 drawn in red must rotate 360◦

degrees but the trajectories do not allow that.

Related Work

When the two curves do not cross each other but share the same start and end points, they
determine a simple polygon. Efrat et al. [4] gave an algorithm for the version of Fréchet
distance where the leash must remain inside the polygon. In this situation, the leash paths
will not cross each other so the Fréchet mapping yields a morph between the curves.

Another relevant related problem is to morph between two simple polygons while pre-
serving edge lengths as much as possible [5]. For results on morphing planar graphs, see [1]
and references therein.

Morphing along the Fréchet leashes

One approach we explored was to morph by moving each vertex along its Fréchet “leash” but
not necessarily at uniform speed. Given a mapping (perhaps not even a Fréchet mapping)
between γ0 and γ1, subdivide γ0 and γ1 so that each vertex of one maps to a vertex of the
other. This gives a set of “leashes”, each one a straight line segment, between [the expanded
set of] vertices of γ0 and γ1. Now we try to move each vertex along its leash path so that the
curve remains simple at all times, using the freedom that vertices need not travel at uniform
speed.

This is not always possible. However, in the special case when both curves are x-monotone
(increasing) then it is possible as shown by Tim Ophelders in his thesis [7]. We examined the
case where the two curves do not intersect and found a counter-example—see Figure 8.

It would be interesting to prove NP-hardness for the decision problem (can vertices be
moved on the given leash paths so that the curve remains simple). One related result is that
it is NP-complete to decide if we can morph some segments from initial to final positions
with the restriction that the segments never cross and every vertex moves along a straight
line from initial to final position [10, Chapters 6,7]. As above, the freedom is that vertices
need not travel at uniform speeds.
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A lower bound

Suppose a subpath ab of γ0 should morph to a subpath a′b′ of γ1. It may need to turn 360◦
(as in Figure 8), or some multiple k · 360◦. Imagine morphing the subpath ab to a point x,
rotating it by k · 360◦, and then morphing to a′b′. To minimize the maximum trajectory
length, we should choose x so that max(|ax|+ |xa′|, |bx|+ |xb′|) is minimized. We show that
this provides a lower bound on the isotopic Fréchet distance.

Let α and β be the paths from a to a′ and from b to b′ obtained from an optimal morph,
and assume that the path t 7→ β(t)− α(t) winds (clockwise or counterclockwise) around the
origin for at least 180◦. We claim that the cost of the morph is at least the minimum value of
max(|ax|+ |xa′|, |bx|+ |xb′|) over all x. The path α lies inside the ellipse A with foci a and a′
and a major axis of length ‖α‖, and β lies inside the ellipse B with foci b and b′ and a major
axis of length ‖β‖. For any x ∈ A ∩B, we have ‖α‖ ≥ |ax|+ |xa′| and ‖β‖ ≥ |bx|+ |xb′|, so
it suffices to show that A intersects B. Since the morph is an isotopy, we have α(t) 6= β(t),
so we can define θ(t) to be the angle of the (directed) segment from α(t) to β(t). Because of
the winding, there exist t and t′ such that θ(t) = θ(t′) + 180◦. This defines a trapezoid with
one diagonal connecting α(t) and α(t′), and the other diagonal connecting β(t) and β(t′).
By convexity of A and B, the first diagonal lies in A and the second lies in B, and since
diagonals of a trapezoid intersect, A intersects B.

We believe that there exist mappings between curves that result in an optimal morph that
is more expensive than both the lower bound described above, and the (homotopic) Fréchet
distance. In particular, the above lower bound essentially requires α to have only a single bend,
namely infinitesimally close to the unique point x that minimizes max(|ax|+ |xa′|, |bx|+ |xb′|).
It is likely that we can simultaneously force the α leash to bend at a unique point y 6= x

that minimizes max(|ay|+ |ya′|, |cy|+ |yc′|), which violates the lower bound. It is unclear
whether this violation can actually be realized in an optimal Fréchet isotopy.

Three-dimensional approaches

If we view time as the third dimension then we have two curves, say γ0 in the z = 0 plane
and γ1 in the z = 1 plane, and we wish to find a “nice” surface joining them. The morph
is then obtained by slicing the surface in successive planes. For morphs of planar graphs,
this interpretation is explicitly discussed by Surazhsky and Gotsman [9]. We discussed soap
bubbles (fascinating but tricky) and PL-minimal surfaces [6].

One idea is to triangulate the top and bottom planes with many triangles, and then
triangulate the region between them with “nice” tetrahedra. We need to then find a normal
surface with boundary equal to the two curves, for which techniques as in [8] might be used.
One complication is that the minimal surface that solves this discrete version of the Plateau
problem may not be an annulus bounded by the two curves, but have higher genus. Thus,
either one needs a triangulation that is closely adapted to the local geometry of the curves, or
a more sophisticated clean-up step would be required in order to obtain the desired morph.

A piecewise linear approach

An alternative approach, coming from classical PL topology, is to relate the curves by
a sequence of elementary moves. An elementary move replaces two edges of a triangle
with the third, or vice-versa. The main problem with this approach is to determine an
objective function defining a “nice morph”. One possibility is to ask for a minimal sequence
of elementary collapses.
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Conclusions

It seems that finding an isotopy (a simplicity preserving morph) that minimizes the maximum
trajectory (i.e., isotopic Fréchet) is really at odds with finding a “nice” morph. This is
because solutions to isotopic Fréchet shrink spiraling parts of the curve infinitesimally small
and then unspiral them.
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4.8 Representing Graphs by Polygons with Edge Contacts in 3D
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Evans et al. [8] showed that every graph has a contact representation in 3D in which each
vertex is represented by a (flat) convex polygon, two polygons touch in a corner if and only
if the corresponding two vertices are adjacent, and the interiors of any two polygons are
disjoint. In this short note, we investigate representations where polygons that correspond
to adjacent vertices must share an edge, rather than a corner.

We first allow our polygons to be nonconvex. In this case, we can easily represent every
graph; see Figure 9.
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Figure 9 A realization of K5 by nonconvex polygons with edge contacts.

Figure 10 The Szilassi polyhedron realizes K7 by nonconvex polygons with edge contacts [3].

I Observation 1. Every graph can be realized by polygons with edge contacts in 3D.

Proof. We sketch how to obtain a realization. To represent a graph G with n vertices, we
start with n rectangles such that the intersection of all these rectangles is a line segment s.
We then cut away parts of each rectangle thereby turning it into a comb shaped polygon;
see Figure 9. The goal of this step is to ensure that for each pair (P, P ′) of polygons, there
is a subsegment s′ of s such that s′ is an edge of both P and P ′ that is disjoint from the
remaining polygons. The result is a representation of Kn. To obtain a realization of G, it
remains to remove edge contacts that correspond to unwanted adjacencies, which is easy. J

If we additionally insist that each polygon shares all of its edges with other polygons,
the polygons describe a closed volume. In this model, K7 can be realized as the Szilassi
polyhedron; see Figure 10. The tetrahedron and the Szilassi polyhedron are the only two
known polyhedra in which each face shares an edge with each other face [3]. Which graphs
other than complete graphs can be represented by edge contacts of non-convex polygons
where every edge must be shared, remains an open problem.

We now consider the setting where each vertex of the given graph is represented by a
convex polygon in 3D and two vertices of the given graph are adjacent, if and only if their
polygons have edge contact. (So far, most people have only insisted that the edge of one
polygon is contained in the edge of the adjacent polygon. For example, Duncan et al. [1]
showed that in this model every planar graph can be realized by hexagons in the plane and
that hexagons are sometimes necessary.) Note that it is allowed to have edges that do not
touch other polygons. We start with some simple observations.
I Observation 2. Every planar graph can be realized by convex polygons with edge contacts
in 2D.

Proof. Let G be a planar (embedded) graph. Add to G a new vertex r and connect it to
all vertices of some face. Let G′ be a triangulation of the resulting graph. Then the dual
of G′, G?, is a cubic 3-connected planar graph. Using Tutte’s barycentric method, draw G?

into a regular polygon with degG′(r) corners such that the face dual to r becomes the outer
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face. Note that the interior faces in this drawing are convex polygons; the polygon that
corresponds to a vertex v of G′ has degG′(v) corners. To convert this contact representation
of G′ − r into a contact representation of G, we may need to remove some edge contacts,
which can be easily achieved.

The same can be shown as follows. Using the classical result of Koebe, take a contact
representation of the given planar graph by touching disks. For each pair of touching disks,
place a very short line segment on their common tangent such that the line segment is
centered on the touching point. Then represent every vertex of the given graph by the convex
hull of the line segments that touch its disk. If the line segments are short enough, every
two of the resulting convex polygons are interior disjoint. By construction, the polygons of
adjacent vertices share an edge. Each polygon has twice as many edges as the degree of the
corresponding vertex. J

So for planar graphs vertex and edge contacts behave similarly. For nonplanar graphs
(for which we need the third dimension), the situation is different. Here, edge contacts are
more restrictive. We introduce the following notation. In a 3D representation of a graph G
by polygons, we denote by pv the polygon that represents vertex v of G.

I Lemma 1. Let G be a graph. Consider a 3D edge-contact representation of G with convex
polygons. If G contains a triangle uvw, polygons pv and pw lie on the same side of the plane
that supports pu.

Proof. Due to the convexity of the polygons, pv and pw either both lie above or both lie
below the plane that supports pu, otherwise pv and pw cannot share an edge. In this case,
the edge vw of G would not be represented; a contradiction. J

I Observation 3. For n ≥ 5, Kn is not realizable by convex polygons with edge contacts in
3D.

Proof. Assume that Kn admits a 3D edge-contact representation. Since every three vertices
in Kn are pairwise connected, by Lemma 1, for every polygon of the representation, its
supporting plane has the rest of the complex on one side. In other words, the complex we
obtain is a subcomplex of a convex polyhedron. Consequently, the dual graph has to be
planar, which rules out Kn for n ≥ 5. J

I Observation 4. K4,4 is realizable by convex polygons with edge contacts.

Proof. We sketch how to obtain a realization. Start with a box in 3D and intersect it with
two rectangular slabs as indicated in Figure 11 on the left. We can now draw polygons on
the faces of this complex such that every vertical face contains a polygon that has an edge
contact with a polygon on a horizontal or slanted face. The polygons on the slanted faces lie
in the interior of the box and intersect each other. To remove this intersection we pull out
one corner of the original box (see Figure 11). J

In contrast to Observation 4, we believe that the analogous statement does not hold for
all bipartite graphs, i.e., we conjecture the following:
I Conjecture 1. There exist values n and m such that the complete bipartite graph Km,n

is not realizable by convex polygons with edge contacts.
By Observation 2, all planar 3-trees can be realized by convex polygons with edge contacts

(even in 2D). When switching to 3D, also nonplanar 3-trees can have a realization by convex
polygons with edge contacts; see for example Figure 12. However, this is not the case for all
nonplanar 3-trees.
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Figure 11 A realization of K4,4 by convex polygons with edge contacts.

Figure 12 A nonplanar 3-tree with a realization by convex polygons with edge contacts. The
gray vertices form a K4.

I Observation 5. Not all 3-trees can be realized by convex polygons with edge contacts.

Proof. Consider the 3-tree in Figure 13, which consists of K3,3 plus a cycle that connects
the gray vertices of one part of the bipartition. The other part of the bipartition consists of
three colored vertices (red, green, blue). For the sake of contradiction, assume that there is a
representation by convex polygons with edge contacts and distinguish two cases: Either the
three polygons are coplanar or not.

If the gray polygons are coplanar, then all edge contacts must lie in the same plane. This,
however, contradicts the fact that K3,3 is not planar.

If the three edges are not coplanar, the gray polygons form a prism-like shape. Note that
every colored vertex together with the gray vertices forms a K4. Hence, by Lemma 1, all gray
polygons must lie on one side of the supporting plane of a colored polygon. Each supporting
plane of a colored polygon intersects the gray triangular prism in a triangle. Two of these
triangles must intersect (otherwise one of the outer colored polygons would be cut off by the
middle colored polygon and would not have any contact with the gray polygons). The two
intersecting triangles (say, the red and the green) cross each other exactly twice, and the
two points of intersection lie on two distinct sides s1 and s2 of the gray prism; see Figure 14.
Let s3 denote the side of the gray prism that does not contain any of these intersection
points. Each of the two crossing triangles intersects s3 in a line segment. These two line
segments partition s3 into three regions. For i ∈ {1, 2, 3}, let pi denote the gray polygon
that lies on side si. Polygon p3 lies in the middle (bounded) region of s3, otherwise it cannot
have an edge contact with both the red and the green polygon. The two crossing triangles
partition each of the remaining two sides s1 and s2 into four regions. Two of these regions
are unbounded; the other two are bounded and triangular. To realize edge contacts with p3,
polygons p1 and p2 have to be located in the triangular region of s1 and s2, respectively,
that is adjacent to the middle region of s3. However, in this case p1 and p2 cannot possibly
touch; a contradiction. J
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Figure 13 A 3-tree that
is not realizable by convex
polygons with edge contacts.
The gray vertices form a 3-
cycle.

s3

p3p2

s2

p1

s1

Figure 14 Schematic drawing of a potential realization. Net
of the three gray polygons and traces of the planes that contain
the red and green polygons, which must touch each of the gray
polygons. The line of intersection between two of the gray polygons
is drawn twice (dashed).

We can realize n-vertex graphs with 4n−O(1) edges by stacking horizontal polygons into
a tetrahedron whose bottom face is horizontal and whose bottom corners have been cut off,
but we can do better.

I Theorem 2. There is a family of graphs (Gk)k≥4 such that, for each k ≥ 4, Gk has
nk = k2 +k−3 vertices and 5nk−O(√nk) edges, and admits a realization by convex polygons
with edge contacts.

Proof. Let k ≥ 4 be arbitrary but fixed. We construct Gk in several steps:
1. We start with a maximally triangulated planar graph Hk with m vertices, and designate

a root vertex r of degree c = 3. Note that, for every n ≥ 4, there exists a triangulation
with a vertex of degree 3, e.g., a planar 3-tree.

2. Create a convex polytope Pk with Hk as its dual such that the face of r is largest, i.e.,
there exists a direction in which we can project the polytope such that the image is planar
and r is the outer face.

3. Delete the face of r, and scale Pk until it is almost completely flat.
4. Imagine a k-sided cylinder. We will assume the axis of the cylinder is vertical.
5. Create k copies of Pk and place them at the faces of the cylinder, with the hollow side

facing the inside of the cylinder. Each copy is rotated such that no edges are horizontal,
and they are rotation-symmetric (around the cylinder axis) copies of each other.

6. For every vertex v of Pk not adjacent to r (corresponding to a face of Hk), create a
regular k-gon with the k copies of v as its vertices. The k-gon will be horizontal.

7. Since v has (at least) three incident edges, either two go up and one down, or the other
way around. In the first case, move the k-gon up by ε. In the second case, move the
k-gon down by ε.

8. Cut a corner of each face between the two upgoing or downgoing edges, and glue the
resulting horizontal edge to the k-gon.

We now have nk = k(m− 1) + (2m− c) convex polygons with k(3m− 6− c) + k(2m− c) =
5km−(6+2c)k adjacencies. Using c = 3 andm = k yields nk = k(m−1)+(2m−3) = k2+k−3
and k(3m− 6− 3) + k(2m− 3) = 5k2 − 12k = 5nk − 17k + 15 = 5nk −O(√nk). J

Evans et al. [2] also considered representing hypergraphs in 3D. In their model, each
hyperedge is represented by a (flat) convex polygon, two polygons share a corner if and only
if the two hyperedges share a vertex, and any two polygons have disjoint interiors. They
showed that the two smallest Steiner triple systems S(2, 3, 7) and S(2, 3, 9) admit such a
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representation (using triangles). In addition, they conjectured that no Steiner quadruple
system (SQS) can be realized by using quadrilaterals in 3D.

We show that their conjecture is true for convex quadrilaterals. Assume that a SQS can
be represented using convex quadrilaterals in 3D. Then the intersection of these quadrilaterals
with a small sphere around a vertex is a planar graph. In a SQS S(3, 4, n), each vertex is
incident to (n− 1)(n− 2)/6 convex quadrilaterals, which can be split into (n− 1)(n− 2)/3
triangles. This yields a planar graph on (n− 1) vertices with (n− 1)(n− 2)/3 edges, which
is impossible for n > 9. The same argument also precludes arbitrary topological embeddings
into arbitrary 3-manifolds. Since Evans et al. [2] showed that S(3, 4, 8) has no realization
with quadrilaterals in 3D (and there is no SQS for n = 9), no SQS can be realized using
convex quadrilaterals.
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