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The problem of deciding whether a propositional formula is satisfiable (SAT) is one of the most
fundamental problems in computer science, both theoretically and practically. Its theoretical
significance derives from the Cook-Levin Theorem, identifying SAT as the first NP-complete
problem. Since then SAT has become a reference for an enormous variety of complexity
statements, among them the celebrated P vs NP problem: one of seven million-dollar Clay
Millennium Problems. Due to its NP hardness, SAT has been classically perceived as an
intractable problem, and indeed, unless P = NP, no polynomial-time algorithm for SAT
exists.

There are many generalisations of the SAT problem to further logics, including quantified
Boolean formulas (QBFs) and modal and temporal logics. These logics present even harder
satisfiability problems as they are associated with complexity classes such as PSPACE, which

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

SAT and Interactions, Dagstuhl Reports, Vol. 10, Issue 2, pp. 1–18
Editors: Olaf Beyersdorff, Uwe Egly, Meena Mahajan, and Cláudia Nalon

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/20061
http://dx.doi.org/10.4230/DagRep.10.2.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de
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encompasses NP. However, QBFs, modal and temporal logics can express many practically
relevant problems far more succinctly, thus applying to more real-world problems from
artificial intelligence, bioinformatics, verification, and planning.

Due to its practical implications, intensive research has been performed on how to solve
SAT problems in an automated fashion. The last decade has seen the development of
practically efficient algorithms for SAT, QBFs and further logics and their implementation
as solvers, which successfully solve huge industrial instances.

Very often, these developments take place within different communities, e.g., there has
been almost no interaction between the areas of SAT/QBF solving and solving for modal
logics.

The main aim of the proposed Dagstuhl Seminar therefore was to bring together researchers
from proof complexity and proof theory, SAT, MaxSAT and QBF solving, and modal logics so
that they can communicate state-of-the-art advances and embark on a systematic interaction
that will enhance the synergy between the different areas. As such the seminar was the
first workshop (in Dagstuhl and elsewhere) to unite researchers working on both theory and
practice of propositional SAT, QBF, and modal logics. One of the specific aims was to foster
more interaction between these different communities with the goal to transfer the success of
theoretical research on SAT to further logics and SAT problems.

To facilitate such interactions, the seminar included a number of survey talks to introduce
neighbouring communities to the main notions, results, and challenges of the represented
areas. The following survey talks were given during the seminar:

Massimo Lauria: Proof Complexity: A Survey,
Lutz Straßburger: Introduction to Deep Inference,
Vijay Ganesh: Machine Learning and Logic Solvers: The Next Frontier,
Mikoláš Janota: QBF Solving and Calculi: An Overview,
João Marques-Silva: Practical MaxSAT Solving: A Survey,
Cláudia Nalon: Modal Logics: An Overview.

Each of these surveys was accompanied by one or more sessions with contributed talks
dedicated to recent specific results of the field.

The seminar also included an open discussion session on ‘Future Directions of Research’,
where ideas for a closer interaction between theoretical fields such as proof theory and proof
complexity and practical fields such as SAT/QBF and modal solving were discussed.

The organisers believe that the seminar fulfilled their original high goals: most talks were
a great success and many participants reported about the inspiring seminar atmosphere,
fruitful interactions, and a generally positive experience. The organisers and participants
wish to thank the staff and the management of Schloss Dagstuhl for their assistance and
excellent support in the arrangement of a very successful and productive event.



Olaf Beyersdorff, Uwe Egly, Meena Mahajan, and Cláudia Nalon 3

2 Table of Contents

Executive Summary
Olaf Beyersdorff, Uwe Egly, Meena Mahajan, and Cláudia Nalon . . . . . . . . . . 1

Overview of Talks
Hardness Characterisations and Size-Width in QBF Resolution
Joshua Lewis Blinkhorn, Olaf Beyersdorff, and Meena Mahajan . . . . . . . . . . . 5

Tractable QBF via Knowledge Compilation
Florent Capelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

The Equivalences of Refutational QRAT
Leroy Nicholas Chew and Judith Clymo . . . . . . . . . . . . . . . . . . . . . . . . 6

How QBF Expansion Makes Strategy Extraction Hard
Judith Clymo and Leroy Nicholas Chew . . . . . . . . . . . . . . . . . . . . . . . . 6

From QBFs to MALL and Back via Focussing
Anupam Das . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Consistent Query Answering via SAT Solving
Akhil Dixit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Clausal Resolution for Temporal Logics
Clare Dixon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Machine Learning and Logic Solving: the Next Frontier
Vijay Ganesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Semi-Algebraic Proofs, IPS Lower Bounds and the τ -Conjecture: Can a Natural
Number be Negative?
Edward A. Hirsch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Benchmarking Modal Logic Theorem Provers
Ullrich Hustadt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

QBF Solving and Calculi: An Overview
Mikoláš Janota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Simplified and Improved Separation Between Regular and General Resolution by
Lifting
Jan Johannsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Proof Complexity: A Survey
Massimo Lauria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Practical MaxSAT Solving: A Survey
João Marques-Silva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Revisiting Graph Width Measures for CNF-Encodings
Stefan Mengel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Modal Logics: An Overview (Parts I and II)
Cláudia Nalon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Proof and Refutation: An Adventure in Formalisation
Dirk Pattinson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

20061



4 20061 – SAT and Interactions

Dependency Learning for QBF
Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider . . . . . . . . . . . . . . . . . 12

Forgetting-Based Ontology Extraction
Renate Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Spinal Atomic Lambda-Calculus
David R. Sherratt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Computing Unique Strategy Functions by Interpolation
Friedrich Slivovsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Introduction to Deep Inference
Lutz Straßburger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Hard Examples for Common Variable Decision Heuristics
Marc Vinyals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Reversible Pebble Games and the Relation Between Tree-Like and General Resolu-
tion Space
Florian Wörz and Jacobo Torán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Future Directions of Research
Anupam Das . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Vijay Ganesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Ullrich Hustadt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Oliver Kullmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Lutz Straßburger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



Olaf Beyersdorff, Uwe Egly, Meena Mahajan, and Cláudia Nalon 5

3 Overview of Talks

3.1 Hardness Characterisations and Size-Width in QBF Resolution
Joshua Lewis Blinkhorn (Universität Jena, DE), Olaf Beyersdorff (Universität Jena, DE),
and Meena Mahajan (Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY 3.0 Unported license
© Joshua Lewis Blinkhorn, Olaf Beyersdorff, and Meena Mahajan

Main reference Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan: “Hardness Characterisations and Size-Width
Lower Bounds for QBF Resolution”, in Proc. of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’20, p. 209–223, Association for Computing Machinery, 2020.

URL https://doi.org/10.1145/3373718.3394793

We provide a tight characterisation of proof size in resolution for quantified Boolean formulas
(QBF) by circuit complexity. Such a characterisation was previously obtained for a hierarchy
of QBF Frege systems [1], but leaving open the most important case of QBF resolution.
Different from the Frege case, our characterisation uses a new version of decision lists as its
circuit model, which is stronger than the CNFs the system works with. Our decision list
model is well suited to compute countermodels for QBFs. Our characterisation works for
both Q-Resolution and QU-Resolution, which we show to be polynomially equivalent for
QBFs of bounded quantifier alternation.

Using our characterisation we obtain a size-width relation for QBF resolution in the
spirit of the celebrated result for propositional resolution [2]. However, our result is not
just a replication of the propositional relation – intriguingly ruled out for QBF in previous
research [3] – but shows a different dependence between size, width, and quantifier complexity.

References
1 O. Beyersdorff and J. Pich. Understanding Gentzen and Frege systems for QBF. In:

Symposium on Logic in Computer Science (LiCS), pp. 146–155, ACM, 2016.
2 E. Ben-Sasson and A. Wigderson. Short proofs are narrow – resolution made simple.

Journal of the ACM, 48(2):149–169, 2001.
3 O. Beyersdorff, L. Chew, M. Mahajan, and A. Shukla. Are short proofs narrow? QBF

resolution is not so simple. ACM Transactions on Computational Logic, 19(1):1–26, 2018.

3.2 Tractable QBF via Knowledge Compilation
Florent Capelli (Lille I University, FR)

License Creative Commons BY 3.0 Unported license
© Florent Capelli

Joint work of Florent Capelli, Stefan Mengel

We show how knowledge compilation can be used as a tool for solving QBF and more. More
precisely, we show that one can apply quantification on certain data structures used in
knowledge compilation which in combination with the fact that restricted classes of CNF-
formulas can be compiled into these data structures can be used to show fixed-parameter
tractable results for QBF. In particular, we rediscover a result by Hubie Chen [1] on FPT-
tractability of QBF on bounded treewidth CNF and generalise it to aggregation problems
such as counting or enumerating the models of the input quantified CNF.

References
1 H. Chen. Quantified constraint satisfaction and bounded treewidth. In: European Confer-

ence on Artificial Intelligence (ECAI ), pp. 161–165, IOS Press, 2004.
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3.3 The Equivalences of Refutational QRAT
Leroy Nicholas Chew (Carnegie Mellon University – Pittsburgh, US) and Judith Clymo
(University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Leroy Nicholas Chew and Judith Clymo

The solving of Quantified Boolean Formulas (QBF) has been advanced considerably in
the last two decades. In response to this, several proof systems have been put forward to
universally verify QBF solvers. QRAT by Heule et al. is one such example of this and builds
on technology from DRAT, a checking format used in propositional logic. Recent advances
have shown conditional optimality results for QBF systems that use extension variables.
Since QRAT can simulate Extended Q-Resolution, we know it is strong, but we do not know
if QRAT has the strategy extraction property as Extended Q-Resolution does. In this paper,
we partially answer this question by showing that a simple restriction on the reduction rule
in QRAT is enough to show it has strategy extraction (and consequentially is equivalent to
Extended Q-Resolution modulo NP). We also extend equivalence to another system, as we
show an augmented version of QRAT known as QRAT+, developed by Lonsing and Egly, is
in fact equivalent to the basic QRAT. We achieve this by constructing a line-wise simulation
of QRAT+ using only steps valid in QRAT.

3.4 How QBF Expansion Makes Strategy Extraction Hard
Judith Clymo (University of Leeds, GB) and Leroy Nicholas Chew (Carnegie Mellon University
– Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Judith Clymo and Leroy Nicholas Chew

Main reference Leroy Chew, Judith Clymo: “How QBF Expansion Makes Strategy Extraction Hard”, Electronic
Colloquium on Computational Complexity (ECCC), Vol. 26, p. 157, 2019.

URL https://eccc.weizmann.ac.il/report/2019/157

In this talk we show that the QBF proof checking format QRAT (Quantified Resolution
Asymmetric Tautologies) by Heule, Biere and Seidl cannot have polynomial-time strategy
extraction unless P=PSPACE. In our proof, the crucial property that makes strategy
extraction PSPACE-hard for this proof format is universal expansion, even expansion on a
single variable.

While expansion reasoning used in other QBF calculi can admit polynomial time strategy
extraction, we find this is conditional on a property studied in proof complexity theory.
We show that strategy extraction on expansion based systems can only happen when the
underlying propositional calculus has the property of feasible interpolation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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3.5 From QBFs to MALL and Back via Focussing
Anupam Das (University of Birmingham, GB)

License Creative Commons BY 3.0 Unported license
© Anupam Das

In this work we investigate how to extract alternating time bounds from “focussed” proof
systems. Our main result is the obtention of fragments of MALLw (MALL with weakening)
complete for each level of the polynomial hierarchy. In one direction we encode QBF
satisfiability and in the other we encode focussed proof search, and we show that the
composition of the two encodings preserves quantifier alternation, yielding the required result.
By carefully composing with well-known embeddings of MALLw into MALL, we obtain a
similar delineation of MALL formulas, again carving out fragments complete for each level of
the polynomial hierarchy. This refines the well-known results that both MALLw and MALL
are PSPACE-complete.

A key insight is that we have to refine the usual presentation of focussing to account for
deterministic computations in proof search, which correspond to invertible rules that do not
branch. This is so that we may more faithfully associate phases of focussed proof search
to their alternating time complexity. This presentation seems to uncover further dualities
at the level of proof search than usual presentations, so could be of further proof theoretic
interest in its own right.

3.6 Consistent Query Answering via SAT Solving
Akhil Dixit (University of California – Santa Cruz, US)

License Creative Commons BY 3.0 Unported license
© Akhil Dixit

Consistent Query Answering is a rigorous and principled approach to the semantics of queries
posed against inconsistent databases, i.e., the databases that violate one or more integrity
constraints set over its schema. Computing the consistent answers to a fixed conjunctive
query on a given inconsistent database can be a coNP-hard problem, even though every
fixed conjunctive query is efficiently computable on a given consistent database. In this talk,
we will first introduce some database problems, their connections to SAT, and some recent
theoretical results in the literature. In the later half, we will present CAvSAT (Consistent
Answers via SAT), our SAT-based system for consistent query answering.

3.7 Clausal Resolution for Temporal Logics
Clare Dixon (University of Liverpool, GB)

License Creative Commons BY 3.0 Unported license
© Clare Dixon

Joint work of Michael Fisher, Clare Dixon, Martin Peim
Main reference Michael Fisher, Clare Dixon, Martin Peim: “Clausal Temporal Resolution”, ACM Trans. Comput.

Logic, Vol. 2(1), p. 12–56, Association for Computing Machinery, 2001.
URL https://doi.org/10.1145/371282.371311

A clausal temporal resolution calculus has been developed [1] and implemented [2] for linear-
time temporal logics (LTL). This involves translation to a clausal normal form, resolution
rules that apply to formulae holding at the same time moment and a loop resolution rule
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that applies across time moments. This approach has been extended to other temporal
(and modal [6, 5]) logics such as the branching time temporal logic CTL [7] and first-order
temporal logic [3, 4]. We discuss the main elements of this approach applied to LTL and its
extensions to other non-classical logics.

References
1 M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions on

Computational Logic, 2(1):12–56, 2001.
2 U. Hustadt and Boris Konev. TRP++ 2.0: A temporal resolution prover. In: Conference

on Automated Deduction (CADE), pp. 274–278. Springer, 2003.
3 B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising first-order

temporal resolution. Information and Computation, 199(1-2):55–86, 2005.
4 M. Ludwig and U. Hustadt. Implementing a fair monodic temporal prover. AI Communic-

ations, 23(2-3):68–96, 2010.
5 C. Nalon, U. Hustadt, and C. Dixon. KSP: A resolution-based theorem prover for Kn:

architecture, refinements, strategies and experiments. Journal of Automated Reasoning,
64(3):461–484, 2020.

6 Cláudia Nalon, Clare Dixon, and Ullrich Hustadt. Modal resolution: proofs, layers, and
refinements. ACM Transactions on Computational Logic, 20(4):23:1–23:38, 2019.

7 L. Zhang, U. Hustadt, and C. Dixon. A resolution calculus for the branching-time temporal
logic CTL. ACM Transactions on Computational Logic, 15(1):1529–3785, 2014.

3.8 Machine Learning and Logic Solving: the Next Frontier
Vijay Ganesh (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Vijay Ganesh

Over the last two decades, software engineering has witnessed a silent revolution in the
form of Boolean SAT solvers. These solvers are now integral to many analysis, synthesis,
verification, and testing approaches. This is largely due to a dramatic improvement in the
scalability of these solvers vis-a-vis large real-world formulas. What is surprising is that the
Boolean satisfiability problem is NP-complete, believed to be intractable in general, and yet
these solvers easily solve instances containing millions of variables and clauses in them. How
can that be?

In my talk, I will address this question of why SAT solvers are so efficient through the
lens of machine learning as well as ideas from (parameterized) proof complexity. I will argue
that SAT solvers are best viewed as proof systems, composed of prediction engines that
optimize some metric correlated with solver running time. These prediction engines can be
built using ML techniques, whose aim is to structure solver proofs in an optimal way. Thus,
two major paradigms of AI, namely machine learning and logical deduction, are brought
together in a principled way to design efficient SAT solvers. A result of my research is the
MapleSAT solver, that has been the winner of several recent international SAT competitions,
and is now widely used in industry and academia.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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3.9 Semi-Algebraic Proofs, IPS Lower Bounds and the τ -Conjecture:
Can a Natural Number be Negative?

Edward A. Hirsch (Steklov Institute – St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
© Edward A. Hirsch

Joint work of Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, Iddo Tzameret
Main reference Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, Iddo Tzameret: “Semi-Algebraic Proofs,

IPS Lower Bounds, and the τ -Conjecture: Can a Natural Number Be Negative?”, in Proc. of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, p. 54–67,
Association for Computing Machinery, 2020.

URL https://doi.org/10.1145/3357713.3384245

We show that the equivalence between algebraic and semialgebraic proofs represented by
circuits is tightly connected to refuting the bit value principle (BVP):

∑
xi2i = −1. We

relate the complexity of BVP to previously known conjectures in algebraic complexity.

3.10 Benchmarking Modal Logic Theorem Provers
Ullrich Hustadt (University of Liverpool, GB)

License Creative Commons BY 3.0 Unported license
© Ullrich Hustadt

Modal logics are extensions of propositional and first-order logic with operators that are
not truth-functional. The contemporary era of modal logics started in the late 50s and
development of theorem provers started in earnest in the late 80s. Since then there has been
an interest in the evaluation of the practical performance of such provers. I will discuss some
of the approaches that have been used for such evaluations over the past thirty years.

3.11 QBF Solving and Calculi: An Overview
Mikoláš Janota (IST – Lisbon, PT)

License Creative Commons BY 3.0 Unported license
© Mikoláš Janota

Quantified Boolean Formulas (QBFs) enrich the SAT problem with quantifiers taking the
problem from NP to PSPACE. Recent years have seen a number of novel approaches to QBF
solving. At the same time, QBF calculi were developed to match the solvers. However, there
are calculi with no solving counterparts.

In this talk I will overview the two prominent paradigms in QBF solving: conflict-driven
and expansion-based. I will also discuss the connection between solving and the existing
proof systems as well as challenges for future research.

20061
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3.12 Simplified and Improved Separation Between Regular and General
Resolution by Lifting

Jan Johannsen (LMU München, DE)

License Creative Commons BY 3.0 Unported license
© Jan Johannsen

Joint work of Marc Vinyals, Jan Elffers, Jan Johannsen, Jakob Nordström
Main reference Marc Vinyals, Jan Elffers, Jan Johannsen, Jakob Nordström: “Simplified and improved separations

between regular and general resolution by lifting”. 2020 (submitted for publication).

We give a significantly simplified proof of the exponential separation between regular and
general resolution of Alekhnovich et al. (2007) as a general theorem lifting proof depth
to regular proof length in resolution. This simpler proof then allows us to strengthen the
separation further, and to construct families of theoretically very easy benchmarks that are
surprisingly hard for SAT solvers in practice.

3.13 Proof Complexity: A Survey
Massimo Lauria (Sapienza University of Rome, IT)

License Creative Commons BY 3.0 Unported license
© Massimo Lauria

Running a SAT solver on an UNSAT formula produces (implicitly or explicitly) a proof
that the formula is unsatisfiable, usually expressible in an established formal language called
a proof system. This observation leads to study SAT solving methods by looking at the
generated proofs. That is, if an UNSAT formula has no short proof in a given proof system,
the corresponding SAT solvers cannot solve the formula efficiently.

We introduce the area and the methods of proof complexity, that studies the length and
the structure of proofs of UNSAT. In particular we define and discuss Resolution, Polynomial
Calculus, Cutting Planes and DRAT/Extended Resolution, which are the most relevant
proof systems for current SAT solver technology.

Since a SAT solver’s goal is, among other things, to look for proofs as short as possible,
we briefly discuss the complexity of efficiently finding such short proofs.

3.14 Practical MaxSAT Solving: A Survey
João Marques-Silva (University of Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© João Marques-Silva

This talk presents an overview of practical algorithms for maximum satisfiability (MaxSAT)
solving, highlighting the algorithms that are most effective in practice.
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3.15 Revisiting Graph Width Measures for CNF-Encodings
Stefan Mengel (CNRS, CRIL – Lens FR)

License Creative Commons BY 3.0 Unported license
© Stefan Mengel

We consider bounded width CNF-formulas where the width is measured by popular graph
width measures on graphs associated to CNF-formulas. Such restricted graph classes, in
particular those of bounded treewidth, have been extensively studied for their uses in the
design of algorithms for various computational problems on CNF-formulas. Here we consider
the expressivity of these formulas in the model of clausal encodings with auxiliary variables.
We first show that bounding the width for many of the measures from the literature leads
to a dramatic loss of expressivity, restricting the formulas to those of low communication
complexity. We then show that the width of optimal encodings with respect to different
measures is strongly linked: there are two classes of width measures, one containing primal
treewidth and the other incidence cliquewidth, such that in each class the width of optimal
encodings only differs by constant factors. Moreover, between the two classes the width
differs at most by a factor logarithmic in the number of variables. Both these results are
in stark contrast to the setting without auxiliary variables where all width measures we
consider here differ by more than constant factors and in many cases even by linear factors.

3.16 Modal Logics: An Overview (Parts I and II)
Cláudia Nalon (University of Brasilia, BR)

License Creative Commons BY 3.0 Unported license
© Cláudia Nalon

Joint work of Clare Dixon, Ullrich Hustadt

The first talk was a gentle introduction to modal logics, focusing on the basic multimodal
logic Kn. We have discussed the different reasoning tasks for this class of logics, local and
global, and their complexity. We have also introduced two different calculi for dealing with
reasoning in modal settings: tableaux and resolution.

The second talk was dedicated to the layered resolution calculus for local reasoning for
Kn. The calculus is inspired by model-theoretical results concerning satisfiability in Kn:
models can be restricted to finite tree-like structures and the satisfiability of a (sub)formula
depends only of the subtree in which such a subformula occurs. Clauses are labelled by the
height (the modal depth) they occur in such a tree. Inference rules can only be applied
to clauses whose labels unify. This restricts the candidates for resolution whilst retaining
completeness. Experimental results show that the theorem-prover which implements the
calculus, KSP, works well on problems with high modal depth and uniform distribution of
propositional symbols over the different depths.

References
1 Cláudia Nalon, Clare Dixon, and Ullrich Hustadt. Modal resolution: Proofs, layers, and

refinements. ACM Transactions on Computational Logic, 20(4):23:1–23:38, 2019.
2 C. Nalon, U. Hustadt, and C. Dixon. KSP: A resolution-based theorem prover for Kn:

architecture, refinements, strategies and experiments. Journal of Automated Reasoning,
64(3):461–484, 2020.
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3.17 Proof and Refutation: An Adventure in Formalisation
Dirk Pattinson (Australian National University – Canberra, AU)

License Creative Commons BY 3.0 Unported license
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In this talk, we take the point of view that a simple ‘yes/no’ answer is not a sufficient output
of an automated reasoning procedure or implementation. On top of the answer, we demand
verifiable evidence, either for provability or refutability of a formula. Clearly, a (formal)
proof satisfies this requirement in the case of a provable formula. Countermodels can be used
to give evidence of non-provability, but suffer drawbacks: First, there may not be an agreed
upon notion of semantics, and second, the mathematical details of countermodels vary widely
depending on the underlying logic, while proofs have a very uniform representation.

For this reason, we complement the syntactic notion of proof with a syntactic (coinductively
defined) notion of refutation. Our main theorem then states that ’every sequent either has
a proof or a refutation’ (terms and conditions apply). We speak both on the notion of
refutation in general, as well as highlight the challenges encountered in fully verifying the
above theorem.

3.18 Dependency Learning for QBF
Tomáš Peitl (Universität Jena, DE), Friedrich Slivovsky (TU Wien, AT), and Stefan Szeider

License Creative Commons BY 3.0 Unported license
© Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider

Main reference Tomás Peitl, Friedrich Slivovsky, Stefan Szeider: “Dependency Learning for QBF”, J. Artif. Intell.
Res., Vol. 65, pp. 180–208, 2019.

URL http://dx.doi.org/10.1613/jair.1.11529

Quantified Boolean Formulas (QBFs) can be used to succinctly encode problems from
domains such as formal verification, planning, and synthesis. One of the main approaches to
QBF solving is Quantified Conflict Driven Clause Learning (QCDCL). By default, QCDCL
assigns variables in the order of their appearance in the quantifier prefix so as to account for
dependencies among variables. Dependency schemes can be used to relax this restriction
and exploit independence among variables in certain cases, but only at the cost of nontrivial
interferences with the proof system underlying QCDCL.

We introduce dependency learning, a new technique for exploiting variable independence
within QCDCL that allows solvers to learn variable dependencies on the fly. The resulting
version of QCDCL enjoys improved propagation and increased flexibility in choosing variables
for branching while retaining ordinary (long-distance) Q-resolution as its underlying proof
system. We show that dependency learning can achieve exponential speedups over ordinary
QCDCL. Experiments on standard benchmark sets demonstrate the effectiveness of this
technique.
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3.19 Forgetting-Based Ontology Extraction
Renate Schmidt (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
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Joint work of Jieying Chen, Ghadah Alghamdi, Renate A. Schmidt, Dirk Walther, Yongsheng Gao
Main reference Jieying Chen, Ghadah Alghamdi, Renate A. Schmidt, Dirk Walther, Yongsheng Gao: “Ontology

Extraction for Large Ontologies via Modularity and Forgetting”, in Proc. of the 10th International
Conference on Knowledge Capture, K-CAP 2019, Marina Del Rey, CA, USA, November 19-21,
2019, pp. 45–52, ACM, 2019.

URL https://doi.org/10.1145/3360901.3364424

Ontology extraction is an essential operation for the reuse, creation, evaluation, curation,
decomposition, integration and general use of ontologies. A method with higher precision is
forgetting, also known as uniform interpolation. Forgetting creates a compact representation
of a part of the information contained in an ontology that preserves the underlying logical
definitions of the specified terms (the interpolation signature) by hiding the remaining terms.
This allows users to focus exactly on the information they are interested in.

After an introduction of the idea of forgetting in contrast to modularisation, another
ontology extraction method, the presentation gave an overview of recent and current research
on developing practical forgetting tools for description logic based ontologies. We also
discussed the application of these tools to SNOMED CT, a comprehensive ontology of
standardised medical content used in health care systems across several countries.

3.20 Spinal Atomic Lambda-Calculus
David R. Sherratt (Universität Jena, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Heijltjes, Willem; Gundersen, Tom; Parigot, Michel
Main reference David Sherratt: “A lambda-calculus that achieves full laziness with spine duplication”, 2019.

URL http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787527

We present the spinal atomic lambda-calculus, a typed lambda-calculus with explicit sharing
and atomic duplication that achieves spinal full laziness: duplicating only the direct paths
between a binder and bound variables is enough for beta reduction to proceed. We show this
calculus is the result of a Curry–Howard style interpretation of a deep-inference proof system,
and prove that it has natural properties with respect to the lambda-calculus: confluence and
preservation of strong normalisation.

References
1 David Rhys Sherratt. A Lambda-Calculus that achieves full laziness with spine duplication.

PhD thesis, University of Bath, UK, 2019.
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3.21 Computing Unique Strategy Functions by Interpolation
Friedrich Slivovsky (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Friedrich Slivovsky

We present a new semantic gate extraction technique for propositional formulas based on
interpolation. While known gate detection methods are incomplete and rely on pattern
matching or simple semantic conditions, this approach can detect any definition entailed
by an input formula. As an application, we consider the problem of computing unique
strategy functions from Quantified Boolean Formulas (QBFs) and Dependency Quantified
Boolean Formulas (DQBFs). Experiments with a prototype implementation demonstrate
that functions can be efficiently extracted from formulas in standard benchmark sets, and
that many of these definitions remain undetected by syntactic gate detection. We turn this
into a preprocessing technique by substituting unique strategy functions for input variables
and test solver performance on the resulting instances. Compared to syntactic gate detection,
we see a significant increase in the number of solved 2QBF instances, as well as modest
increases for general QBF and DQBF.

3.22 Introduction to Deep Inference
Lutz Straßburger (INRIA Saclay – Île-de-France, FR)

License Creative Commons BY 3.0 Unported license
© Lutz Straßburger

In the first half of the talk I gave a rough overview over the main research results of deep
inference of the last 20 years. I discussed atomicity and locality of inference rules, I presented
proof systems for classical logic and linear logic, and I showed how cut elimination can be
proved using the techniques of decomposition and splitting. A good starting point for reading
about this subject are the lecture notes for a course on deep inference given at ESSLLI 2019
(to be found at https://hal.inria.fr/hal-02390267). More information on deep inference can
be found on the deep inference webpage (http://alessio.guglielmi.name/res/cos/index.html)
maintained by Alessio Guglielmi.

In the second half of the talk I discussed proof systems for intuitionistic modal logics
using nested sequents. I also presented the prover MOIN, for which a system description is
available at https://hal.inria.fr/hal-02457240, where also more references on nested sequent
proof systems can be found.
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3.23 Hard Examples for Common Variable Decision Heuristics
Marc Vinyals (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
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Main reference Marc Vinyals: “Hard Examples for Common Variable Decision Heuristics”, in Proc. of the The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pp. 1652–1659, AAAI Press, 2020.

URL https://aaai.org/ojs/index.php/AAAI/article/view/5527

The CDCL algorithm, which is nowadays the top-performing algorithm to solve SAT in
practice, is polynomially equivalent to resolution when we view it as a proof system, that is
we replace some of its heuristics by nondeterministic choices.

In this talk we show that this is no longer true if we leave the heuristics in place; more
precisely we build a family of formulas that have resolution proofs of polynomial size but
require exponential time to decide in CDCL with a class of variable decision heuristics that
includes the most common heuristics such as VSIDS.

3.24 Reversible Pebble Games and the Relation Between Tree-Like
and General Resolution Space

Florian Wörz (Universität Ulm, DE) and Jacobo Torán (Universität Ulm, DE)

License Creative Commons BY 3.0 Unported license
© Florian Wörz and Jacobo Torán

Joint work of Jacobo Torán, Florian Wörz
Main reference Jacobo Torán, Florian Wörz: “Reversible Pebble Games and the Relation Between Tree-Like and

General Resolution Space”, in Proc. of the 37th International Symposium on Theoretical Aspects
of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, LIPIcs, Vol. 154,
pp. 60:1–60:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2020.60

We show a new connection between the space measure in tree-like resolution and the reversible
pebble game in graphs. Using this connection we provide several formula classes for which
there is a logarithmic factor separation between the space complexity measure in tree-like
and general resolution. We show that these separations are almost optimal by proving upper
bounds for tree-like resolution space in terms of general resolution clause and variable space.
In particular we show that for any formula F , its tree-like resolution is upper bounded by
space(π) log time(π), where π is any general resolution refutation of F . This holds considering
as space(π) the clause space of the refutation as well as considering its variable space. For
the concrete case of Tseitin formulas we are able to improve this bound to the optimal bound
space(π) logn, where n is the number of vertices of the corresponding graph.

4 Future Directions of Research

The seminar featured a session in which participants were invited to give a short informal
presentation on the theme directions of future research. Five partipants contributed present-
ations, summarised below.
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4.1 Anupam Das
The community might like to explore what proof theory can give to solving, because techniques
developed in the context of proof theory could have a much wider applicability. For instance,
some solvers dealing with the logic K5 translate the formulas to QBF, while preserving some
semantic meaning. Performance is heavily dependent on the encoding used. Instead, could
one use proof-theoretic techniques like focussing, deep inference, or graph-based concepts?
As long as these techniques preserve some measures of the formulas, it may be possible to
transfer algorithmic bounds. A somewhat related question would ask what the appropriate
measures may be.

4.2 Vijay Ganesh
Proof complexity theorists usually focus on proving lower bounds for various proof systems.
However, we have a very poor understanding of why solvers perform well in practice. One
approach to deepen this understanding is to establish some parametric upper bounds. The
choice of parameters for such a study should be informed by practice. Analysing a solver
directly may be hard, but it may be easier to establish a polynomial equivalence to algorithms
that establish such parametric upper bounds.

An example in another domain, where theoretical tools give a good explanation for why an
algorithm that has bad worst-case behaviour nonetheless behaves extremely well in practice,
is the smoothed analysis framework applied to the Simplex algorithm.

4.3 Ullrich Hustadt
There exists a plethora of logics – modal logics, description logics, and so on – each with its
own calculi. A typical goal is to extend the reach of Resolution to these logics. As the calculi
often arise from philosophy, it is not clear a priori that they all merit such a study. Therefore,
it is natural to consider which logics amongst this huge zoo are really worth exploring. The
community may then focus its attention there, since it is not large enough to explore them
all.

4.4 Oliver Kullmann
Despite great effort, the use of SAT solvers – particularly in the solution of hard problems via
schemes like cube-and-conquer – remains poorly understood. An informal “psychoanalysis”
could partition the workflow into three phases:
1. the entirely predictable part, based on mathematical truths,
2. the intermediate part, lookahead using statistical tools,
3. the almost utterly unpredictable part – CDCL solvers lie here, and there seems to be

some unstable chaos.
Restrictions by partial assignments take us outwards, from families that can be handled
within phase 1 alone, to versions that are more chaotic or unstable. How can we explain this
phenomenon and put it to use?
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4.5 Lutz Straßburger
There are many very different proof systems, and proofs in a specific system are heavily
tied to the specifics of the proof system. And yet, (almost) all proofs rely on a common
mathematical underpinning. Can we seek proofs independent of the proof system? That is,
can we speak of proofs independent of representations in specific proof systems? We want to
somehow pinpoint the essential mathematical content of a proof, which will of course depend
on the logic, but can it be independent of the proof system? For classical propositional logic,
for example, combinatorial proofs is a candidate approach.
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