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Abstract
The Dagstuhl Seminar 20031 Scalability in Multiobjective Optimization carried on a series of six
previous Dagstuhl Seminars (04461, 06501, 09041, 12041, 15031 and 18031) that were focused
on Multiobjective Optimization. The continuing goal of this series is to strengthen the links
between the Evolutionary Multiobjective Optimization (EMO) and the Multiple Criteria Decision
Making (MCDM) communities, two of the largest communities concerned with multiobjective
optimization today.

This report documents the program and the outcomes of Dagstuhl Seminar 20031 “Scalabil-
ity in Multiobjective Optimization”. The seminar focused on three main aspects of scalability in
multiobjective optimization (MO) and their interplay, namely (1) MO with many objective func-
tions, (2) MO with many decision makers, and (3) MO with many variables and large amounts
of data.
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To continue being useful to society, MO has to address new challenges brought to science
and engineering by big data that are continuously being produced and stored with a much
lower cost than ever in the past. Since massive production of data takes place in the areas of
human activity that have traditionally benefited from MCDM (e.g., social media analysis,
retail sales, or high-frequency finance), MO needs to enter a new stage of development to be
able to handle the high-dimensional data. Driven by this increasing availability of data and
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also motivated by an unprecedented demand for efficient, reliable and robust optimization
methods, research in MO has to focus on the particular difficulties arising in large-scale
problems. This requires from MCDM researchers new statistical thinking and leads to an
increasing demand for efficient solution methods for large-scale problems, involving many
objective functions and/or constraints, many decision makers, many variables and large
amounts of data.

In this spirit, the focus in the seminar was on scalability which has become a universal
challenge for mathematical optimization, and for EMO and MCDM in particular. Scalability
is a characteristic of a system that describes its capability to cope and perform under an
increased or expanding workload. A system that scales well will be able to maintain or even
increase its level of performance or efficiency when tested by larger operational demands. In
an economic context, a company’s scalability implies that the underlying business model
offers the potential for economic growth within the company. Therefore the main goals of the
seminar were the exploration and elucidation of scalability in three fundamental domains:
MO with many objective functions, MO with many decision makers, and MO with many
variables.

While single objective optimization problems possess (at most) one optimal objective value,
biobjective optimization problems are already intractable in many cases, i.e., combinatorial
problems such as, for example, shortest path and spanning tree problems, may have an
exponential number of nondominated solutions. Going from two to three objectives is another
major step in difficulty since there does no longer exist a complete ordering of nondominated
solutions. Problems with many objective functions pose even greater challenges. Since
the number of nondominated solutions generally grows exponentially with the number of
objective functions (as long as these are conflicting), efficient strategies for the detection of
redundancies, for model reduction and for metamodelling are crucial for the scalability of
existing methods. In the domain of MO with many objective functions the following specific
topics were addressed:

Model building and the derivation of technical properties are crucial for understanding the
specific challenges in many-objective optimization. The following topics were undertaken:
(i) Identification of interdependencies between objective functions as compared to real
conflict; (ii) Relevance of many objective functions to a given real-life decision-making
situation; (iii) Exploration of mathematical or statistical tools that can compress inform-
ation while retaining the important problem features. Methodological approaches in this
context included data analysis, metamodelling, partial and full scalarization, and a new
concept for approximation schemes with quality guarantees.
Concise representations are indispensable for the development of efficient algorithms,
particularly EMO algorithms, interactive approaches, and decision support tools. The
scalability of quality measures and associated representations, including hypervolume,
uniformity, coverage, and ε-indicator were discussed and novel representation and visual-
ization paradigms suitable for many-objective optimization were proposed.
Efficient solution algorithms that scale well with an increasing number of objective
functions or computationally expensive objective functions are needed. The shortcomings
of existing methods were discussed and new strategies that are specifically designed for
large-scale problems were derived.
Scalable test cases are needed for the evaluation of the developed approaches. This
has been a concern of the EMO community to some extent. The difficulties pertaining
to construction of the test cases were identified and future work in this direction was
proposed.
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The discussion of MO with many decision makers considered the inherent changes in
the decision process as soon as there is not just a single decision maker. The focus was on
building a formal framework that guarantees a fair decision respecting the preferences of all
decision makers with the least total loss.

The domain of MO with many variables was discussed jointly with the domain of MO with
many objective functions because large-scale optimization problems involving many variables
and large amounts of data often also involve many objective functions. However, an emphasis
was put on the required adaptations of EMO and MCDM approaches to handle problems
with a high-dimensional decision space. While EMO algorithms often scale relatively well
with an increasing dimension of the decision space (at least as long as the number of objective
functions remains relatively small), this is in general not the case for MCDM approaches. In
particular, the most commonly used exact solution approaches, such as dynamic programming
and branch and bound, suffer from the curse of dimensionality. Complexity theoretic aspects
were discussed and the use of approximation paradigms, metamodelling, hybridization, or
parallelization in this situation was investigated.

During the seminar the schedule was updated on a daily basis to maintain flexibility
in balancing time slots for talks, discussions, and working groups, and to integrate in the
program the talks whose authors were inspired by the ongoing seminar. The working groups
were established on the first day in an interactive fashion. Starting with three large working
groups focused around the three central topics of the seminar (MO with many objectives, MO
with many decision makers, and MO with many variables), each participant was requested
to formulate her/his favorite topics and most important challenges.

The three groups then rejoined and the prevailing topics were put into groups through a
natural clustering process while the participants made up initial five working groups. During
the week the participants were allowed to change the working groups while some groups split.
Overall, the teams remained fairly stable throughout to eventually form eight groups by
the end of the seminar. Abstracts of the talks and extended abstracts of the eight working
groups can be found in subsequent chapters of this report.

Further notable events during the week included: (i) an invitation to the opening of the
art exhibition with paintings of the artist Lola Sprenger, (ii) a hike during a time period with
the best (!) weather conditions in the entire week, (iii) a presentation session allowing the
participants to share details of upcoming events in the research community, and (iv) a wine
and cheese party (see Fig. 1) made possible by a donation of Fraunhofer-Institut für Techno-
und Wirtschaftsmathematik (ITWM) represented by Karl-Heinz Küfer. The participants are
pleased to announce that they made a donation to Schloss Dagstuhl to make a painting by
Lola Sprenger entitled “Berg und Tal” part of the permanent art display.

Offers and Needs Market
A major innovation to this seminar was the Offers & Needs Market open for the entire week.
The participants could write their research offers and needs regarding MO on notepads in
different colors and post on pin boards (see fig. 2) to attract or find a possible collaborator.
The idea was well received and the participants desired its repetition in future events.
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Figure 1 Traditional wine & cheese party.

Figure 2 Offers and needs market.

Outcomes
The outcomes of each of the working groups can be seen in the sequel. Extended versions of
their findings will be submitted to a Special Issue of Computers and Operations Research
entitled “Modern Trends in Multiobjective Optimization” and guest-edited by the organizers
of this Dagstuhl seminar.

This seminar resulted in a very insightful, productive and enjoyable week. It has already
led to first new results and formed new cooperation, research teams and topics.
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3 Overview of Talks

3.1 Scaling up Multi-Objective Bayesian Optimization
Mickaël Binois (INRIA – Valbonne, FR)
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Joint work of Mickaël Binois, Abderrahmane Habbal, Victor Picheny, Stefan M. Wild (Argonne), Nathan Wycoff

Bayesian optimization (BO) aims at efficiently optimizing expensive black-box functions, such
as hyperparameter tuning problems in machine learning. Scaling up BO to many variables
relies on structural assumptions about the underlying black-box, to alleviate the curse of
dimensionality. In this talk, we review several options to tackle this challenge. We also
discuss the use of the Kalai-Smorodinski solution when the number of objectives increases,
for which a stepwise uncertainty reduction infill criterion is detailed.

References
1 Mickaël Binois, Victor Picheny, Patrick Taillandier, Abderrahmane Habbal. The Kalai-

Smorodinski solution for many-objective Bayesian optimization. ArXiv preprint 1902.06565.
2019

2 Nathan Wycoff, Mickaël Binois, Stefan Wild, Sequential Learning of Active Subspaces.
ArXiv preprint 1907.11572. 2019

3.2 Output-sensitive Complexity in Multiobjective Optimization
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Problems with an Application to the Multiobjective Shortest Path Problem”, PhD Thesis, TU
Dortmund University, 2018

URL http://dx.doi.org/10.17877/DE290R-19130

In this talk, I summarize my core findings on output-sensitive complexity of multiobjective
optimization problems from the past years. I contrast the results with current open problems
in the respective areas. I also present new open problems on counting and approximation of
nondominated sets.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.17877/DE290R-19130
http://dx.doi.org/10.17877/DE290R-19130
http://dx.doi.org/10.17877/DE290R-19130
http://dx.doi.org/10.17877/DE290R-19130


Carlos M. Fonseca, Kathrin Klamroth, Günter Rudolph, and Margaret M. Wiecek 59

3.3 On Set-Indicator-Based Search: Using Single-Objective Solvers for
Multiobjective Problems

Dimo Brockhoff (INRIA Saclay – Palaiseau, FR)
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Main reference Cheikh Touré, Nikolaus Hansen, Anne Auger, Dimo Brockhoff: “Uncrowded hypervolume

improvement: COMO-CMA-ES and the sofomore framework”, in Proc. of the Genetic and
Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic, July 13-17, 2019,
pp. 638–646, ACM, 2019.

URL https://doi.org/10.1145/3321707.3321852

One approach to solve multiobjective optimization problems is to formulate them as single-
objective set problems via indicators: the goal is then to find the set of solutions (of a given
size) that maximizes a certain quality. The hypervolume indicator has been regularly used
in this context because it has favorable theoretical properties. The “classical” definition of
the hypervolume indicator and how it is used in multiobjective solvers, however, has some
disadvantages: (i) the resulting single-objective set problem is of high dimension and the
gradient of the hypervolume indicator is zero in dominated areas of the search space – not
giving a solver enough information about where to search for good solutions.

In this talk, I discussed and visualized these disadvantages and presented a set quality
criterion which is based on the hypervolume indicator but solves the mentioned disadvantages
(joint work with Cheikh Touré, Anne Auger, and Nikolaus Hansen). The implementation of
this idea can be combined with any existing single-objective solver with an ask&tell interface,
in particular solvers that can handle expensive or large-scale problems.

3.4 A Multiobjective Trust Region Method for Expensive and Cheap
Functions

Gabriele Eichfelder (TU Ilmenau, DE)
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Main reference Jana Thomann, Gabriele Eichfelder: “A Trust-Region Algorithm for Heterogeneous Multiobjective

Optimization”, SIAM Journal on Optimization, Vol. 29(2), pp. 1017–1047, 2019.
URL https://doi.org/10.1137/18M1173277

The talk is about multiobjective optimization problems where one or more of the objective
functions are expensive, i.e. computationally heavy, see [1, 3]. In case just some of the
functions are expensive while the others are cheap we speak of heterogeneous problems [3].
Such problems occur in applications for instance in the context of Lorentz force velocimetry,
when the task is to find an optimal design of a magnet which minimizes the weight of the
magnet and maximizes the induced Lorentz force. The latter might be computable only by a
time-consuming simulation. We discuss the reasons why classical methods as scalarizations,
descent methods and so on are not a suitable approach here. We present the basic concepts
of trust region approaches which are often used in case of expensive functions. The main
idea is to restrict the computations in every iteration to a local area and to replace the
objective functions by suitable models. The number of function evaluations also depends
on the models chosen (linear vs. quadratic), and we give recommendations for the model
choice based on numerical experiments [3]. Moreover, we discuss acceptation criteria for the
iteration steps which are suitable for an application, the electromagnetic mixing in a liquid
metal [4].
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3.5 Multi-Objective Multi-Scale Optimization with Massively Large
Number of Variables: Design of Graded Components

Georges Fadel (Clemson University – Clemson, US)

License Creative Commons BY 3.0 Unported license
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Additive Manufacturing processes that deposit material on a point-by-point basis are able
to control the material type that is placed at every location within a single object, which
enables customizing the object’s internal material composition on a region-by-region or
cell-by-cell basis. Furthermore, Additive Manufacturing can create complex shapes that
cannot be manufactured using other manufacturing techniques. The optimal object design
should then seek to find both the optimal part topology and an optimal internal material
composition. In particular, the design for many parts requires considering both thermal
and elastic loading. This presentation describes how an object’s optimal topology and
optimal internal composition can be generated using multi-scale optimization, and how
the emphasis on one objective versus the other affects the final solution. Since the design
process and the associated finite element analyses must be carried out at the macro-cell level,
the discretization of the object results in a number of variables in the order of thousands.
Additionally, each macro-cell is again discretized into a large number of smaller micro level
cells, again in the order of thousands each, and a multi-level coordination method (ATC)
is required to obtain an optimal solution for each level yielding an optimal solution for the
two scales. The optimization problem is solved as a weighted bi-objective problem at the
macro level with the topological objective converted to a constraint. It is solved as a single
objective problem at the micro-level using parallel computers. Example designed structures
in 2D are shown.

References
1 Anthony Garland. Optimal Design of Gradient Materials and Bi-Level Optimization of To-

pology Using Targets (BOTT). Ph.D. dissertation, Department of Mechanical Engineering,
Clemson University, August 2017

2 Anthony Garland and Georges M. Fadel. Optimizing Topology and Gradient Orthotropic
Material Properties Under multiple Loads. J. Comput. Inf. Sci. Eng. Jun 2019, 19(2):
021007
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3.6 Multi-Objective Simulation Optimization: Theory and Practice
Susan R. Hunter (Purdue University, US)
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Main reference Susan R. Hunter, Eric A. Applegate, Viplove Arora, Bryan Chong, Kyle Cooper, Oscar
Rincón-Guevara, Carolina Vivas-Valencia: “An Introduction to Multiobjective Simulation
Optimization”, ACM Trans. Model. Comput. Simul., Vol. 29(1), Association for Computing
Machinery, 2019.

URL https://doi.org/10.1145/3299872

The multi-objective simulation optimization (MOSO) problem is a nonlinear multi-objective
optimization problem in which the objective functions can only be observed with stochastic
error, e.g., through a Monte Carlo simulation oracle. To date, these difficult problems
have seen little theoretical development in the literature. We discuss the MOSO problem
statement, existing MOSO methods, and promising directions for the future development of
MOSO theory and practice.

References
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Oscar Rincón-Guevara, and Carolina Vivas-Valencia. An introduction to multi-objective
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on integer lattices using the epsilon-constraint method in a retrospective approximation
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3.7 Chances and Challenges of Multimodality in Multi-Objective
Continuous Optimization Problems

Pascal Kerschke (Universität Münster, DE)
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Main reference Christian Grimme, Pascal Kerschke, Heike Trautmann: “Multimodality in Multi-objective
Optimization – More Boon than Bane?”, in Proc. of the Evolutionary Multi-Criterion
Optimization, pp. 126–138, Springer International Publishing, 2019.

URL https://doi.org/10.1007/978-3-030-12598-1_11

As the quality of multi-objective (MO) optimization algorithms needs to be assessed, they
are usually tested on a variety of MO benchmark problems (DTLZ, ZDT, bi-objective BBOB,
etc.). Those problems have usually been designed with some expectations regarding their
difficulty for a MO algorithm, which is usually inferred from our understanding of structures in
the single-objective domain. As such, structural properties like multimodality are assumed to
be rather challenging – especially for local search algorithms. However, recent developments
on the visualization of MO test problems revealed interesting insights, which question those
assumptions [3, 2]. Therefore – in order to get away from fine-tuning algorithms and/or
designing problems without actually understanding the challenges (and chances) of MO

20031

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1145/3299872
https://doi.org/10.1145/3299872
https://doi.org/10.1145/3299872
https://doi.org/10.1145/3299872
https://doi.org/10.1145/3299872
http://dx.doi.org/10.1145/3299872
http://dx.doi.org/10.1287/ijoc.2019.0918
http://dx.doi.org/10.1287/ijoc.2019.0902
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1007/978-3-030-12598-1_11
https://doi.org/10.1007/978-3-030-12598-1_11
https://doi.org/10.1007/978-3-030-12598-1_11
https://doi.org/10.1007/978-3-030-12598-1_11


62 20031 – Scalability in Multiobjective Optimization

optimization – we should look for new approaches that actually improve our understanding
of such problems [1]. Some possible ideas would be:
(1) How can we visualize more than 2-3 search and/or objective variables (ideally simultan-

eously)?
(2) How to scale MO benchmarks w.r.t. structural properties (e.g., how does multimodality

change with increasing dimensionality in search and/or objective space)?
(3) What would be (scalable) features to characterize continuous MO problems? (ideally

those features should of course be informative and efficiently computable in high-
dimensional spaces)
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3.8 On the Difficulty of Multiobjective Combinatorial Optimization
Problems

Arnaud Liefooghe (University of Lille, FR)
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We first analyze in [1] the impact of the number of variables (n) and of the number of
objectives (m) on the difficulty of multiobjective combinatorial optimization problems. Based
on extensive experiments conducted on multiobjective NK landscapes, a general family of
multiobjective pseudo-boolean functions, we measure the Pareto set approximation quality
reached by multiobjective search algorithms with respect to n and m. Additionally, we discuss
the relative importance of n and m compared against other facets of problem difficulty. Based
on landscape analysis, a sound and concise summary of features characterizing the structure
of a multiobjective combinatorial optimization problem are identified, including objective
correlation, ruggedness and multimodality. We then expose and contrast the relation between
these properties and algorithm performance, thus enhancing our understanding about why
and when a multiobjective optimization algorithm is actually successful, and about the main
challenges that such methods have to face.

Secondly, we report in [2] an in-depth experimental analysis on local optimal set (LO-set)
under given definitions of neighborhood and preference relation among subsets of solutions,
such as set-based dominance relation, hypervolume or epsilon indicator. Our results reveal
that, whatever the preference relation, the number of LO-sets typically increases with
the problem non-linearity, and decreases with the number of objectives. We observe that
strict LO-sets of bounded cardinality under set-dominance are LO-sets under both epsilon
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and hypervolume, and that LO-sets under hyper-volume are LO-sets under set-dominance,
whereas LO-sets under epsilon are not. Nonetheless, LO-sets under set-dominance are more
similar to LO-sets under epsilon than under hypervolume. These findings have important
implications for multi-objective local search. For instance, a dominance-based approach with
bounded archive gets more easily trapped and might experience difficulty to identify an
LO-set under epsilon or hypervolume. On the contrary, a hypervolume-based approach is
expected to perform more steps before converging to better approximations.
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3.9 Robust Multiobjective Optimization Problems and an Approach for
Solving them

Anita Schöbel (Fraunhofer ITWM – Kaiserslautern, DE)
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Multiobjective optimization problems often face uncertainties. Instead of efficient solutions
there is hence a need for robust efficient solutions in many practical settings. Concepts for
defining such robust efficient solutions exist, but unfortunately, they are usually hard to find.

One promising algorithmic idea is to reduce an uncertain multi-objective optimization
problem to a deterministic multiobjective optimization problem with very many objective
functions. The approach has been studied for single-objective optimization before (among
others in Klamroth et al, 2017) and is motivated by an idea of Wiecek et al (2009). The talk
is based on the paper by Botte and Schöbel (2019) mentioned above.

The talk shows in particular the need for solving multi-objective problems with very
many objective functions.
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4 Working groups

4.1 Many Objectives: Characterization and Structure (WG2)
Richard Allmendinger (University of Manchester, GB), Andrzej Jaszkiewicz (Poznan Univer-
sity of Technology, PL), Arnaud Liefooghe (University of Lille, FR), and Christiane Tammer
(Martin-Luther-Universität Halle-Wittenberg, DE)

License Creative Commons BY 3.0 Unported license
© Richard Allmendinger, Andrzej Jaszkiewicz, Arnaud Liefooghe, Christiane Tammer

4.1.1 Topics covered

This working group has covered a number of topics related to impact that many objectives
(in an optimization problem) have on algorithm design and theoretical properties of tools.
The availability of suitable many-objective optimization test problems has been touched
upon as well. What follows is a summary of topics covered.

Influence of the number of objectives on problem characteristics
Types of characteristics
Theoretical results
Existing experimental results

Considerations on the effect of the number of objectives on the complexity of multiobjective
procedures and algorithms

Updating the archive of non-dominated solutions
Solving scalarizing problem(s)
Computing and approximating hypervolume
EMO algorithms

Exemplary problems
Location problems [11, 3]
Distance problems [18, 19, 9]
ρMNK-landscapes [27]
Instance generators

4.1.2 Effect of the Number of Objectives on Problem Characteristics

In this section, we study the influence of the number of objectives on different problem
characteristics such as the number of Pareto optimal solutions or of preference parameters.

Number of Pareto Optimal Solutions (Combinatorial Case)

In the combinatorial case, the number of Pareto optimal solutions grows exponentially
with the number of objectives in the worst case, that is O(cm−1), where c is a constant
[5]. Furthermore, as shown in [5], this bound is tight for many classical multiobjective
combinatorial optimization problems, such as selection, knapsack, shortest path, spanning
tree, traveling salesperson, and s–t cut problems. Obviously, the number of Pareto optimal
solutions is also bounded by the size of the whole feasible set.

In Figure 3, we report the proportion of Pareto optimal solutions in the solution space
with respect to the number of objectives (from 2 to 20 objectives) for ρMNK-landscapes [27]
(see Section 4.1.4). Let us focus on independent objectives (ρ = 0). We see that less than 5%

http://creativecommons.org/licenses/by/3.0/
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Figure 3 Proportional number of Pareto optimal solutions with respect to the number of
objectives for ρMNK-landscapes with different degree of non-linearity (k) and correlations among
the objectives (ρ).

of solutions are Pareto optimal for 2-objective problems (m = 2), whereas this proportion
grows to about 50% for m = 7 objectives. For m = 20 objectives, more than 99% are Pareto
optimal solutions.

Discriminative Power of the Dominance Relation

With a growing number of objectives, the dominance relation becomes less discriminative.
Let us consider the comparison between two arbitrary solutions x1 and x2 on m objectives.
Assume that the probability of equal objective values can be neglected, and that the
comparison with respect to each objective is independent. For each objective there is a
1/2 probability that x1 has a better value for this objective, and a 1/2 probability of the
opposite situation. As such, the probability that one solution dominates the other one is
1/2(m−1). Thus, it becomes more and more likely that two arbitrary solutions are mutually
non-dominated. If the objectives are positively correlated, this probability increases, and if
they are negatively correlated this probability decreases.

Probability for a Solution to be Non-Dominated in a Population

As a consequence of the reduced discriminative power of the dominance relation, the probab-
ility that a given solution is Pareto optimal increases. Consider a population of µ random
solutions. The probability that a given solution is not dominated by another one is

1− 1
2m
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and thus the probability that one of them is not dominated by any other solution in the
population is

µ−1∏
i=1

(
1− 1

2m
)

=
(

1− 1
2m
)µ−1

,

and the expected number of non-dominated solutions in this population is then

µ
(

1− 1
2m
)µ−1

.

Dimensionality of the Objective Space

In the continuous case, the size of the set of Pareto optimal solutions formally does not grow,
because it is infinite, c to be precise, already for two objectives. However, the dimensionality
of the objective space and the Pareto front grows. This means that more points or directions
are typically required to approximately cover the Pareto front or possible search directions,
respectively.

Number of Preference Parameters

In many multiobjective optimization methods, the decision maker (DM) is expected to
express his/her preferences e.g. in the form of weighting coefficients or reference levels
(aspiration levels/goals) specified for each objective. The number of such parameters grows
just linearly with the number of objectives. In the case of some methods like AHP [26],
preference parameters are expressed with respect to each pair of objectives; their number
then grows quadratically.

Probability of Having Heterogeneous Objectives

By heterogeneous objectives, we here mean objectives that differ for example in their
mathematical form (e.g. linear vs. non-linear), cost and/or time of evaluation (e.g. analytical
form vs. simulation vs. real physical experiment). Intuitively, the higher the number of
objectives, the higher the chance that some of them will differ from other objectives; i.e. that
some of them will be more multimodal or costly/time-consuming in evaluation, an issue that
has been investigated e.g. in [2, 6].

4.1.3 Effect of the Number of Objectives on the Complexity of Multiobjective
Procedures and Algorithms

Although most studies are based on a number of pairwise comparisons of solutions, it is
important to notice that the elementary operation for complexity results reported below is
a pairwise comparison per objective. This choice is motivated by the fact that we want to
highlight the effect of the number of objectives (m) on different multiobjective optimization
tools and methods.

Updating the Pareto Archive

The Pareto archive is a structure used to store the set of points in the objective space (and
corresponding solutions) generated by a multiobjective optimization method, in particular
solutions being non-dominated with respect to all solutions generated so far. Updating the
Pareto archive A with a new solution x means that all solutions dominated by x are removed
from A and x is added to A if it is not dominated by any solution in A.
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Updating the Pareto archive can be performed efficiently with the ND-Tree data struc-
ture [16]. The complexity of this process is as follows:

Worst case: O(m µ);
Best case: Θ(m log(µ));
Average case: Θ(m µb), where µ is the size of the archive, and b ∈ [0, 1] is the probability
of branching.

Note that sublinear time complexity in average case could also be obtained with another
recently proposed data structure BSP Tree [12].

An interesting question is how b changes with respect to the number of objectives. In
ND-Tree, the archive is recursively divided into subsets of points being close to each other in
the objective space. For each subset, a local ideal point and a local nadir point are maintained.
A new solution is compared first to the two points and only if the decision with respect to
this subset cannot be made, then the corresponding branch of the tree is expanded. The
latter situation occurs when the new solution is dominated by the local ideal point and/or
when the new solution dominates the local nadir point. Given that, as discussed above, the
probability that the dominance relation holds for two solutions (points) decreases with the
number of objectives, these situations may become even less likely with a growing number of
objectives.

The Pareto archive may be either bounded in size or unbounded, i.e. contain only some
or all non-dominated solutions generated so far [10]. In the latter case, the size of the Pareto
archive may, in general, grow exponentially with the number of objectives (see Section 4.1.2).
Assuming that µ = O(cm−1), the complexity of the update process becomes:

Worst case: O(m µ) = O(m cm−1);
Best case: Θ(m log(µ)) = Θ(m log(cm−1)) = Θ(m2 log(c));
Average case: Θ(m µb) = Θ(m c(m−1)b).

In other words, in the average case the time grows exponentially with the number of objectives,
however, with a relatively low exponent, assuming that probability of branching is b� 1.

Dominance Test

In this section, we consider the process of testing if a solution x is non-dominated or dominated
by a Pareto archive. The complexity analysis of this process with the use of ND-tree is the
same as for updating the Pareto archive, since the dominance test is the bottleneck part of
the updating process. The same holds for BSP Tree [12].

Solving Scalarizing Problem(s)

Let c(n,m) be the complexity for solving one scalar problem. Assuming that the complexity
grows linearly with m, then we have c(n,m) = O(c(n) m). As such, when multiple scalar sub-
problems are to be solved, as in decomposition-based evolutionary multiobjective optimization
(e.g., [25]), the complexity is O(c(n) m µ), with µ being the number of sub-problems. However,
notice that it is often assumed that µ increases with the number objectives m in order obtain
a good approximation of the Pareto set [25].

Computing and Approximating Hypervolume

When assessing the performance of multiobjective optimization algorithms, or in indicator-
based evolutionary multiobjective optimization, the indicator-value of a solutions-set of size
µ is to be computed multiple times. One of the recommended and most-often used indicator
is the hypervolume [32]. Unfortunately, the exact hypervolume computation is known to
grow exponentially with the number of objectives, more particularly: O(µm−2 log(µ) m) [4].
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Alternatively, the hypervolume can be approximated by Monte Carlo sampling [4]. In
this case, the complexity is Θ(s m µb) , where s is the number of sampling points (see above).
Since, Monte Carlo sampling is just a sequence of s independent experiments, each asking a
yes/no question (dominated/non-dominated), the confidence interval can be derived from a
binomial distribution and does not depend on the number of objectives. On the other hand,
the question remains if the size of the confidence intervals should be reduced with growing
number of objectives or growing µ. Furthermore, as discussed above, it is often assumed that
µ increases with m.

EMO Algorithms

This section tries to understand the impact of many objectives on the working principles of
different types of evolutionary multiobjective optimization (EMO) algorithms.

For all EMO algorithms that use a constant population size and no external archive:
Algorithm performance should be evaluated in terms of representation quality.
The distance between solutions in the objective space increases, so that the quality of
representation likely decreases, with poorer coverage.
The distance between solutions in the decision space increases, so that (blind) recombina-
tion likely becomes less effective.

For dominance-based EMO algorithms (e.g. NSGA-II [7]):
The dominance relation becomes less discriminative (see Section 4.1.2). Because of this,
we expect a lower selection pressure based on dominance, and then a lower quality in
terms of Pareto front approximation.
Since most individuals are mutually non-dominated, the EMO selection pressure is mostly
guided by the diversity preservation mechanisms.
Convergence is potentially affected.
The complexity of non-dominated sorting is potentially affected.

For decomposition/scalarization-based EMO algorithms (e.g. MOEA/D [29]):
Assuming a constant number of weight vectors (and population size), all issues mentioned
above for constant population size hold. Moreover, the distance between weight vectors
increases.
Assuming the number of weight vectors increases with m (in order to maintain the same
level of coverage), the algorithm complexity increases with the number of weight vectors.
It remains unclear how the number of weight vectors shall increase, e.g. polynomially or
exponentially.

For indicator-based EMO algorithms (e.g. IBEA [31]):
For exact hypervolume computation, the complexity is exponential with m (see above).
For Monte Carlo approximation, and assuming a constant population size, all issues
mentioned above for constant population size hold. By contrast, assuming an population
size that increases with m, it remains unclear at this stage how the number of sampling
points shall be changed (or not) to reach the same level of hypervolume approximation
quality.

4.1.4 Case Studies on Real and Artificial Problems

Multiobjective NK Landscapes (Artificial)

ρMNK-landscapes [27] are a problem-independent model used for constructing multiob-
jective multimodal combinatorial problems with objective correlation. They extend single-
objective NK-landscapes [17] and multiobjective NK-landscapes with independent object-
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ives [1]. Candidate solutions are binary strings of size n. The objective function vector
f = (f1, . . . , fi, . . . , fm) is defined as f : {0, 1}n 7→ [0, 1]m such that each objective fi is
to be maximized. As in the single-objective case, the objective value fi(x) of a solution
x = (x1, . . . , xj , . . . , xn) is an average value of the individual contributions associated with
each variable xj . Given objective fi, i ∈ 1, . . . ,m, and each variable xj , j ∈ 1, . . . , n, a
component function fij : {0, 1}k+1 7→ [0, 1] assigns a real-valued contribution for every com-
bination of xj and its k epistatic interactions xj1 , . . . , xjk

. These fij-values are uniformly
distributed in [0, 1]. Thus, the individual contribution of a variable xj depends on its
value and on the values of k < n variables xj1 , . . . , xjk

other than xj . The problem can be
formalized as follows:

max fi(x) = 1
n

n∑
j=1

fij(xj , xj1 , . . . , xjk
) i ∈ 1, . . . ,m

s.t. xj ∈ {0, 1} j ∈ 1, . . . , n

The epistatic interactions, i.e. the k variables that influence the contribution of xj , are
typically set uniformly at random among the (n− 1) variables other than xj , following the
random neighborhood model from [17]. By increasing the number of epistatic interactions k
from 0 to (n−1), problem instances can be gradually tuned from smooth to rugged. In ρMNK-
landscapes, fij-values additionally follow a multivariate uniform distribution of dimension m,
defined by anm×m positive-definite symmetric covariance matrix (cpq) such that cpp = 1 and
cpq = ρ for all p, q ∈ 1, . . . ,m with p 6= q, where ρ > −1

m−1 defines the correlation among the
objectives. The positive (respectively, negative) objective correlation ρ decreases (respectively,
increases) the degree of conflict between the different objective function values. Interestingly,
ρMNK-landscapes exhibit different characteristics and different degrees of difficulty for
multiobjective optimization methods [20]. The source code of the ρMNK-landscapes generator
(and other problem classes) as well as a set of multiobjective combinatorial benchmark
instances are available at the following URL: http://mocobench.sf.net.

Multiobjective Distance-based Problems (Artificial)

Distance-based optimization problems have been developed with the aim to visualize the
movement of a population through the design space over time in order to understand, e.g.
search bias. This is achieved by assuming a 2D design space with arbitrarily many (m)
objective dimensions. More formally, in a standard visualisable distance-based test problem,
the ith objective is calculated as

fi(x) = min
v∈Vi

(dist(x,v)),

where X is a feasible design space, and x ∈ X ⊆ R2 a 2D point (solution) in the design space.
There are m sets of vectors defined, where the ith set, Vi = {v1, . . . ,vsi

}, determines the
quality of a putative design vector x ∈ X , on the ith objective. Note as si is the number
of elements of Vi, which depends on i, it is legal for |Vp| 6= |Vq|, but |Vp| ≥ 1 for all p. The
function dist(x,v) typically returns the Euclidean distance between x and v.

Figure 4 illustrates the simplest distance-based problem formulation using points, where
|Vi| = 1 for all i. This means that there is a single connected Pareto set, and no additional
locally Pareto optimal regions.

There are two approaches to setting the set the elements of Vi: (i) setting the elements of
Vi directly by fixing 2×m parameters or (ii) using a centre (in a 2D space), a circle radius
and an angle to each objective minimizing vector resulting in 3 +m parameters to fix. The
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Figure 4 A problem with three objectives, Vi = {vi,j}, |Vi| = 1; figure taken from [9]. Left: The
three locations in X , which lie on the circumference of the black circle, determine the objective value
minima. They describe a three-sided polygonal Pareto set (coloured grey). Right: Samples on the
corresponding Pareto front generated by Monte Carlo sampling the Pareto set.

latter approach is more convenient as it requires fixing fewer (or same number) parameters
for problems with m > 2 objectives compared to the former approach. That is, in the context
of many-objective optimization, it is advisable to adopt this approach.

Distance-based problems have been proposed initially in 2005 [18, 19]. Since then the
community has suggested a number of extensions to the problem formulation to replicate
different complex problem characteristics, such as arbitrarily large decision spaces that
could be projected back to the 2D visualization space [22], disconnected Pareto sets of the
same [15] or different shapes [14], non-identical disconnected Pareto sets [14], alternative
distance metrics, e.g. the Manhattan distance [30, 28], dominance resistance regions [8], local
fronts [21], and variants of real-world constraints [24]. To automate the design of feature
rich distance-based problems and thus increase the uptake of these problems within the
community, Fieldsend et al. [9] have also proposed a configurable test problem generator.
The source code of the generator is available at the following URL: https://github.com/
fieldsend/DBMOPP_generator.

Multiobjective Location Problems (Real)

The aim of this section is to discuss our investigations for multiobjective optimization
problems with a special structure. Especially, we consider point-objective location problems.
Using the special special structure of these multiobjective optimization problems, [3] and [11]
derived suitable duality assertions and corresponding algorithms for generating the whole set
of Pareto optimal solutions in the decision space.

https://github.com/fieldsend/DBMOPP_generator
https://github.com/fieldsend/DBMOPP_generator
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Let m points a1, . . . , am ∈ Rn be a priori given. The distance from the new facility
x ∈ Rn to a given existing facility ai ∈ Rn will be measured by the metric induced by a norm
|| · ||, especially by the Euclidean norm || · ||2 : Rn → R, i.e., ||x||2 := (

∑n
j=1 x

2
j)

1
2 or by the

Manhattan norm || · ||1 : Rn → R, i.e., ||x||1 := |x1|+ · · ·+ |xn| or by the maximum norm
|| · ||∞ : Rn → R, i.e., ||x||∞ := max{|x1|, · · · , |xn|}.

The constrained point-objective location problem involving a certain norm || · || is
formulated as:{

f(x) = (||x−−a1||, . . . , ||x−−am||)→ min w.r.t. Rm+
x ∈ X,

(POLPm)

where the feasible set X is a nonempty and closed set in Rn.

Pareto Optimal Solutions: A point x ∈ X is called Pareto optimal solution for (POLPm)
if

@x′ ∈ X s.t.
{
∀ i ∈ Im : ||x′ −−ai|| ≤ ||x−−ai||,
∃ j ∈ Im : ||x′ −−aj || < ||x−−aj ||,

where Im := {1, 2, · · · ,m}.
The set of all Pareto optimal solutions is denoted by PO(X | f). We have

PO(X | f) = {x ∈ X | f [X] ∩ (f(x)−−Rm+ \ {0}) = ∅}.

For generating the set of all Pareto optimal solutions PO(X | f) of (POLPm), we can use
algorithms based on duality statements [3, 11]. These algorithms and many other algorithms
for solving scalar as well as multiobjective location problems are implemented in the software
FLO freely available at https://project-flo.de; see [13].

Generating the Solution Set: Using the software FLO, we generate in Figure 5 the set
PO(X | f) of (POLP7) with seven existing facilities ai (i ∈ I7), X = R2 and || · || = || · ||∞.

If we consider one additional existing facility a8, i.e., we consider a multiobjective location
problem with one more objective function, we generate the set of all Pareto optimal solutions
PO(X | f) of (POLP8) using the duality based algorithm included in FLO. The set of all
Pareto optimal solutions PO(X | f) of (POLP8) is given in Figure 6. It is possible to see
that the solution set of (POLP8) is very different from the solution set of (POLP7).

Furthermore, if we consider the multiobjective location problem (POLP8) where the
Manhattan norm is involved, we get the set of all Pareto optimal solutions reported in
Figure 7.

At last, Figure 8 shows PO(X | f) of (POLP11) with different norms.

Summary: Using the special structure of the multiobjective location problem, it is of interest
to study the influence of the number of objectives (i.e., the number of existing facilities) from
the theoretical as well as numerical point of view. Experimental results could be derived
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Figure 5 PO(X | f) of (POLP7) where the maximum norm is involved.

for multiobjective location problems using the software FLO. Especially, the influence of
the number of existing facilities on the algorithm is of interest. Decomposition methods
and scalarization based algorithms for generating the set PO(X | f) of (POLPm) should be
derived. Approaches based on multiple scalar subproblems could be developed for solving
multiobjective location problems.

Furthermore, it would be interesting to consider variable domination structures in
(POLPm).

The results can be used in several fields of applications:
Location theory.
Economics: Considering models in utility theory (Cobb-Douglas-function) and produc-
tion theory.
Bioinformatics: Considering entropy maximization models (based on entropies by [23]
for DNA sequence analysis.

4.1.5 Conclusions

Summary

This working group has analyzed the impact an increase in the number of objectives has
on (i) problem characteristics and the (ii) complexity of multiobjective procedures and
algorithms. Several existing feature-rich test instance generators for problems with many
objectives where covered as well. These generators can be used, for example, to validate the
observations made but also test the performance of many-objective optimization algorithms
on problems with different properties. Our main findings in terms of scaling efficiencies can
be summarized as:

Good scaling behavior (i.e., polynomially):
Single scalarizations,
Approximate hypervolume (though the approximation quality itself may be affected).

Relatively good scaling behavior:
Updating the archive of non-dominated solutions.
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Figure 6 PO(X | f) of (POLP8) where the maximum norm is involved.

Poor scaling behavior (i.e., exponential complexity, decreased quality):
Exact hypervolume computation,
Approximating the whole PF with guaranteed quality.

Future/Ongoing work

The following directions for future work have been identified:
Verify theoretical properties on artificial and real problems, problems with special struc-
tures.
Investigate a proper setting for the population size or the number of weights (approxima-
tion quality) w.r.t the number of objectives and the correlation among them.
Investigate the accuracy of Monte Carlo estimation for the hypervolume, how many
sampling points w.r.t the number of objectives?
Changing DM preferences for generating preferred solutions.
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The question how the running-times of algorithms scale with respect to certain parameters
of the input lies at the heart of computational complexity theory. Traditionally, we are
interested in how the worst-case running-time of a given algorithm for a given problem
scales in the size of the input. Especially, whether this function scales polynomially. For
multiobjective combinatorial optimization (MOCO) problems, we often know a negative
answer. In particular, for multiobjective variants of the shortest path, spanning tree,
assignment, and many more problems, there is no algorithm with a running-time scaling
polynomially in the input size [3].

But what happens, if we investigate the running-time of an algorithm as a function
of more than just the input size? A new approach in multiobjective optimization is to
investigate the running-time as a function of the input size and the output size. Other
possible viewpoints include fixed-parameter tractability, wherein the running-time is studied
in the input-size and a set of parameters that are assumed to be fixed (cf., e.g., [2]).

In our group, we studied a problem which is easy to describe, but a negative or positive
answer has far-reaching consequences. Our object of study was the biobjective unconstrained
combinatorial optimization (BUCO) problem given in the following mathematical form:

max c1T
x

min c2T
x

s.t. x ∈ {0, 1}n

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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Where c1, c2 ∈ Nn and n ∈ N. We are interested in the set of nondominated points of
this problem, i.e., YN min

{
(−c1, c2)x

∣∣ x ∈ {0, 1}n}, where min denotes the set of minimal
elements with respect to the component-wise less-or-equal order on vectors.

An intuitive description of the problem is the following: We are given n items. Item
i ∈ {1, . . . , n} has profit c1

i and weight c2
i . A solution is a filling of a knapsack with a subset

of these items. The profit of a filling is the sum of the profits of its items and the weight of a
filling is the sum of the weights of its items. We want to maximize the profit and minimize
the weight but these objectives may be conflicting. Consequently, we want to find the set of
best compromises between the profit and weight of those knapsack fillings.

In [1] it is proven that if there is no output-sensitive algorithm for the BUCO problem
then there is also none for the multiobjective spanning tree problem. Thus, a negative
result is especially interesting, since the output-sensitive complexity of the multiobjective
spanning-tree problem is open. On the other hand, as this problem is of very general nature,
a positive result for the BUCO problem may result in new solution methods for MOCO
problems in general. We investigated several angles to attack the problem:

The Nemhauser-Ullmann Algorithm

With a given BUCO instance (c1, c2), we associate a set of knapsack (KP) instances para-
meterized by k ∈ N:

max c1T
x

s.t. c2T
mx 6 k

x ∈ {0, 1}n

One algorithm to solve KP is the Nemhauser-Ullmann (NU) algorithm [4, 5]. The basic
idea is to iteratively consider a growing subset of items. We start with the empty set that
only allows for the empty solution and the cost-vector (0, 0)T. Iteratively, we consider one
more item in the order given by the input, add its weight and profit to all previous vectors,
join these new vectors with the old ones, and delete the dominated vectors. This computes
the nondominated set of the BUCO problem. Moreover, for each given k, we can find
the maximum value of the corresponding KP instance among this nondominated set. It is
unknown whether the NU algorithm is output-sensitive for the BUCO problem.

The main difficulty arises as follows: For each index i ∈ {0, . . . , n}, we define T (i) as
the set of solutions after the ith iteration. Thus, T (0) =

{
(0, 0)T} and T (n) = YN . Can

it happen that one of the T (i) for i ∈ {1, . . . , n − 1} is much larger, say more than any
polynomial in n and |YN | larger, than T (n)? Moreover, while changing the ordering of the
items does not change T (n), the sets T (i) for i ∈ {1, . . . n− 1} can change significantly. We
thus discussed the behavior of the algorithm with respect to several orderings, including

ordering by c1
i

c2
i
,

lexicographic ordering, and

ordering by
∥∥∥∥(c1

i

c2
i

)∥∥∥∥.
Parameter: Number of large items. The NU algorithm solves the BUCO problem in
pseudo-polynomial time. An implication of pseudo-polynomiality is the following: If all
numbers in the input are polynomially bounded by the input size, these instances are
polynomial-time solvable. We asked the question: What happens if we allow only a small
number of super-polynomial items? More formally: Let p : N→ N be a polynomial. For a
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given instance, let n be the number of items, and let k be the number of items that have at
least one of c1

i , c2
i with value larger than p(n). Is there an algorithm solving BUCO with a

running-time bounded by O(f(k) · poly(n)) for any computable function f? We answered
this question affirmatively.

Computing supported nondominated points. The weighted-sum scalarization for a given
λ ∈ R2

> of the BUCO problem is the following problem:

2 max λ1c
1T
x−−λ2c

2T
x

s.t. x ∈ {0, 1}n

A point y ∈ YN is called a supported nondominated point, if there is a λ ∈ R2
> such that there

is an optimal solution x to the weighted-sum-scalarization with weight λ and c1T
x = y1 and

c2T
x = y2. A point y ∈ YN is called an extreme nondominated point, if there is a λ ∈ R2

>

with the above property that leads to no other point y′ ∈ YN\{y}.
In [6] it is proven that the set of extreme nondominated points of BUCO can be found in

polynomial time. However, the number of supported nondominated points can be exponential
in the input size. As a third question we thus asked, if we can find all of the supported
nondominated points in output-sensitive running-time. While the set of Pareto-optimal
supported solutions can be computed in an output-sensitive way by a local search scheme,
this is not clear for its image. It can happen that many of the Pareto-optimal supported
solutions map to the same point in the objective space, prohibiting an output-sensitive
running-time.

We also answered this question in the affirmative. The general idea is to use the
characterization in [6] and enumerate solutions comprised of objects with the same profit-to-
weight ratios in an output-sensitive way. We also discussed further ideas for the generalized
problem, where more than two objectives are present and we aim to continue this line of
research in the future.
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4.3 Computationally Expensive Functions and Large Scale Test
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4.3.1 Introduction

The group first discussed general issues and current challenges related to scaling up to
solve large-scale problems. The group identified a number of issues and open research
questions on which we give an overview in Section 4.3.2. The group examined in more detail
the issue of computationally heavy problems, i.e. problems where function evaluations are
computationally demanding, see Section 4.3.3. Further, when developing new algorithms
for large-scale problems, the group emphasized the importance of being able to test the
algorithms well. The group identified a lack of test instances which are not just simple
extensions from the single-objective to the multiobjective setting but which really transfer
single-objective challenges to the mutliobjective case or highlight challenges inherent to the
multiobjective setting that may not exist in the single-objective setting. We summarize this
discussion and provide some solution approaches in Section 4.3.4.

4.3.2 Large Scale Issues and Current Challenges

In application problems and thus in optimization problems of interest there can be many
factors that imply a multiobjective problem to be of “large scale.” These factors include a
large number of variables, a large amount of computation time to evaluate the objective
functions which may be outputs of a black box [16], a large number of processors that must
evaluate the objectives, the existence of a large Pareto front (especially in discrete problems),
or the solution approach which must navigate a large number of local Pareto fronts.

The group identified several open research topics that relate to the identified factors
implying a multiobjective problem is large-scale. These research questions apply to either
very specific problem formulations or to a more general setting. Some of these open research
topics include the following:

Many decision variables: If the multiobjective optimization problem has a large number
of decision variables, and particularly if there are many integer variables, constructive
methods such as Branch-and-Bound may be too computationally burdensome. For
instance, in [3] the proposed Branch-and-Bound procedure could only solve mixed-integer
convex multiobjective problems up to 30 integer variables. New theory and methods are
needed to handle this scenario. In particular, the group identified column generation for
multiobjective combinatorial problems (MOCO) and complexity theory for multiobjective
unconstrained combinatorial optimization (MUCO) as possible research topics.
Computationally heavy problems: If the objective functions are the output of a black-box,
such as a deterministic black-box oracle [17] or a Monte-Carlo simulation oracle [13], one
or more of the objective or constraint function evaluations may be time consuming. Thus,
only a limited number of function evaluations may be possible. Furthermore, in the case
of a Monte-Carlo simulation oracle, more than one processor may be required to obtain a
sufficiently accurate estimator of the objective function value [10, 8, 9, 14]. How should
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Table 1 Comparison of trust region methods with surrogate methods.

Trust Region Methods Surrogate Methods

uses a local model, determined only with
information along a “path” in the area you
trust

uses a global model

basically a local solver, i.e. aims to find
locally optimal solutions

aims to find a globally optimal solution

refined when coming close to an optimum refined in promising areas where you do not
trust the model (high variance)

requires model assumptions, e.g., trust the
model

requires model assumptions, e.g. Gaussian
process

such problems be approached? Trust-region [24, 23] or surrogate modeling may be useful
tools in this context; how can they be modified to ensure efficiency?
Many local Pareto sets: In many single-objective settings, local methods are used in the
search for global optima (e.g.[18, 19, 15]). Does a similar framework make sense in a
multiobjective setting, and if so, how should solvers handle many local Pareto sets? How
can one avoid calculating unnecessary Pareto sets, and how might one go about storing
the data generated when solving such problems? In particular, mixed-integer nonlinear
multiobjective optimization problems might have a huge number of local Pareto sets,
one for each fixed setting of the integer variables. Then, the overall Pareto set is the
non-dominated points among them, which can be identified by comparing sets. How can
such calculations be conducted efficiently?
Test instances: While a large number of test instances exist for multiobjective optimization
(e.g. [2, 1, 12, 6, 5, 4]), there is a lack of scalable test instances that truly extend the
challenges observed in a single-objective setting to the multiobjective setting. Such test
instances are required to test algorithms developed for large-scale problems.

4.3.3 Computationally Heavy Problems

The group decided first to focus specifically on computationally heavy problems, i.e., on
optimization problems where the functions are large-scale in terms of computational time.
Furthermore, the group envisaged to identify how such problems might be approached using
surrogate or trust-region methods. First, we summarize similarities and differences between
these methods, which we display in Table 1.

Especially the idea of a local model which is refined close to the optimum can be used
in many fields. There are also different possibilities for the model itself: one can built a
model for each objective individually, as done in the trust region approaches [22, 24], or one
can define a global one based on scalarization, as for instance for the hypervolume or for a
multiplicative reformulation [22].

When such a model approach should be chosen for computationally heavy objectives,
then one has also to keep in mind the following aspects. First, the question is whether all
function evaluations are expensive, or whether it will be cheaper to calculate some value f(y)
for y close to some x in case one has already calculated f(x). An example for that might
be mesh adaptation or just slight changes in a mesh. It is still an open research question
how this can be used for efficient algorithms, for instance for the numerical approximation of
derivatives. Of course, this issue is also a task for single-objective expensive optimization.
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Another aspect is that the objective functions might be of different type (heterogeneous),
like, e.g., different simulation times (3h vs 20 minutes; 2h vs 1 second). See for example
[7, 24].

Moreover, in the case that there are different levels of granularities or accuracies of the
model an efficient algorithm should choose adaptively. Such approaches already exist, but
theoretical proofs are always a true challenge.

Hence, when dealing with computationally heavy problems, several aspects have to be
taken into account which are not directly related to the presence of multiple objectives.
Moreover, there are many different problem types (heterogeneous, stochastic, locally cheaper,
. . . ) and methods have to be developed for each problem type individually.

4.3.4 Consistent and scalable extensions of test instances for large scale

There is already a large number of test instances available for multiobjective solvers. Never-
theless, we see a lack in instances which truly transfer the single-objective challenges to the
multiobjective setting. Often, the difficulties known from single-objective optimization are
just transferred to one of the objective functions, while the other objective functions are just
chosen to be of a quite simple structure to obtain a simple extension.

An example in this direction is the test instance known as DTLZ7 [5], denoted MaF7 in
[2], with

min
x∈Rn


x1
x2
...

xm−1
fm(x)


with 1 ≤ m ≤ n and functions fm, g : Rn → R,

fm(x) = m−
m−1∑
i=1

(
xi

1 + g(x) (1 + sin(3πxi))
)

and g(x) = 1 + 9
n−m+1

∑n
i=m xi. Other instances with many objectives are for instance

obtained by taking sinus and cosinus values of the components xi and by a multiplication of
them.

Hence, we suggest to construct new multiobjective test instances which extend the classical
test functions as the Rosenbrock [20] or the Himmelblau function [11]. Thereby, we want to
use a consistent extension, i.e., all objective functions should be of the same type. Moreover,
to be usable for large scale issues, the test instances should be scalable w.r.t. the number of
objective functions and the number of variables. Of course, as expected from test instances,
they should have predefined mathematical properties as, e.g., a known Pareto set.

Another aspect is that real-world problems often exhibit a complex correlation structure
between objectives: conflict and agreement among objective functions are in general local
properties. For example, Figure 9 shows the correlation structure of the crankshaft prob-
lem [21] on the Pareto front. Available multiobjective test instances consider in general only
problems with independent objectives, missing the complexity of real-world scenarios.

Consequently, test instances should have the property that when adding functions the
problem should keep the structure in the following sense:
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Figure 9 Parallel coordinates chart of an empirical Pareto set of the crankshaft problem. Signs
have been changed so that all five objectives are to be minimized. Both conflict and agreement
among different objectives are visible.

Assume there are k objectives f1, . . . , fk : Rn → R. Then these define some kind of
ordering in the pre-image space in the sense that we say

x ≤f x̃ :⇐⇒ (f1(x), . . . , fk(x)) ≤ (f1(x̃), . . . , fk(x̃)). (1)

Now we aim on defining for the test instances a new objective fk+1 : Rn → R, which is not
just a copy of the previous objective functions, but that also keeps this ordering, meaning

x ≤f x̃ ⇐⇒ (f1(x), . . . , fk(x), fk+1(x)) ≤ (f1(x̃), . . . , fk(x̃), fk+1(x̃)).

The overall idea is that if we want to study scalability with respect to the number of
objectives, we should keep everything else fixed. Furthermore, this requirement introduces a
rich correlation structure between objectives as a fringe benefit.

We illustrate this with a biobjective and a triobjective example based on the Rosenbrock
function [20]. First, recall that the Rosenbrock function f : R2 → R is defined by

f(x, y) = (a− x)2 + b(y − x2)2

and it has a unique global minimum at (x, y) = (a, a2), where f(x, y) = 0. Usually the
parameters are set such that a = 1 and b = 100. Then the global minimum, located at (1, 1),
is inside a narrow, parabolic shaped valley, as shown in Figure 10.

I Example 1. Let a, c, d ∈ R and b > 0 be scalars and define fa : R2 → R by

fa(x, y) = (a− x)2 + b(y − x2)2.

We define a second function by fd : R2 → R,

fd(x, y) = (d− x)2 + b(y − x2)2.



Carlos M. Fonseca, Kathrin Klamroth, Günter Rudolph, and Margaret M. Wiecek 83

Figure 10 Plot of the Rosenbrock function with a = 1 and b = 100. The unique global minimum,
outlined with a red point, is at (1, 1).

Figure 11 shows that the shape of the function and the position of the global minimum are
affected by the value of a (or d).

Then a simple calculation yields that the set of efficient points of the biobjective optimiz-
ation problem

min
(x,y)∈R2

(fa(x, y), fd(x, y))

is

S := {(x, y) ∈ R2 | x = (1− λ)a+ λd, y = x2, λ ∈ [0, 1]}.

An example of optimal solution set S is shown in Figure 12, where the two Rosenbrock
functions presented in Figure 11 are used as objectives for a biobjective optimization problem.
The relevant Pareto front is presented in Figure 13.

These two objectives fa, fd define now an ordering as given in (1). Now we can add a
third new objective fc : R2 → R with the same structure, i.e.

fc(x, y) = (c− x)2 + b(y − x2)2

and as long as c ∈ [a, d] the optimal solution set of the three objective problem

min
(x,y)∈R2

(fa(x, y), fd(x, y), fc(x, y))

is still equal to S.

Note that the discussion in the above example would cover the quadratic case for b = 0.
This can be seen even better with the forthcoming Example 3. For the moment, let us show
with the next example that also with quadratic functions f : Rn → R of the form

f(x) =
n∑
i=1

(ai − xi)2

with parameters ai ∈ R, i = 1, . . . , n we get a similar structure (which is of course less
challenging from an algorithmic point of view).
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Figure 11 Contour plots of two Rosenbrock functions (in logarithmic scale) with different values
for the parameter a (or d) and fixed b = 100: the position of the unique global minimum, outlined
with a red point, changes accordingly to the value of a.

I Example 2. We consider a triobjective optimization problem with three objective functions
of the type fj : R2 → R with

fj(x, y) = (x− αj)2 + (y − αj)2

with αj ∈ R, j = 1, 2, 3. Each individual objective function has the unique minimal solution
(x, y) = (αj , αj). Now let A = (α1, α1), B = (α2, α2), C = (α3, α3). Figure 14 shows the
optimal solution set for such a triobjective optimization problem. The optimal solution set is

S :=
{

(x, y) ∈ R2 | αmin := min
j=1,2,3

αj ≤ x ≤ max
j=1,2,3

αj =: αmax, y = x
}
.

The Pareto front is presented in Figure 15. The solution set would not change in case
one adds objectives of the above type as long as for the additional functions fj we have
αmin ≤ αj ≤ αmax. Figure 16 shows the correlation structure between objectives on the
Pareto front.

The test instances should also be scalable w.r.t. the number of variables. This can be
easily achieved by following the approach from the following example:

I Example 3. Let a function g : Rn → R be defined by

g(x) =
k∑
i=1

(ai − xi)2 +
n∑

j=k+1
bj

(
xj −

∑
i∈Sj

x2
i

)2

where ai ∈ R, i = 1, . . . , k, and bj > 0, j = k + 1, . . . , n, are scalars and Sj ⊆ {1, . . . , k}
are index sets with Sj 6= ∅ for all j = k + 1, . . . , n. Then the single-objective unconstrained
optimization problem

min
x∈Rn

g(x)

has the optimal solution set{
x ∈ Rn | xi = ai, i = 1, . . . , k, xj =

∑
i∈Sj

x2
i

}
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Figure 12 Optimal solution set (outlined with a red parabolic arch) for the biobjective optimization
problem defined by the two objectives f−0.8(x, y) and f+1.2(x, y) shown in Figure 11. The contour
plots of two objectives functions are represented in blue and in orange, respectively. The minima
of the objective functions (shown as red points) are, respectively, A = arg min f−0.8(x, y) and
B = arg min f+1.2(x, y).

4.3.5 Conclusion

Future work contains the formulation of clear test instances with full information on the
parameters to choose and on the Pareto set. It is also of interest to discuss the above
procedures on how they can be extended to other functions as to construct a multiobjective
version of the Himmelblau function [11] h : R2 → R

h(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2

and also to see how general the proposed approach is to generate other types of level sets and
shapes of the Pareto set. Most of all on how the dimensionality of the Pareto front can be
influenced and how the choice of the parameters influences the conditioning of the problem.
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Figure 15 Objective space of the triobjective optimization problem presented in Figure 14: The
Pareto front is outlined with a red curve. The blue points represent the image of the objective
functions when the domain is sampled on a regular grid.

4.4 Performance Indicators
Carlos A. Coello Coello (CINVESTAV – Mexico, MX), Hisao Ishibuchi (Southern Univ. of
Science and Technology – Shenzen, CN), Pascal Kerschke (Universität Münster, DE), Boris
Naujoks (TH Köln, DE), and Tea Tušar (Jožef Stefan Institute – Ljubljana, SI)

4.4.1 Introduction

Within any aspect of scalability in multi-objective optimisation, performance indicators play
a critical role. These indicators are important when comparing solutions and evaluating the
performance of different algorithmic approaches.

Within many-objective optimisation, one special aspect of scalability in multi-objective
optimisation, performance indicators recently received a lot of interest. With increasing
objective space dimension, this aspect becomes more and more complex since such indicators
need to fulfil different properties. Such indicators are wanted to be1

Fast to compute
Independent from the optimal Pareto set/front
Independent from the shape of the Pareto front
Pareto-compliant
Not emphasizing boundary points
Measures spread in the decision and objective space
Scalable in the number of objectives
Interpretable
Featuring only a few parameters (that are easy to understand)
Sharing the ability to represent preference of the DM
Sharing biases of the indicator that can be understood (are known)

1 List compiled by a working group on the topic “Performance Indicators” at the Lorentz Center
workshop MACODA (MAny Criteria Optimization and Decision Analysis, 16. – 20. September 2020,
http://lorentzcenter.nl/lc/web/2019/1160/info.php3?wsid=1160&venue=Oort)

http://lorentzcenter.nl/lc/web/2019/1160/info.php3?wsid=1160&venue=Oort
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Figure 16 Parallel coordinates chart of a random sample of the Pareto front of the triobjective
optimization problem presented in Figure 14. This chart complements the information already
shown in Figure 15. There is a rich correlation structure between objectives: Both conflict and
agreement among objectives are visible. This pattern closely resembles the features observed in the
real-world problem shown in Figure 9.

The idea to discuss the aspect of performance indicators at the Dagstuhl seminar origins
in the understanding that no single indicator exists that fulfils all these properties. Moreover,
recent work indicates that optimally distributed points generated in the sense of different
indicators are not optimal in any case [28]. Since the distribution of points is a critical aspect,
the working group started with the idea to use statistical method to generate these points
and build a new performance indicator based on the corresponding methodology.

The remainder of the text is organised as follows: The following part briefly summarises
the history of performance indicators in multi- and many-objective optimisation. It thus
summarises the preliminary work that lead to the one at hand. This is followed by a detailled
description of involved methods and the implementation derived during the Dagstuhl seminar.
Finally, first result are presented and a short overview on conclusion and future work is
provided.

4.4.2 Preliminary Work

In the early days of multi-objective evolutionary algorithms (MOEAs), no performance
indicators were adopted to assess performance, and comparisons of results were based purely
on graphical representations of the approximations generated by two or more MOEAs. The
first performance indicators were proposed in the mid-1990s. Some examples are: Distributed
Spacing (ι) [27], Attainment Functions [12] and Efficient Set Spacing [24]. However, it was in
the late 1990s when a wide variety of performance indicators were introduced. For example,
David Van Veldhuizen [29] proposed: Generational Distance, Error Ratio, Maximum Pareto
Front Error, Average Pareto Front Error, Overall Nondominated Vector Generation, Overall
Nondominated Vector Generation Ratio and Generational Nondominated Vector Generation.
Zitzler et al. [36, 34] proposed: Relative Coverage Comparison of Two Sets, Size of the Space
Covered and Hypervolume. Later on, Zitzler also proposed the ε-indicator [35].
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During this period (late 1990s and early 2000s), there were also several concerns regarding
the appropriate methodology to assess the performance of a MOEA (see for example [16]).
But a more important issue that soon arose was Pareto compliance. In 2003, Zitzler et al. [37]
showed that most of the performance indicators that were in common use at that time were
Pareto non-compliant, which meant that their results were unreliable. The hypervolume was
identified as the only unary indicator which is Pareto compliant, but its high computational
cost when dealing with problems having a high number of objectives triggered a significant
amount of research in the last 15 years [31, 2, 23, 15].

Throughout the years, many other performance indicators have been proposed (see for
example [10, 11, 6, 26, 18, 3, 7, 25, 20, 14]). Also, a number of surveys on performance
indicators are currently available (see for example [21, 5, 22, 17]). Also, some researchers have
proposed other interesting ideas such as the use of an ensemble of performance indicators
[32].

Although the development of performance measures for assessing convergence and di-
versity of the approximations generated by a MOEA is a fundamental topic in evolutionary
multi-objective optimization, in recent years, there have been few papers focusing on the
development of new performance measures. The emphasis in recent years has been on the
development of performance measures to assess performance in problems having a large
number of objectives. In this case, diversity is of particular interest, and some interesting
proposals have been made in that regard (see for example [13, 30]).

While the work of Harding and Saff [13] is more theory driven, there are some recent
publications that address the construction of weights vectors [33] and the easy creation of
any arbitrary number of uniformly distributed reference points [8]. Finally, [28] analyzes nine
quality indicators using their approximated optimal distributions for p = 3. The analysis
demonstrates that uniformly-distributed objective vectors over the entire Pareto front are
not optimal in many cases. Each quality indicator has its own optimal distribution for each
Pareto front.

4.4.3 Methods and Implementation

We propose a performance indicator based on reference vectors. The advantages of the latter
are manifold: for instance, they (i) allow to incorporate a decision maker’s preferences, (ii)
are independent from the shape of the true Pareto front, and (iii) are scalable in the number
of objectives.

Reference vectors r = (w1, . . . , wp) ∈ [0, 1]p are p-dimensional vectors (in the objective
space) and their elements (or weights) wi indicate how strong the respective vector is affected
by each of the p underlying objectives f1, . . . , fp. W.l.o.g. we further assume

∑p
i=1 wi = 1.

In most applications, those reference vectors are uniformly distributed across the (p− 1)-
dimensional Pareto front (see, e.g., [4]). However, a variety of research on efficient sampling
strategies has shown that evenly spaced structures (like a grid layout in ≥ 2 dimensions)
are suboptimal. Therefore, we decided to utilize two sophisticated sampling strategies –
Latin Hypercube Sampling (LHS) [19] and Maximally Sparse Selection (MSS) [9] – for finding
promising weight configurations (which in turn will hopefully result in a suitable alignment
of the reference vectors across the Pareto front).

In the first strategy, we use LHS to generate a set of K coefficient vectors θ(k) =(
θ

(k)
1 , θ

(k)
2 , . . . , θ

(k)
p−1

)
∈
[
0, π2

]p−1 with k = 1, . . . ,K in the (p−1)-dimensional box with lower
bounds 0 and upper bounds π/2. We treat those vectors as angles in the (p− 1)-dimensional
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Figure 17 Schematic example of our proposed approach for generating 100 weight vectors in a
3-objective problem. The left image shows the results using LHS, and the right one is based on MSS.

space and use them to compute the corresponding p-dimensional (polar) coordinates x(k) =
(x(k)

1 , . . . , x
(k)
p ) (in the so-called hyperspherical coordinate system [1]):

x
(k)
1 = cos(θ(k)

1 )
x

(k)
j = cos(θ(k)

j ) ·Πj−1
i=1 sin(θ(k)

i ), j = 2, . . . , p− 1

x(k)
p = Πp−1

i=1 sin(θ(k)
i ).

The resulting vectors are located on the (p−1)-dimensional unit sphere and thus contradict
the desired property of all weights summing up to one. Thus, we project the coordinates
onto the (p− 1)-dimensional simplex by normalizing the polar coordinates (with the L1-norm
of the respective vector’s distance to the origin), i.e., w(k)

i := x
(k)
i /

∑p
j=1 x

(k)
j .

On the other hand, the MSS sampling strategy already starts with points on the (p− 1)-
dimensional simplex. Each of the initial K simplex points s(k) =

(
s

(k)
1 , . . . , s

(k)
p

)
∈ [0, 1]p,

where
∑p
i=1 s

(k)
i = 1 and k = 1, . . . ,K, is constructed by first sorting p − −1 uniformly

distributed random numbers a(k)
i ∈ [0, 1], i = 1, . . . , p − 1, so that 0 ≤ a

(k)
1 ≤ a

(k)
2 ≤ · · · ≤

a
(k)
p−1 ≤ 1. We interpret the numbers 0 and 1 as a(k)

0 and a
(k)
p , respectively. Then, the

coordinates of the simplex points are computed as s(k)
i = a

(k)
i −−a

(k)
i−1, for i = 1, . . . , p.

The final set of K simplex points, where K � K, is constructed iteratively according to
the maximally sparse selection. In a first step, all p unit vectors are added to this set. Then,
until the size of the set reaches K, the point s(k) that has the greatest sum of distances to all
already chosen points is added to the set. By increasing the number of initial points K, the
resulting set has a more uniform distribution of points, but it also takes longer to compute.

4.4.4 Results

Figure 17 depicts two exemplary samples of reference vectors using our proposed approach
for a 3-objective problem. The left image shows 100 reference vectors generated using the
LHS approach, and the right image depicts the 100 reference vectors created using MSS as a
sampling strategy.
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In the depicted scenario, the distribution of the reference vectors generated by the MSS
approach (i.e., right image) looks more promising than the one based on LHS (left). Therefore,
we will consider only reference vectors generated by the MSS approach in the further study.
Therein, we will use our reference vectors in combination with the R2 indicator (called our
R2-MSS indicator in the following) in order to assess the quality of a selection of approximated
optimal distribution sets that were obtained in [28]. The assessment will be performed both
from a qualitative (visual) and quantitative (indicator-based) perspective.

We will use the approximated optimal distribution sets for nine different performance
indicators (HV, IGD, IGD+, R2, NR2, ε+, SE, ∆, PD), across MOO problems with six
types of Pareto fronts (linear, concave, convex, and their inverted versions), and three, five
and eight objectives, generated by Tanabe and Ishibuchi [28]. The performance of these sets
will be evaluated by the R2 indicator where 100 reference vectors were chosen by the MSS
approach from an initial selection of 1000 random reference vectors.

Tables 2 and 3 show the performance of our R2-MSS indicator that uses 100 reference
vectors sampled with the MSS approach (see Section 4.4.3) on the approximated optimal
distribution sets from [28]. The columns contain sets of the same shape and the rows those
that correspond to the same indicator. For each set we show our R2-MSS indicator value
and its rank among all sets of the same shape and dimension. In addition, we visualize the
approximated optimal distribution sets for the 3-objective case. We have summed up the
ranks for sets optimizing each indicator (across the three considered dimensions and all six
shapes) and ordered the sets in the tables from the best (top) to the worst (bottom) indicator
performance according to this sum.

We can see that, unsurprisingly, the best results are almost always achieved on sets
optimizing the regular R2 indicator, which are closely followed by those optimizing the NR2
indicator. As indicated by the plots, the sets for the HV indicator resemble those for the NR2
indicator and generally yield similar values. The sets optimizing the SE indicator perform
really well on linear shapes and poorly on the others and are therefore scored fourth overall.
The sets for indicators ∆, PD and ε+ look unevenly distributed and are appropriately given
poor scores. On the other hand, sets corresponding to the IGD and IGD+ indicators often
have an even distribution of points, which is not in line with their performance as evaluated
by our indicator. A further inspection suggests that the main reason for the poor performance
of these sets is that they are missing points at the location of the unit vectors on non-inverted
fronts (see Table 2), which are always included in our 100 selected reference vectors and are
well approximated by some of the other sets. In fact, a short experiment has shown that if
we add such extreme points to all sets from Table 2, the order of the indicators changes and
sets optimizing the IGD+ and IGD indicators are scored more favourably.

4.4.5 Conclusions and Future Work

First of all we have to admit that the definition of a performance indicator needs much
more than a neat idea. All aspects that needed to be considered to finally derive a proper
performance indicator was more work and needed more discussion than expected. In addition,
more compromises than expected with respect to different aspects like sampling strategy,
reference-based or not etc., needed to define such an indicator had to be made.

Nevertheless, we managed to define a new indicator based on statistical methods, namely
LHS and MSS, to generate equally distributed points in high-dimensional spaces. Two such
methods were involved in the implementation of a new indicator and first results supported
the decision to continue investigations using MSS. Incorporating this method into an R2 like
indicator led to our new indicator R2-MSS. This was tested on already existing approximately
optimal distributed sets yielding promising results.
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Table 2 The values (and their ranks) of our R2-MSS indicator that uses 100 MSS sampled
reference vectors on the approximated optimal distribution sets for indicator I with convex, linear
and concave shapes in dimensions p = 3, 5, 8 (see textual description for more details).

convex linear concave
I p = 3 p value rank p = 3 p value rank p = 3 p value rank

R2

3 0.03497 1 3 0.06009 1 3 0.08219 4
5 0.00814 1 5 0.01559 1 5 0.01872 3
8 0.00269 2 8 0.00890 2 8 0.00980 3

NR2

3 0.03672 2 3 0.06169 4 3 0.08183 1
5 0.00849 2 5 0.01807 4 5 0.01882 4
8 0.00259 1 8 0.00953 3 8 0.01138 4

HV

3 0.03682 3 3 0.06159 3 3 0.08210 3
5 0.00863 3 5 0.01956 5 5 0.01858 2
8 0.00323 3 8 0.01002 4 8 0.00835 1

SE

3 0.03907 6 3 0.06186 5 3 0.08230 5
5 0.01082 7 5 0.01596 2 5 0.01979 5
8 0.00604 9 8 0.00784 1 8 0.01703 6

∆

3 0.03803 5 3 0.06121 2 3 0.08329 6
5 0.01049 6 5 0.01789 3 5 0.02113 6
8 0.00358 5 8 0.01100 5 8 0.01393 5

IGD+

3 0.04144 8 3 0.07305 8 3 0.08193 2
5 0.01135 8 5 0.04167 9 5 0.01854 1
8 0.00368 6 8 0.02460 9 8 0.00843 2

PD

3 0.03718 4 3 0.06262 6 3 0.08926 8
5 0.00990 4 5 0.02514 6 5 0.04626 7
8 0.00348 4 8 0.01633 6 8 0.03326 7

IGD

3 0.04048 7 3 0.07284 7 3 0.10066 9
5 0.01039 5 5 0.03929 7 5 0.06322 9
8 0.00389 7 8 0.02457 7 8 0.05234 9

ε+

3 0.04192 9 3 0.07699 9 3 0.08896 7
5 0.01268 9 5 0.04149 8 5 0.04834 8
8 0.00423 8 8 0.02457 7 8 0.03820 8

It seems clear that this approach needs to be examined on different solutions sets, in
particular steaming from algorithm runs in the future. Different scenarios need to be
investigated using different algorithms, different benchmarking functions yielding different
Pareto front shapes, and compared to other performance indicators for different objective
space dimensions. Finally, the new indicator should be investigated with respect to all of the
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Table 3 The values (and their ranks) of our R2-MSS indicator that uses 100 MSS sampled
reference vectors on the approximated optimal distribution sets for indicator I with inverted convex,
linear and concave shapes in dimensions p = 3, 5, 8 (see textual description for more details).

inverted convex inverted linear inverted concave
I p = 3 p value rank p = 3 p value rank p = 3 p value rank

R2

3 0.22936 1 3 0.19256 1 3 0.12929 1
5 0.23385 3 5 0.20172 2 5 0.15192 1
8 0.23359 2 8 0.21235 2 8 0.16376 1

NR2

3 0.23084 2 3 0.19670 4 3 0.13240 4
5 0.23140 1 5 0.21995 5 5 0.16292 8
8 0.24153 4 8 0.26378 7 8 0.17817 7

HV

3 0.23172 3 3 0.19625 3 3 0.13174 3
5 0.23332 2 5 0.23400 7 5 0.16039 6
8 0.23175 1 8 0.26654 8 8 0.18751 9

SE

3 0.23285 4 3 0.19450 2 3 0.13281 7
5 0.23534 4 5 0.20003 1 5 0.15728 5
8 0.23975 3 8 0.20727 1 8 0.17949 8

∆

3 0.24822 7 3 0.21063 9 3 0.13613 8
5 0.29475 7 5 0.21630 3 5 0.16178 7
8 0.36511 8 8 0.22674 3 8 0.16612 3

IGD+

3 0.24816 6 3 0.20900 8 3 0.13274 5
5 0.27227 6 5 0.23800 8 5 0.15403 3
8 0.26911 5 8 0.25465 5 8 0.17334 5

PD

3 0.24967 8 3 0.20092 5 3 0.13280 6
5 0.35168 9 5 0.23380 6 5 0.15457 4
8 0.38488 9 8 0.27272 9 8 0.16828 4

IGD

3 0.28437 9 3 0.20827 7 3 0.13146 2
5 0.33947 8 5 0.24139 9 5 0.15319 2
8 0.33546 7 8 0.26131 6 8 0.16597 2

ε+

3 0.23383 5 3 0.20549 6 3 0.13654 9
5 0.24714 5 5 0.21832 4 5 0.16309 9
8 0.27915 6 8 0.22893 4 8 0.17647 6

properties listed above. This investigation is expected to prove which properties are owned
by our indicator and which are not. Based on all these results we expect some hints on how
to improve our algorithm further and, thus, to hopefully improve performance measurement
and comparison in many-objective optimisation.
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4.5.1 Introduction

Multiobjective optimization problems involve multiple conflicting objective functions to be
optimized simultaneously. When solving such problems, we generate Pareto optimal solutions
reflecting different trade-offs among the objectives. Typically, some type of preference
information coming from a decision maker, a domain expert, is needed to identify the most
preferred Pareto optimal solution as the final one.

By studying different Pareto optimal solutions and providing preference information, the
decision maker can learn about interdependencies among the objectives. This task can be
supported by visualizations. Visualizations can also be used to represent the progress of the
solution process.

Surveys of various visualization techniques to represent a set of Pareto optimal objective
vectors include [9, 12, 13, 18]. They discuss widely-used visualization techniques like parallel
coordinate plots (sometimes known as value paths), spider web charts, petal diagrams, star
coordinate plots, and glyphs. Examples of more recently proposed visualization methods
for multiobjective optimization are heatmaps [6], knowCube [16], interactive decision maps
[11], the prosection method [17], and 3d-radvis [7]. Visualization aspects in multiobjective
optimization are also discussed in [5].
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Questions involved in developing and applying visualizations include how to scale visual-
izations with increasing numbers of objectives; how to support the decision maker to gain
understanding of the progress of the solution process; how to conduct “sensitivity analysis”
by which the decision maker can understand the consequences of actions; can visualizations
point to directions where small sacrifices in some objective can provide good improvement
in some other objectives; how to find solutions with “robustness” properties; and how to
communicate this to the decision maker. Overall, the decision maker should be able to affect
the appearance of the visualization.

Our motivation is to develop visualizations to provide support to decision makers by
identifying interesting aspects of Pareto optimal objective vectors as solution candidates and
of the solution process itself. We aim at handling larger numbers of objectives (say between
five and nine) in a comprehensible way without cognitively burdening the DM too much.

When using traditional visualization techniques, e.g., radar plots or parallel coordinates
plots, the decision maker can conveniently grasp important interrelationships among the
objectives when they are placed close to each other yet finding the best order in which to
present the objectives may require some trial and error. Our goal is to assist the decision
maker in identifying aspects of interest by pre-processing the set of solution candidates.
We have two goals: to detect which objectives are strongly correlated or uncorrelated with
one another, and to reduce the number of solutions presented when desirable by detecting
similarities among them. The latter can be understood as finding good representative
solutions.

One can detect correlations among objectives, for example, to reduce the computational
burden by decreasing the number of objectives (see, e.g. [1, 2]). However, we are not aware
of any such approach that is applied in a combined way to reduce the visual effort of the
decision maker by clustering both objectives and solution candidates simultaneously.

We propose a new visualization technique by applying bi- or co-clustering to the set of
Pareto optimal objective vectors. In this way, we can simultaneously visualize similarities
and differences among objective functions and solution candidates. To communicate the
information visually, we modify the idea of parallel coordinate plots so that the distances
between correlated objective functions are shorter than otherwise and similar solutions are
given the same color. Thanks to this kind of visualization, the decision maker can handle
higher numbers of objectives and solution candidates and concentrate on aspects that are of
greatest interest.

As for the following, in Section 4.5.2 we describe how data for a study like this can be
obtained. In Section 4.5.3 we survey clustering techniques applicable to our needs, and in
Section 4.5.4 the new visualization technique of this study is proposed. Finally, we conclude
in Section 4.5.5.

4.5.2 Data generation

As mentioned above, we want to support the decision maker in handling larger numbers of
objectives than is usually the case and by this we mean problems with 5 or more objectives.
Of course, if one thinks long enough, one can probably imagine problems with almost any
number of objectives, but because of the almost total lack of work in the area, we will in
this paper only focus on problems with up to 9 objectives to get things started. However,
there is a kind of “Catch-22” with problems in this area. On one hand, people are reluctant
to attempt applications with many more than 5 objectives as there are essentially no tools
for processing points from such high-dimensional Pareto fronts, and on the other hand,
people have been slow to begin work on tools for processing high-dimensional solution vectors
because of the lack of data from problems upon which to test such tools.
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To get around this we describe two methods for randomly generating nondominated
vectors in objective space. The first method is for the generation of Pareto optimal solutions
as if coming from a problem in which all of the objectives have no especial correlations
with one another. This method uses the random multiple objective linear program (MOLP)
generator described in the documentation for Adbase [15] and then uses that code to solve
the resulting MOLPs for all nondominated vertices of the problem’s feasible region in the
objective space. Data sets of any size for any number of objectives can be generated in
this way by adjusting the parameters (numbers of objectives, constraints, variables) of the
generator. Once a data set of Pareto solution vectors is generated, it is immaterial how it
was generated for testing.

The second method is for the generation of Pareto solutions as if coming from a problem
in which there are groups of objectives that have within group correlations with one another.
For instance, consider a problem with 9 objectives such that 4 of the objectives are clustered
in one group, 3 are in another, and the last two are in a third. In this method, the feasible
region of a problem is generated in the same way as the first method, but instead of letting
the MOLP generator generate the gradients of the objectives, the gradients of the objectives
are randomly generated by a special routine that assures the clusters desired and their within
group correlations. In this way, we can develop as many data sets of the types desired as
needed. As for the example of this report, only the second method was necessary to generate
data for it.

4.5.3 Clustering techniques

We now assume a given two-dimensional data set where each row corresponds to a Pareto
optimal objective vector (solution candidate) and each column corresponds to an objective
function. Our aim is to aggregate the given data matrix into solution-objective clusters
according to the following rules.

1. Objectives are clustered if the values in any solution are “similar”.
2. Solutions are clustered if the values in any objective are “similar”.

“Similar” means as close as possible with respect to a specified distance, e.g., a Manhattan
or Euclidean distance. The clustering is to be done simultaneously in both dimensions, rows
and columns.

In the literature, there exist the concepts of biclustering and co-clustering which seem
to denote the same, but are used in different communities and/or applications. A helpful
survey is presented in [10].

Biclustering was first applied to bioinformatics, in particular to identify co-expressed
genes under a subset of all conditions/samples, see [19] for a recent overview. A mathematical
review of successful biclustering techniques is given in [3]. The authors particularly show
that most of them are based on singular value decomposition (SVD). However, algorithms
differ in the definition of biclusters. Some assume constant values in the data on rows within
one cluster, some on columns, some on both. Others are more flexible and allow coherent
values along rows and/or columns.

There are also “spectral” variants, i.e., “spectral biclustering” and “spectral co-clustering”,
that make use of the underlying graph structure of the problem. Spectral algorithms are
common in graph partitioning problems and refer to algorithms that compute eigenvalues,
eigenvectors, and singular values to solve the underlying graph problem, see e.g., the lecture
notes https://courses.cs.washington.edu/courses/cse521/16sp/521-lecture-11.pdf. There, we
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also find an illustrative example in which common clustering methods like k-means fail while
a spectral algorithm detects a meaningful cluster. In [4], a spectral co-clustering algorithm is
proposed for a text mining problem.

In the next section, we use a Python implementation of the biclustering algorithm of
[8]. One should note that even though the terms bi- and co-clustering are often regarded
as synonyms, they refer to different algorithms in the scikit-learn package employed. More
details are given below.

4.5.4 Preliminary results

We present tentative numerical results for a data set containing 88 mutually nondominated
objective vectors with nine objective functions. The data were generated by the second method
described in Section 4.5.2, aiming at three objective clusters. The tests were implemented in
Python 3.7 using the scikit-learn package for data clustering [14] and plotly.express to generate
the parallel coordinate plots. The data were clustered w.r.t. objective vectors (rows) and
objective functions (columns) using spectral biclustering [8]. This includes an automatic data
normalization which was implemented as log-normalization, see the documentation on https:
//scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralBiclustering.html for
further details.

The original, unclustered data are shown in a parallel coordinates plot in Figure 18a,
while Figures 18b to 18d show the results obtained with spectral biclustering using log-
normalization for different numbers of solution clusters (S) and objective clusters (O). Each
solution cluster is identified by a specific color, and the objective clusters are distinguished
by larger distances between the coordinate lines of the different clusters.

The visualizations nicely demonstrate that biclustering is a valuable tool to reveal
tendencies among the solutions and correlations between the objective functions. For
appropriately chosen values of S and O, the three objective clusters that are present in the
data are retrieved. However, we note that the outcome largely depends on the parameter
settings, in particular on the choices of S and O, but also on the employed normalization
method.

In the future, we would like to use a measure to evaluate the quality of the visualization.
Moreover, it would be interesting to automatically test different sizes of row and column
clusters and present the “best” (with respect to a quality measure) result or results to the
decision maker. Another open question is the way the columns are ordered. So far, we simply
use the output of the biclustering algorithm. In the figures presented above we manually
inserted gaps between the different clusters. By varying the sizes of these gaps, they could
also serve as a source of information for the decision maker, e.g. by linking larger distances
to a lower correlations between clusters. This and other technical issues like an automation
are left for further improvements in the future.

4.5.5 Conclusions

We have proposed a novel way of visualizing sets of Pareto optimal objective vectors by
applying bi- or co-clustering and modifying parallel coordinate plots. Thanks to these
visualizations, the decision maker can gain insight in the correlations among both objective
functions and objective vectors simultaneously.

The novel visualizations can be applied to analyze any set of objective vectors. They can
also be applied as a part of an interactive solution process. Our future research direction is to
apply the findings and develop visualization assistance for solving multiobjective optimization
problems with more than three objective functions.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralBiclustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralBiclustering.html
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(a) Original data set

(b) BC with S = 5 and O = 3

(c) BC with S = 3 and O = 4

(d) BC with S = 5 and O = 4

Figure 18 Spectral biclustering applied to a data set containing 88 nondominated points (a).
Subfigures (b)-(d) show biclustering results for S solution clusters and O objective clusters.
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4.6.1 Introduction

The problem of multiobjective optimization changes qualitatively as soon as many decision
makers are involved. All problems that occur when a single decision maker is involved are
inherited, but new problem aspects are added. Three main additional aspects are:
1. The different decision makers can differ on the constraints and objective functions that

are relevant for the problem, and the way they are computed.
2. They may have different preferences for the different objective functions and this way the

problem of fairness arises, that is the problem of considering different preferences in a
balanced manner.

3. There is a possibility of negotiations and group dynamics that should be considered in
designing decision making processes. Moreover, decision makers might form coalitions
and there might be different types of (power) relations between decision makers and
hidden objectives/agendas.

In this report we consider the somewhat ideal situation of a group of equal decision makers
that are able and willing to express their preferences. In such cases computer systems can be
used to find out solutions that are non-dominated with respect to all objectives considered
by the decision makers and among them present solutions that achieve a high performance
in fairness on the one side, and total gain in terms as being close in average to the decision
makers’ preferred solutions or reference points on the other side.
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4.6.2 Problem formulation

General decision making problem

There are three main steps for finding a consensus solution when multiple decision makers
are involved:
1. Agreement on the model/goal formulation(s)
2. Selecting a subset of interesting solutions from a large set of alternatives, consensus on

solvers
3. Selecting a single solution in mediated negotiation
To start with, all the DMs need to agree on the optimization problem formulation which
is not a trivial task as such since different DMs may have different opinions on what is
important to take into account. Therefore, this first step is usually an iterative process where
alternative formulations are considered and some illustrative results are then shown to the
DMs in a facilitated manner. One alternative approach to consider here is the value focused
thinking approach by Prof. Ralph Keeney [3]. There the idea is to start from the values
that the DM actually cares and, then, identify suitable criteria to measure them and define
their relative importance. In case of multiple decision makers in all of these steps consensus
needs to be achieved among DMs, making the value focused thinking process particularly
challenging. In this report, we will not consider the first step in more detail.

When the problem formulation has been agreed, the aim of the second step is to provide
solution candidates for the DMs based on their preferences. There exist different ways of
providing preferences but, in this report for simplicity, we assume that every DM specifies
preferences in the form of a reference point consisting of aspiration levels for each objective.
In the case of multiple DMs, it can be assumed that the reference points can vary a lot
meaning that the preferences have clear conflicts. In such a case, it is not clear what kind of
solution candidates should be presented to the DMs. We feel that this step can be supported
by computational tools and that will be our focus in this report. Our idea is based on using
measures for fairness and gain when evaluating the solution candidates.

Keeping in mind that the overall goal is to find a single solution for the problem such that
all the DMs can agree to that, the last step requires also a facilitated process. Finding the
consensus can be difficult especially in cases where the DMs have very conflicting preferences.

Fairness and gain measures

As opposed to multi-objective optimization with a single DM, in the case of many-decision
makers a solution can be unfair in the sense that it is closer to one decision maker’s preference
than to that of another decision maker.

But how can we measure the preference of a decision maker? Examples of preference
modeling techniques are

the specification of a preference by reference points, that are ideal points for each of the
decision makers. There apply certain constraints of setting such ideal points. For instance,
in the examples in this paper (NSGA-II for teams) we suggest to choose the reference
point from the Pareto front approximation. It may also be possible to allow arbitrary
reference points that our approach would then map onto the Pareto front approximation.
the assessment of preferences by means of achievement scalarization functions [5]
the definition of desirability functions for each objective and decision maker and aggreg-
ating desirablility indices, that are products of desirability functions over all objectives
considered by the decision makers (cf. [2]).
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In the following we illustrate fairness and gain measures by a relative straightforward,
yet useful approach of preference formulation. The approach can be transferred easily to
other, potentially more sophisticated means of preference modelling.

The basis of modeling gain and fairness can be the notion of losses with respect to the
ideal solution a DM can obtain. This loss is also termed Pareto regret ([4]). In the case
that we define the loss by means of distance to reference vectors the Pareto regret can be
computed as:

PRj(x) =
m∑
i=1

(fi(x)− rij)

where j is the index of the decision maker, j = 1, ..., d, m is the number of objectives, and x
is the final solution selected. In the following we will introduce some new definitions that are
related to the notion of Pareto regret w.r.t. reference points which we have described above.
These notions generalise easily to other notions of Pareto regret.

I Definition 1. Pareto Regret, Average Pareto Regret, Inequality in Pareto Regret Let
PRi denote the Pareto regret for each decision maker. Then the average Pareto regret of a
solution x is defined as the average of the Pareto regrets of all DMs, i.e.,

APR(x) = 1
d

d∑
i=1

PRi(x)

and the Inequality in Pareto Regret (IPR) of a solution x is defined as the Gini index2 of the
Pareto regret.

IPR(x) =
d∑
i=1
|PRi(x)−APR(x)|

In the following, we will often denote the APR as gain, and the IPR as fairness.3

4.6.3 Matlab code

In order to illustrate our ideas, we wrote a small Matlab script. An example having two
objectives is used which means that the objective space and the fairness-gain space have the
same dimensionality. The reason for this choice is the ease of visualization and interpretation
but the ideas work for problems with more objectives. Further, we have three DMs in our
example but, again, the ideas work in case we have more.

The code produces plots in two different spaces: the original objective space and the
fairness-gain space. We use a mesh grid to discretize the objective space and we then compute
values for fairness and gain in all the points. In the objective space, we visualize the level
curves of both the fairness and gain to have some idea of their behaviour with respect to
each other. In addition, the reference points of all the DMs are shown.

2 the average absolute deviation from the mean
3 Mind that, following the convention in mathematical programming, we aim to minimise both objectives

which strictly speaking would require using the more abstract terms IPR and APR. From that perspective
fairness and gain are thus improved by means of minimisation.
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Figure 19 Reference points for DMs (blue circles) and level curves for fairness (denser) and gain
(sparse) in the objective space.

Then, we do non-dominated sorting[1] in the fairness-gain space and obtain set of non-
dominated points. We visualize these points in both the fairness-gain space and the original
objective space. In order to be able to identify same non-dominated points in different
plots, we color code them according to increasing values of fairness. An example of the
visualizations in the objective space and the fairness-gain space are shown in Figures 19 and
20, respectively.

Figures 21 and 22 show the same trade-offs but this time for a particular example problem
where there is a Pareto-optimal front that cannot be improved upon in the objective space
(Figure 21. As can be seen, the solutions that belong to the Pareto front in the objective
space form a rather peculiar line in the Gain/Fairness space and vice versa. We would be
looking for solutions that perform well in both spaces as good compromise solutions.

4.6.4 NSGA-II for teams

It seems relatively straightforward to integrate the above ideas into the NSGA-II framework
and focus the search towards solutions that are Pareto-optimal in the objective space, but also
Pareto-optimal in the Fairness/Gain space. The proposed NSGA-II for teams algorithm first
partitions a given set of solutions (population) into different layers of equal dominance ranks
in the objective space. Then, for solutions of the same dominance rank, a non-dominated
sorting procedure is executed w.r.t. the objectives fairness and gain.

This is the basic idea for the construction of the proposed algorithm termed NSGA II
for teams. We leave the discussion of its performance, parameter, scalability studies to the
future work and it shall also be remarked that NSGA-II can probably be replaced by other
Pareto-based evolutionary multi-objective optimziation algorithms.
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Figure 20 Non-dominated points in the fairness-gain space.

In summary our proposed idea of NSGA-II for teams proposes a straightforward way to
integrate an important aspect of problems with many decision makers into EMOA frameworks,
namely the trade-off between fairness and gain.

4.6.5 Relation to constraint satisfaction

This part of the report focuses on another aspect that distinguishes problems with many DMs
those with a single DM which is the problem of constraint satisfaction in terms of conflicting
views of the problem. It shall be noted that constraints and objective functions can coincide,
if there is a minimum threshold for an objective function to be met for a solution to be
feasible.

Let there be d ∈ N decision makers trying to arrive at a solution to an m ∈ N objective
optimization problem. The (vector-valued) objective function f(x) := (f1(x), . . . , fm(x)) is
assumed to be a function from a non-empty set X ⊆ Rn, where n ∈ N is the dimensionality
of the search space. The function f(x) is assumed to be the same for all decision makers
(this assumption could, however, be relaxed). They may have their own set of constraints, or
have a common set. We assume that decision-maker i has a constraint set Xi ⊆ Rn, for all
i ∈ {1, . . . , d}. In the general form, the sets Xi’s are can be assumed to be defined using ki
inequality and `i equality constrains in the following way:

Xi = {x ∈ Rn|gi1(x) ≤ 0, . . . , giki
(x) ≤ 0, hi1(x) = 0, . . . , hi`i

(x) = 0}. (2)

All the functions used in the description (2) above are assumed to be known.
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Figure 21 The coloured crosses are the Pareto front approximation in objective space, the red
crosses are the solutions that form the Pareto front approximation in the Gain/Fairness space.

Detecting intra-inconsistencies within the constraint sets

The aim here is to detect whether the constraints Xi, defined by (2), are consistent or not.
This would be done for all the decision-makers. To do this, for every decision-maker i, we
consider the following optimization problem:

max
(u,x)∈Bki+`i×X

ki+`i∑
i=1

ui

s.t. ujg
i
j(x) ≤ 0, ∀j = 1, . . . , ki, (Opt(i))

ulh
l
j(x) = 0, ∀l = 1, . . . , `i,

where B denotes the set {0, 1}.

I Proposition 2. The constraint set of Opt(i) is non-empty.

Proof. We assumed that X is nonempty. Let x ∈ X be a feasible point. It is easy to see
that the point (0, x) ∈ Bki+`i ×X is feasible to Opt(i). J

Let ni denote the (global) optimal value of Opt(i).

I Proposition 3. If ni equals ki + `i, then Xi is consistent.

Proof. If the optimal value ni equal to ki+`i, then uj̃ = 1 for all j̃ ∈ {1, 2, . . . , ki+`i}. From
the constraints in Opt(i), this implies that there is an x̃ ∈ X that satisfies the constrains in
the description of (2). Therefore, x̃ ∈ Xi and Xi 6= ∅. J

I Proposition 4. If ni < ki + `i, then Xi is inconsistent. Furthermore, the set of constraints
in Opt(i) that correspond to uj̃ = 1 for j̃ ∈ {1, 2, . . . , ki + `i} form the largest subset of
constraints in Xi that is consistent.
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Figure 22 The red crosses are the Pareto front approximation in the Gain/Fairness space, the
coloured crosses are the solutions that form the Pareto front approximation in the objective space.

Proof. If ni < ki+`i, then uj̃ = 0 for exactly ki+`i−ni indices j̃’s. These are the constrains
for which uj̃ 6= 1, meaning they cannot be satisfied. Those j̃’s for which uj̃ = 1 correspond
to the constraint that can be simultaneously satisfied, and therefore the statement of the
proposition follows. J

Solving Opt(i), therefore, is informative to the decision maker i. Depending on the solution
to Opt(i), this either shows that the constraints formulated by him/her are consistent, or, in
the inconsistent case, gives information about the constraints that are causing inconsistency.
It is clear that all the Xi’s need to be non-empty, before any optimization problem or
preference information could be formulated.
I Remark. is to be noted that for checking whether a set is consistent or not can often
be realized by minimizing a penalty function like

∑
j max{0, gij(x)} +

∑
l |hlj(x)| or its

differentiable version
∑
j(max{0, gij(x)})2 +

∑
l |hlj(x)|2. A minimal point x with minimal

value zero is feasible, while a positive minimal value proves inconsistency. The latter can
sometimes also be verified by a lower bounding procedure (like interval arithmetic) if this
yields a positive lower bound for the penalty function. If only inequality constraints are
present, a common feasibility test also is the minimization of some variable t subject to
the constraints gj(x) ≤ t for all j and t ≥ −1 (to guarantee boundedness). A positive
optimal value proves inconsistency, otherwise a feasible point x is generated. The advantage
of our approach based on Opt(i) is that it explicitly gives the constraints that are causing
inconsistency.
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Detecting inter-inconsistencies across the constraint sets

In this section we assume that Xi 6= ∅ for all i ∈ {1, . . . , d}. The individual constraint sets
of the decision-makers are, therefore, non-empty (i.e., the intra-inconsistencies, if any, are
assumed to be removed). The aim now is to check if

⋂d
i=1 Xi 6= ∅. Obviously,

⋂d
i=1 Xi = ∅

would mean that there exist at least two decision-makers i and j such that Xi ∩Xj = ∅,
meaning that these decision makers cannot be simultaneously satisfied. To check this, we
consider the following optimization problem:

max
(v,x)∈Bd×X

d∑
i=1

vi

s.t. vig
i
j(x) ≤ 0, ∀j = 1, . . . , ki,∀i = 1, . . . , d (Opt)

vih
i
l(x) = 0, ∀l = 1, . . . , `i,∀i = 1, . . . , d.

I Proposition 5. The constraint set of Opt is non-empty.

Proof. We assumed that X is nonempty. Let x ∈ X be a feasible point. It is easy to see
that the point (0, x) ∈ Bd ×X is feasible to Opt(i). J

Let ñ denote the (global) optimal value of Opt.

I Proposition 6. Let Xi 6= ∅ for all i. If ñ equals d, then
⋂d
i=1 Xi 6= ∅.

Proof. As Xi 6= ∅ for all i ∈ {1, . . . , d} we obtain from Proposition 6 that all the components
of u in Opt(i) equal 1, for every i. This means that a common value vi can be used for
all the inequalities and equalities that define Xj . Therefore, for every i ∈ {1, . . . , d}, it is
sufficient to use just one boolean variable vi to represent all the ki inequality and `i equality
constrainsts.

If the optimal value ñ equal to d, then vi = 1 for all i ∈ {1, . . . , d}. From the constraints
in Opt, this implies that there is an x̃ ∈ X that satisfies the constrains in the description of
(2) for every index i. Therefore,

⋂d
i=1 Xi 6= ∅. J

I Proposition 7. If ñ < d, then there are at least two decision makers having inconsistent
constraint sets. Furthermore, the set of constraints in Opt that correspond to vi = 1 for
i ∈ {1, 2, . . . , d} form the largest number of decision makers that have common feasible sets.

Proof. If ñ < d, then vi = 0 for exactly d− ñ indices i’s. These are the constraint sets of
decision makers for which vi 6= 1, meaning they cannot be satisfied simultaneously. Those
i’s for which vi = 1 correspond to the constraint sets (or decision makers) that can be
simultaneously satisfied, and therefore the statement of the proposition follows. J

Solving Opt, therefore, is informative to all the decision makers. Depending on the
solution to Opt, this either shows that the constraints formulated by the decision makers are
consistent globally, or, in the inconsistent case, gives information about the decision makers
that are causing inconsistency.

4.6.6 Conclusions and future directions

This report discussed in general problems that arise when moving from problems with a
single DM to problems with multiple or many DMs. We discussed the general process of
solving such problems, and then focused on two more specific aspects, namely:
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1. integrating fairness and gain in problems with conflicting preferences among the decision
makers. For this we identified NSGA-II for teams and introduced the notion of the
fairness-gain space in addition to the objective and decision space for problems with many
DMs.

2. solving and discussing problems with conflicting constraints among different decision
makers using a formal framework.

Future work will have to be done to further refine these ideas and test them on benchmarks
or real world problem solving scenarios. Moreover, it might become necessary to develop
additional techniques in case the number of DMs is large (in accordance to the term ’many
objective optimization one might term this ’many decision makers’ scenario). In this context
the following idea might become very relevant:

Apart from including all DM preferences individually into the optimization and decision
making process, an alternative and promising perspective for future research lies in reducing
complexity of decision preferences prior to optimization. Thus, e.g. by means of clustering
techniques, reference points which are representative for subgroups of decision makers could
be generated which in combination then reduce the amount of different decision maker
preferences and potentially reduces the complexity of agreeing on final compromise solutions.
Ideally, cluster centers reflecting preference compromises of the subgroups should be presented
to the decision makers prior to optimization.

In general such frameworks should also be integrated further with methodologies used in
the MCDM community that have been developed for team decision making and consensus
finding given only a small number of alternative solutions. There is a rich literature to
be explored here and it would extend the scope of this report to provide a comprehensive
overview.

Source code

Matlab-code is available on: http://moda.liacs.nl.
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4.7.1 Introduction and Motivation

Multiobjective mathematical programming problems are characterized by the presence of
several, typically incommensurable objective functions. This circumstance is a fundamental
difference to single objective optimization. As a consequence, the notion of optimality has
to be revised. One common way to define optimality in the presence of multiple objective
functions is the notion of Pareto-optimality. An efficient (or Pareto-optimal) solution to a
mathematical programming problem is characterized by the fact that there does not exist
another solution that is at least as good in all objectives and strictly better in at least one
objective. The images of these efficient solutions are referred to as nondominated points.
The goal of multiobjective optimization is to compute the set of nondominated points and
at least one efficient solution for each nondominated point. For a rigorous introduction to
multiobjective programming, we refer to the book [3].

It is well-known that there is an increase in difficulty when considering an arbitrary
number of objective functions compared to the biobjective case [5]. This can be explained
by the kind of trade-off which stems from the notion of Pareto optimality: In biobjective
problems, two different nondominated points are characterized by the fact that one solution
is better in one objective and worse in the other. As a consequence, there is a monotonicity
among the nondominated points, i.e., they can be sorted by increasing values of the first
objective and, as a consequence, the values of the second objective will turn out to be
decreasingly sorted. This is not the case when having three or more objectives.

A research direction that has lately attracted quite some interest, is multiobjective
problems with many objective. In this context, the term ‘many’ is not precisely defined. It is
generally understood as pointing towards the fact that the mere number of objectives imposes
some difficulty, e.g., in the theoretical analysis of structural properties, of the numerical
solution of the problem, or in the decision-making process.

This situation is, in principle, not new to multiobjective optimization, since the presence
of more than one objective inherently already imposes an increase in difficulty compared to
the single-objective situation. One way of copying with this fact is as old as multiobjective
optimization and widely spread: the idea of reducing the number of objective functions. This
technique is called scalarization and there is a huge body of literature on scalarization [3, 4].

In this article, we address the question of whether it is beneficial to reformulate some given
multiobjective optimization problem by converting one or more objectives to constraints.
The resulting problem would have fewer objectives and should be easier to solve. However,
only a subset of Pareto-optimal solutions is found and, therefore, this process of formulating
and solving a smaller problem has to be iteratively repeated to guarantee finding all or a
good representation of the Pareto optimal solutions. In a sense, this technique can be referred
to as partial scalarization.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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4.7.2 A First Theoretical Framework

We consider a multiobjective optimization problem with k objectives and m constraints. On
top of these constraints, we denote additional constraints by X. This set X subsumes other
restrictions, e.g., sign constraints, bounds on variables, or other side constraints that are
not in the focus of the following consideration. We denote the encoding length of X by n.
A multiobjective optimization problem can thus be referred to by MO(k,m) and concisely
stated as

min


f1(x)

...
fk−1(x)
fk(x)


s.t. g1(x) ≤ 0

...
gm(x) ≤ 0 (3)

One way of studying and balancing the trade-off between objectives and constraints
is by means of the so-called ε-constraint method [7]. In this scalarization technique, one
of the objective functions is minimized while all other are reformulated as constraints. In
the following, we slightly adapt this idea: we choose one objective and reformulate it as a
constraint while keeping all remaining objectives. In view of this partial scalarization, the
above MO(k,m) problem (Eq. 3) would be reformulated as the following (multiobjective)
mathematical programming problem:

min

 f1(x)
...

fk−1(x)


s.t. g1(x) ≤ 0

...
gm(x) ≤ 0
fk(x) ≤ ε (4)

For some given ε, we refer to the above problem as MO(k−1,m+ 1). Comparing the two
problems MO(k,m) and MO(k − 1,m+ 1), the sets of efficient solutions and nondominated
points obviously differ (see [2, 6] on the effect of adding/deleting objective functions). The
step of reducing the objectives by one and adding one more constraint can of course be
iteratively applied until, at the end, the resulting problem is equivalent to the ε-constraint
problem. This technique of reducing the number of objectives and increasing the number of
constraints is key to our analysis.

To find all nondominated points of MO(k,m) by means of solving problems of the kind
MO(k − 1,m+ 1), one can use an iterative algorithm that varies the chosen bound ε and
solves these smaller problems. Let I denote the number of relevant values for the bound ε.
We refer to such an iterative algorithm by εALG(k,m). In other words, εALG(k,m) is an
iterative algorithm based on partial ε-constraint scalarization calling I-times an algorithm
ALG(k − 1,m+ 1) that solves some specific problem with k objectives and m constraints.
Figure 23 illustrates this idea.
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Figure 23 Illustration of partial ε-constraint scalarization used in an iterative manner.

The following result establishes an obvious connection between εALG(k,m) andALG(k,m).

I Theorem 1. ALG(k,m) is faster than εALG(k,m) if

time[ALG(k,m)] < I · time[ALG(k − 1,m+ 1)]

Therefore, the algorithm ALG(k,m) is computationally preferable if I >
time[ALG(k,m)]

time[ALG(k−1,m+1)] . Note that I is determined by the number of nondominated solutions of
MO(k,m).

4.7.3 Some Examples

The Multiobjective Unconstrained (Integer) Quadratic Minimization Problem

The problem

min(x− a)2

for a given parameter a ∈ Rn and a (maybe integer) variable x ∈ Rn is a nice problem for
visualization for n = 2. For example, Given a1, . . . , ak points in the plane, we may formulate
k objective functions, namely fk(x) = (x− ak)2 describing the distance from x to ak. One
can visualize what reducing the number of objective functions means: Instead of minimizing
fk we restrict the solution space to a ball with radius ε centered at ak. It can be easily seen
that due to the nonlinear constraint, the problem becomes much more complicated. While it
can be used for visualization, it seems not to be suited for an analytical analysis.

Multiobjective Linear Programming

Multiobjective linear programming seems to be a suitable problem since
a) the multiobjective simplex algorithm is available for experiments;
b) the ε-constraint problem is again a multiobjective linear program that can be solved by

the multiobjective simplex algorithm.

It remains open to use this setting for numerical experiments.

4.7.4 The Multiobjective Shortest Path Problem

In the following, we illustrate the application of these concepts for a particular case of the
shortest path problem with k objectives in a directed acyclic graph. We consider an extension
of the pulling algorithm [1], which is the fastest approach for finding the single-source
single-sink shortest path in acyclic and topologically ordered networks. This extended pulling
algorithm processes the nodes in the topological order. At each iteration i (i = 1, . . . , n), it
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Table 4 Computational results.

k objectives constraints CPU-time

3 3 0 0.00
2 1 0.35
1 2 1.45

4 4 0 0.00
3 1 1.77
2 2 6.84
1 3 28.47

calculates the nondominated shortest paths from node 1 to node vi by considering only the
distances from each node vj that is incident to j, j < i. Since the network is topologically
ordered, the nondominated shortest paths to each node vj were already computed.

The following pseudo-code implements the algorithm above, where ND1,...,k(·) is a pro-
cedure that extracts the nondominated paths with respect to the k objectives and Li is a list
that stores the nondominated paths at each node i.

Input: An acyclic graph G = (V,A) with n = |V | nodes, V = {v1, . . . , vn}, p = |A| arcs
and k costs at each arc

1: Initialization: set L1 = {(0, . . . , 0)} and Li = {}, for i = 2, . . . , n
2: for i = 1, . . . , n− 1 do
3: for all vj , (vi, vj) ∈ A do
4: Lj = ND1,...,k (Lj ∪ {`+ ci,j | ` ∈ Li})
5: Return Ln

In the following, we present the pseudo-code of an algorithm that solves the mutiobjective
shortest path problem with k − 1 objectives and a resource constraint, which corresponds to
one step of the ε-constraint for this problem. This algorithm is similar to the previous one,
except that only nondominated paths with respect to the k − 1 objectives and the cost, and
that satisfy the resource constraint, are stored on each list Li, i = 1, . . . , n. Note that is easy
to adapt it to handle more resource constraints.

Input: An acyclic graph G = (V,A) with n = |V | nodes, V = {v1, . . . , vn}, p = |A| arcs, k
costs at each arc and a resource constraint ε on the k-th cost

1: Initialization: set L1 = {(0, . . . , 0)} and Li = {}, for i = 2, . . . , n
2: for i = 1, . . . , n− 1 do
3: for all vj , (vi, vj) ∈ A do
4: Lj = ND1,...,k

(
Lj ∪ {`+ ci,j | `k + cki,j ≤ ε, ` ∈ Li}

)
5: Return Ln

We performed an experimental analysis of these algorithms on several randomly generated
graphs for size 50 with 3 and 4 objectives. Table 4 presents the running time in seconds
for each combination on the number of objectives and number of resource constraints. The
results clearly indicate that the CPU-time increases quite strongly with the increase on the
number of constraints.
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4.7.5 Summary and Open Questions

Our claim is that, despite solving a sequence of supposedly easier problems with fewer
objectives, εALG(k,m) is (typically) inferior to ALG(k,m) under reasonable assumptions.
However, more precise analysis of run time necessary to compare the two algorithmic
approaches.

Furthermore, if a specific algorithm is available for the many-objective problem, it
may be even more efficient to solve it than equally structured fewer objective problem.
Also, the many-objective problem may yield more information potentially relevant for the
decision-maker.
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4.8.1 Introduction

This paper contains a report of the work performed by the Working Group “Objective
reduction for many-objective problems” at the Dagstuhl Seminar 20031 “Scalability in
Multiobjective Optimization” that took place in Schloss Dagstuhl – Leibniz Center for
Informatics – on January 12-17, 2020.

Solving multiobjective optimization problems (MOPs) has been well studied and is known
to be difficult for some classes of problems (see [6] and many others). The computational
difficulty grows with an increase in the number of objective functions. However, in the
presence of many objectives, not all functions may be of interest to the decision maker (DM)
or not all objectives may be in conflict with each other. It is of interest to make the original
MOP simpler by removing unnecessary objective functions, or by building combinations of
objectives, while the solution set remains unchanged.

The concept of redundant (or, also called later, nonessential) objective functions is
first introduced in [7]. An objective function is said to be redundant if the efficient set is
unchanged when that function is removed. For multiobjective linear programs (MOLPs),
sufficient conditions are given for determining the redundancy of an objective function in
[7] and later extended to necessary and sufficient conditions in [13, 11]. Similar results
for MOPs with quasiconvex objective functions under the assumptions of a compact and
convex feasible set or injective objective functions are developed in [12]. The weakness of
this approach is that only one objective at a time may be tested for redundancy and that
this testing may have a high computational cost if there is a large or infinite number of
objectives. The concept of representative objective functions for MOLPs is introduced in [21]
and algebraic properties of objectives are used to reduce their number but maintain the same
or an equivalent efficient set. A collection of objectives is called representative provided all
objectives not in the collection can be represented as a conical combination of the criteria in
the collection. It is shown that the efficient set to the original MOLP is equal to the efficient
set of the problem reduced to a representative family of objectives.

Another way of reducing a large number of objective functions is to construct subproblems
with a smaller number of criteria. In [14] it is shown that the weakly efficient set of the convex
MOP with n variables is equal to the union of the efficient sets of subproblems obtained from
the original MOP by selecting at most n+ 1 criteria [14]. In this context, the MOP is said
to be Pareto reducible if its weakly efficient solutions are the efficient solutions for this MOP
itself and also for a subproblem obtained from it by selecting certain objectives [17, 18].

The aim of this paper is to further study MOPs with a large number of objectives, possibly
non-linear, and develop other rational and practical possibilities for reducing the number of
objectives. In contrast to prior studies as above that have concentrated on mathematical
features of the MOP allowing for decrease of the number of objectives, we propose two
reduction approaches exploiting the real-life context in which the MOP is being solved.
The first approach is Principal Component Analysis (PCA), which is based on the data
that is carried by an instance of the MOP. PCA has been incorporated into Evolutionary
Multiobjective Optimization (EMO) methods that solve problems with many objectives.
In [5], PCA is incorporated into the EMO algorithm NSGA-II to reduce the number of
objectives throughout the solution process as populations evolve. This has been reported to
improve performance of EMO algorithms. Other PCA variations, including kernel PCA, have
been implemented in different settings such as in [19]. In addition, PCA has been used to
improve computational performance of the hypervolume based approaches [2] or to provide
visualizations as in [4]. The analysis presented in this report differs from those studies mainly
in its focus on identifying a mapping that would support the user’s understanding of the set
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of Pareto solutions rather than solely using those methods as tools to improve computational
efficiency of existing algorithms. The second approach relies on the cost (utility) function
used by the DM who is involved in a decision-making process of choosing the most preferred
solution from among all Pareto solutions of the MOP. This approach is referred to as the
Active Subspace Approach (ASA) since it builds on the active subspace methodology for
dimension reduction in parameter studies [3].

We envision an environment where some efficient solutions and thus Pareto points have
been obtained by utilizing an optimization algorithm. The available Pareto points are given
as input data that is used to explore the relationships among the objective functions using
the two techniques, PCA and ASA. If the techniques identify a reduction of objectives, we
anticipate that the reduced MOP would be solved instead of the original more complex one.

In this preliminary work, we study the two reduction approaches in more detail to gain
insight into how they might contribute to the effort of MOP complexity reduction in terms of
reducing the number of objective functions. The report is structured as follows. We provide
a mathematical definition of the problem under study and introduce two problem instances
of an MOP we experiment with. In Sections 4.8.2 and 4.8.3 we present the PCA and ASA
approaches respectively, while in Section 4.8.4 we compare the obtained results and discuss
future research directions.

Problem Statement

The MOP of interest is defined as

(MOP) min f(x) = (f1(x), . . . , fp(x))
s.t. x ∈ X

where X ⊆ Rn denotes the feasible set and fi : Rn → R, i = 1, . . . , p are the objective
functions.

We assume the MOP is difficult to solve due to the large number of objectives it contains.
Therefore a goal could be to eliminate some objectives from the MOP and be left with
the same MOP but with a smaller number of objectives, which would call for identifying
redundant objectives, if the MOP contains any. Alternatively, a goal could be to build
another MOP, which is equivalent to the original one in some sense, but having a smaller
number of objectives that are not all a subset of the original ones but perhaps a combination
of them.

Examples

We demonstrate the ideas and work on two instances of the multiobjective knapsack problem
(MOKP). In the MOKP, there are n objects each of which has a positive integer weight wr
and p non-negative integer profits vr. The decision variable xr denotes whether object r is
selected for the knapsack or not. The total weight of selected objects should be within an
integer capacity W > 0.

(MOKP) max
n∑
r=1

vjrxr j = {1, . . . , p} (5)

s.t.
n∑
r=1

wrxr ≤W (6)

xr ∈ {0, 1} r = 1, . . . , n (7)
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Figure 24 Left: Pareto points for the 3D case. Right: Pareto points for the 3D case with
desirability values in color scale (yellow is low, green is high).

The vector of p objective functions where each objective function denotes the total profit
of chosen objects is given in (5). Inequality (6) models the capacity constraint meaning that
the total weight of selected objects has to be less than or equal to the knapsack’s capacity.
The binary constraints complete the model in (7) .

Two instances of the MOKP used in the computational experiments in [10] are selected.
The first instance has p = 3, n = 100 and the second instance has p = 5, n = 20. These are
instances KP_p − 3_n − 100_ins − 10 and KP_p − 5_n − 20_ins − 10 in [9] and from
here on they are referred to as the 3D case and the 5D case, respectively. The Pareto set of
the 3D case contains about 3200 points and of the 5D case about 400 points.

The PCA-based approach does not require any additional information from the DM and
relies on problem data. The ASA can be used when some valuations emulating decision
maker’s preferences are available. In the two cases, this preference/desirability function is

taken as F : x ∈ [0, 1]p →
p∑
i=1

(xi −−1)2, operating on normalized data. The Pareto points

of the 3D case with and without desirability information are depicted in Figure 24.

4.8.2 Principal Component Analysis

In this section the PCA is reviewed, and the resulting approach is presented and applied to
the two cases of the MOKP.

Data Driven Reduction of the Objective Space

PCA [16] is a statistical procedure that is designed to reduce the number of attributes in
a data set without losing its essence. A reduction is achieved by building new components
that are linear combinations of the original attributes. Therefore the main idea is to build a
transformation of the original data set that can be used for exploratory or predictive analysis.
In the Pearson sense, this transformation is built by seeking the sum of least squares that
optimizes the projection of the original data set onto a lower dimensional subspace [20].
In the Hotelling version, components are built iteratively in a way to carry the maximum
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3−objective case
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Figure 25 PCA results for the 3D case. Left: variances. Right: projection of the Pareto set on
the first two principal components.

variance and remain orthonormal to the previously built ones [1]. There are various methods
with different computational aspects to implement PCA. In general, PCA requires computing
the covariance matrix and then finding its eigenvalues and eigenvectors. The magnitude of
the eigenvalues are indicators of the importance, and the associated eigenvectors indicate the
components. Truncation is generally performed, relying on an arbitrary threshold on the
variance explained or on probabilistic interpretations, see, e.g., [15]. PCA is used extensively
in engineering and machine learning for dimensionality reduction.

In Algorithm 1 we give a pseudo code of the procedure we apply to the test cases.

Algorithm 1 Pseudo-code for the PCA-based procedure.
Require: A set of uniformly spread Pareto points y1, . . . ,yK in the objective space, repres-

ented by the K × p matrix Y .
1: Normalize Y . Compute the covariance matrix of Y , denoted as C.
2: Obtain the eigen-decomposition of C.
3: Sort the eigenvectors in the decreasing order of eigenvalues and determine the number of

principal components, k, that suffice to represent Y .
4: Map Y using the first k eigenvectors.

The 3D Example

Algorithm 1 applied to the 3D case produces the matrix of eigenvectors given below, where
every column is referred to as a principal component.

PC1 PC2 PC3
−0.199 −0.891 −0.408
0.710 0.156 −0.687
−0.675 0.426 −0.602


The results given in Figure 25 show that the first two principal components (objectives)

carry most of the variance, and that the projection on the first two components keeps most of
the shape of the 3D Pareto set. This result suggests that the 3D problem can be reformulated
as an MOP with two objective functions using the first two component vectors as weights
that combine the three objective functions with minimal loss of information.
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Figure 26 PCA results for the 5D case. Left: variances. Right: projection of the Pareto set on
the first two principal components.

The 5D Example

When we apply Algorithm 1 to the 5D example, we obtain the following matrix of five
principal components:

PC1 PC2 PC3 PC4 PC5
−0.140 0.753 −0.077 0.547 −0.330
0.498 −0.279 0.315 0.102 −0.7511
−0.554 0.082 0.800 −0.198 −0.089
0.413 0.582 0.052 −0.698 −0.014
−0.505 −0.098 −0.503 −0.406 −0.563


The results depicted in Figure 26 indicate that the fifth component carries very little variance
and therefore can be dropped from consideration in the transformed MOP. In the same figure
we also observe the projection of the points onto two-dimensional subspace determined by
the first two principal components. We note that it may be possible to drop the fourth and
even the third principal component and still not lose the essence of the Pareto set of the
original problem. However, the implications of all these reformulations must be studied and
understood carefully.

4.8.3 Active Subspace Approach

In this section the ASA is reviewed, and the resulting algorithm is presented and applied to
the two cases of the MOKP.

Preference Driven Reduction of the Objective Space

When the decision maker is able to provide a desirability or cost function, which can be
only approximate or estimated by another method, then this additional information can be
taken into account and used in the ASA. We study the transposition of the active subspace
methodology, see [3], to the context of interest in this report.

In parameter studies with a function F : Rp → R, ASA is applied to reduce the dimension
on the parameter space Rp to avoid the curse of dimensionality. The principle is to estimate
the p × p matrix C =

∫
y∈D⊂Rp

∇F (y)∇F (y)>µ(dy), where D is the domain of F and µ

is an appropriate measure on D, usually uniform for bounded domains and Gaussian for
unbounded ones. The eigen-decomposition of C is then computed in the form C = WΛW>,
where Λ is the diagonal matrix of eigenvalues with its columns sorted in the decreasing order
of the eigenvalues, and W is the matrix of eigenvectors.

The first eigenvector is then the direction along which most of the variations of F occur
on average. The last eigenvector determines the direction along which least variations of F
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occur on average. The active subspaces are identified by gaps in the eigenvalues: the larger
the gap between two subsequent eigenvalues, the more important is the subspace defined by
the eigenvectors preceding the gap. The eigenvectors define a rotation of the original space
Rp and consequently the domain of F . The Rp space is reduced by dropping the directions
associated with the smallest eigenvalues [3, 8]. A multi-objective version of the method is
proposed by [22] and could be further explored.

In the many objective context we consider, the Pareto points in Rp are the designs, the
desirability function is F , and a natural choice for µ is the uniform measure on the Pareto
set. In practice, the estimation of C is detailed in Algorithm 2.

Algorithm 2 Pseudo-code for the ASA procedure.
Require: A set of uniformly spread Pareto points y1, . . . ,yK in the objective space, and a

cost/desirability function F : Rp → R
1: Compute the gradient of F at each point of the sample: ∇F (y1), . . . ,∇F (yK)

2: Compute Ĉ = 1
K

K∑
i=1
∇F (yi)∇F (yi)>

3: Obtain the eigen-decomposition of Ĉ
4: Look for gaps in the eigenvalues of Ĉ

We identify two potential applications of the ASA approach. First, when the desirability
function is not known precisely, and second, to drive an optimization algorithm. These
circumstances are further discussed in the following examples.

The 3D Example

For comparison with the components produced by PCA, we give Ĉ, the matrix of eigenvectors
computed by Algorithm 2.

AS1 AS2 AS3
0.576 0.132 0.806
0.588 −0.752 −0.297
0.567 0.645 −0.511


Similar to the PCA example, in the top of Figure 27 we give the weights of each component

in the form of the (log) eigenvalues (left) and the projection of the Pareto points along the
first two directions (right). In this case the first eigenvalue is much larger than the other two,
hence a gap is formed. The projection on the first two components also resembles the shape
of the Pareto set of the original problem. With the additional information carried in F , with
ASA it is also possible to show the variability of F with respect to the active directions. In
Figure 27 bottom left we observe that the F values almost linearly increase along the first
eigenvector. On the contrary, as depicted in Figure 27 bottom right, representing the F
values along the last eigenvector is much less informative, since they vary significantly when
fixing the abscissa. In any case, this analysis provides information on the directions along
which the DM’s desirability varies less, which may be helpful when DM explores solutions of
equivalent desirability when the desirability is not well known.
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Figure 27 ASA results for the 3D case. Top left: log eigenvalues. Top right: projection of the
Pareto set on the first two active directions. Bottom left: values of F along the first active direction.
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24 (right).

The 5D Example

Again, for comparison with the components produced by PCA, we give Ĉ, the matrix of
eigenvectors computed by Algorithm 2.

AS1 AS2 AS3 AS4 AS5
−0.423 0.070 0.678 −0.079 0.591
−0.485 −0.540 −0.576 −0.093 0.365
−0.469 0.499 −0.159 −0.644 −0.300
−0.423 −0.485 0.372 0.145 −0.653
−0.432 0.469 −0.211 0.741 −0.024


From the eigenvalues given in Figure 28 top left, there is a gap between the first and

second eigenvalues, indicating that the first eigenvector is mostly sufficient to represent
the F values, as shown in the bottom left panel in this figure. The projection on the last
eigenvector is again not informative, since the F values vary greatly for the same abscissa.
This is probably related to the simple structure of the F function used in this example, as its
values depend on the radius of the sphere, which is recovered by ASA. Also the projection
on the first two eigenvectors (in Figure 28 top right) is this time different from the one
obtained in Figure 26 top right, which has a V shape. The reasons for this difference and
the implications in terms of visualisation need further research.

4.8.4 Conclusion

Both PCA and ASA are descriptive tools giving insight into the problem at hand. Because
PCA uses the information embedded in the data of the problem, while ASA additionally
uses information external to the problem, the two methods provide different results.
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Figure 28 ASA results for the 5D case. Top left: log eigenvalues. Top right: projection of the
Pareto set on the first two active directions. Bottom left: values of F along the first active direction.
Bottom right: values of F along the second active direction. The color scale is the same as in Figure
24 (right).

Based on this preliminary study, we pose the following tasks for further research:
Investigate the sensitivity of the PCA approach with respect to the number and/or
distribution of the initial Pareto points supplied;
Investigate the sensitivity of ASA with respect to the number and/or distribution of the
initial Pareto points supplied and their costs/desirability;
Establish the relationship between the Pareto set of the reduced problem and the Pareto
set of the original problem using numerical instances;
Study the effect of changing the Pareto cone into another polyhedral cone;
Improve visualization of the projection of the basis directions of the original space as it is
done for PCA with biplots, see e.g., [4].

We believe these investigations would be helpful in defining reducibility of MOPs and assessing
the applicability of the two approaches presented in this report.
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5 Seminar schedule

Monday, January 13, 2020

09:00 – 10:30: Welcome Session
- Welcome and Introduction
- Short presentation of all participants (2 minutes each!)

Coffee Break

11:00 – 12:00: Challenges in Models
- Dimo Brockhoff, Michael Emmerich, Boris Naujoks & Robin Purshouse: MACODA – A
Lorentz Center Workshop on “MAny Criteria Optimization and Decision Analysis”

- Arnaud Liefooghe: On the Difficulty of Multiobjective Combinatorial Optimization
Problems

Lunch

14:00 – 15:00: Challenges in Methodology
- Mickael Binois: Scaling up Multi-Objective Bayesian Optimization
- Sanaz Mostaghim: Recent Advances in Multi-Objective Large Scale Optimisation

15:00 – 15:30: Group Discussion

Coffee Break

16:00 – 16:30: Working Group Formation

16:30 – 18:00: Working Groups

Dinner

19:30: Opening of the art exhibit “Das Loch das von der anderen Seite kam” by the
German artist Lola Sprenger

Tuesday, January 14, 2020

09:00 – 09:30: Many Objectives in Stochastic Settings Chair: Heike Trautmann
- Susan Hunter: Multi-Objective Simulation Optimization: Theory and Practice

09:30 – 10:30: Reporting from Working Groups and Splitting into Smaller
Groups

Coffee Break

11:00 – 12:00: Many Objectives in Stochastic Settings Chair: Christiane Tammer
- Anita Schoebel: Robust Multiobjective Optimization Problems – An Approach with Very
Many Objective Functions

- Gabriele Eichfelder: A Multiobjective Trust Region Method for Expensive and Cheap
Functions
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Lunch

14:00 – 15:30: Small Working Groups

Coffee Break

16:00 – 17:00: Small Working Groups

17:00 – 18:00: Reporting from Small Working Groups
- General discussion and working group adaptations

Wednesday, January 15, 2020

09:00 – 09:30: Problems with Many Variables Chair: Patrick M. Reed
- Georges Fadel: Multi-Objective Topology Design of Functionally Graded Components

09:30 – 10:30: Small Working Groups

Coffee Break

11:00 – 12:00: Small Working Groups

Lunch

14:00: Group Foto (Outside)

14:05 – 15:30: Hiking Trip

Coffee Break

16:00 – 17:00: Small Working Groups

17:00 – 18:00: Participant Announcements

Thursday, January 16, 2020

09:00 – 09:30: Future Directions Chair: Juergen Branke
- Fritz Boekler: Complexity in Multiobjective Optimization
- Dimo Brockhoff: On Set-Indicator-Based Search: Using Single-Objective Solvers for
Multiobjective Problems

- Pascal Kerschke: Chances and Challenges of Multimodality in Multi-Objective Continuous
Optimization Problems

10:30 – 11:00: Coffee Break

11:00 – 12:00: State of Play

Lunch

Time for Individual Discussions (e.g. Offers-and-Needs Market)

15:30 – 16:00: Coffee Break

16:00 – 18:00: Small Working Groups
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Dinner

20:00: Wine-and-Cheese Party (Music room)

Friday, January 17, 2020

09:00 – 10:30: Final Reporting from Working Groups

10:30 – 11:00: Coffee Break

11:00 – 12:00: Closing Session

Lunch

6 Topics of interest for participants for next Dagstuhl seminar

It has evolved as a tradition to jointly discuss future challenges and topics of particular
interest for the EMO and MCDM community during the closing session on Friday. During
this discussion the participants identified the following prevalent topics: Machine learning
and data science (ML & DS) for multiobjective optimization and multiobjective optimization
for ML & DS, neuro sciences, dynamic and adaptive systems, mixed models, ethical issues,
social choice theory, and communicating multiobjective optimization. The organizers will use
these suggestions as the basis for their discussion about possible topics for the next edition
of this seminar series and for the preparation of a proposal for a continuation of the series.

7 Changes in the seminar organization body

7.1 Kathrin Klamroth and Günter Rudolph step down as co-organizers
As part of a continuing effort to renew the organizing board of this series of Dagstuhl seminars,
Kathrin Klamroth and Günter Rudolph step down from the team of organizers, a role that
they have held for three terms of office.

On behalf of all the participants of the seminar, Carlos Fonseca and Margaret Wiecek
would like to express appreciation to Kathrin and Günter for their contributions and leadership
that have been fundamental for the series success.

7.2 Welcome to Richard Allmendinger and Serpil Sayin
We are pleased to announce that our esteemed colleagues, Richard Allmendinger and Serpil
Sayin, have agreed to serve as co-organizers for future editions of this Dagstuhl seminar
series on Multiobjective Optimization. We look forward to collaborating with them in the
near future.



Carlos M. Fonseca, Kathrin Klamroth, Günter Rudolph, and Margaret M. Wiecek 129

Participants

Richard Allmendinger
University of Manchester, GB

Mickaël Binois
INRIA – Valbonne, FR

Fritz Bökler
Universität Osnabrück, DE

Jürgen Branke
University of Warwick, GB

Dimo Brockhoff
INRIA Saclay – Palaiseau, FR

Carlos A. Coello Coello
CINVESTAV – Mexico, MX

Kerstin Dächert
Fraunhofer ITWM –
Kaiserslautern, DE

Matthias Ehrgott
Lancaster University, GB

Gabriele Eichfelder
TU Ilmenau, DE

Michael Emmerich
Leiden University, NL

Georges Fadel
Clemson University –
Clemson, US

José Rui Figueira
IST – Lisbon, PT

Carlos M. Fonseca
University of Coimbra, PT

Andreia P. Guerreiro
IST – Lisbon, PT

Jussi Hakanen
University of Jyväskylä, FI

Susan R. Hunter
Purdue University, US

Hisao Ishibuchi
Southern Univ. of Science and
Technology – Shenzen, CN

Andrzej Jaszkiewicz
Poznan University of
Technology, PL

Pascal Kerschke
Universität Münster, DE

Kathrin Klamroth
Universität Wuppertal, DE

Karl Heinz Küfer
Fraunhofer ITWM –
Kaiserslautern, DE

Arnaud Liefooghe
University of Lille, FR

Manuel López-Ibánez
University of Manchester, GB

Kaisa Miettinen
University of Jyväskylä, FI

Sanaz Mostaghim
Universität Magdeburg, DE

Boris Naujoks
TH Köln, DE

Luís Paquete
University of Coimbra, PT

Patrick M. Reed
Cornell University – Ithaca, US

Enrico Rigoni
ESTECO SpA – Trieste, IT

Günter Rudolph
TU Dortmund, DE

Stefan Ruzika
TU Kaiserslautern, DE

Serpil Sayin
Koc University – Istanbul, TR

Anita Schöbel
Fraunhofer ITWM –
Kaiserslautern, DE

Britta Schulze
Universität Wuppertal, DE

Pradyumn Kumar Shukla
KIT – Karlsruher Institut für
Technologie, DE

Ralph E. Steuer
University of Georgia, US

Michael Stiglmayr
Universität Wuppertal, DE

Christiane Tammer
Martin-Luther-Universität
Halle-Wittenberg, DE

Heike Trautmann
Universität Münster, DE

Tea Tusar
Jozef Stefan Institute –
Ljubljana, SI

Daniel Vanderpooten
University Paris-Dauphine, FR

Margaret M. Wiecek
Clemson University, US

20031


	Executive Summary Carlos M. Fonseca, Kathrin Klamroth, Günter Rudolph, and Margaret M. Wiecek
	Table of Contents
	Overview of Talks
	Scaling up Multi-Objective Bayesian Optimization Mickaël Binois
	Output-sensitive Complexity in Multiobjective Optimization Fritz Bökler
	On Set-Indicator-Based Search: Using Single-Objective Solvers for Multiobjective Problems Dimo Brockhoff
	A Multiobjective Trust Region Method for Expensive and Cheap Functions Gabriele Eichfelder
	Multi-Objective Multi-Scale Optimization with Massively Large Number of Variables: Design of Graded Components Georges Fadel
	Multi-Objective Simulation Optimization: Theory and Practice Susan R. Hunter
	Chances and Challenges of Multimodality in Multi-Objective Continuous Optimization Problems Pascal Kerschke
	On the Difficulty of Multiobjective Combinatorial Optimization Problems Arnaud Liefooghe
	Robust Multiobjective Optimization Problems and an Approach for Solving them Anita Schöbel

	Working groups
	Many Objectives: Characterization and Structure (WG2) Richard Allmendinger, Andrzej Jaszkiewicz, Arnaud Liefooghe, Christiane Tammer
	The Output-sensitive Complexity of the BUCO Problem Fritz Bökler, Matthias Ehrgott, José Rui Figueira, Andreia P. Guerreiro, Kathrin Klamroth, Britta Schulze, and Daniel Vanderpooten
	Computationally Expensive Functions and Large Scale Test Instances Dimo Brockhoff, Gabriele Eichfelder, Carlos M. Fonseca, Susan R. Hunter, Enrico Rigoni, and Michael Stiglmayr
	Performance Indicators C. Coello, H. Ishibuchi, P. Kerschke, B. Naujoks and T. Tušar
	KaKaRaKe – User-Friendly Visualization for Multiobjective Optimization with High-Dimensional Objective Vectors Kerstin Dächert, Kathrin Klamroth, Kaisa Miettinen, and Ralph E. Steuer
	Supporting Problem Solving with Many Decision Makers in Multi-objective Optimization Michael Emmerich, Jussi Hakanen, Patrick Reed, Pradyumn Kumar Shukla, Jürgen Branke, Günter Rudolph, Sanaz Mostaghim, Heike Trautmann
	Turning Objective Functions into Constraints? Or Vice Versa? Georges Fadel, Karl-Heinz Küfer, Manuel López-Ibáñez, Luís Paquete, Stefan Ruzika, and Anita Schöbel
	Data and Preference Driven Objective Space Reduction in Multiobjective Optimization Serpil Sayin, Mickaël Binois, and Margaret M. Wiecek

	Seminar schedule
	Topics of interest for participants for next Dagstuhl seminar
	Changes in the seminar organization body
	Kathrin Klamroth and Günter Rudolph step down as co-organizers
	Welcome to Richard Allmendinger and Serpil Sayin

	Participants

