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Abstract
Composite Event Recognition (CER) refers to the activity of detecting patterns in streams of
continuously arriving “event” data over, possibly geographically, distributed sources. CER is
key in Big Data applications that require the processing of such event streams to obtain timely
insights and to implement reactive and proactive measures. Examples include the recognition
of emerging stories and trends on the Social Web, traffic and transport incidents in smart cities,
and epidemic spread.

Numerous CER languages have been proposed in the literature. While these systems have
a common goal, they differ in their data models, pattern languages and processing mechanisms,
resulting in heterogeneous implementations with fundamentally different capabilities. Moreover,
we lack a common understanding of the trade-offs between expressiveness and complexity, and a
theory for comparing the fundamental capabilities of CER systems. As such, CER frameworks
are difficult to understand, extend and generalise. It is unclear which of the proposed approaches
better meets the requirements of a given application. Furthermore, the lack of foundations
makes it hard to leverage established results – from automata theory, temporal logics, etc – thus
hindering scientific and technological progress in CER.

The objective of the seminar was to bring together researchers and practitioners working in
Databases, Distributed Systems, Automata Theory, Logic and Stream Reasoning; disseminate
the recent foundational results across these fields; establish new research collaborations among
these fields; thereby start making progress towards formulating such foundations.
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1 Executive Summary

Alessandro Margara (Polytechnic University of Milan, IT)
Alexander Artikis (University of Piraeus, GR & NCSR Demokritos, GR)
Thomas Eiter (TU Wien, AT)
Stijn Vansummeren (Université Libre de Bruxelles, BE)

License Creative Commons BY 3.0 Unported license
© Alessandro Margara, Alexander Artikis, Thomas Eiter, and Stijn Vansummeren

This report contains the program and outcomes of Dagstuhl Seminar 20071 on “Foundations
of Composite Event Recognition” held at Schloss Dagstuhl, Leibniz Center for Informatics,
during February 9-14, 2020.

Composite Event Recognition (CER for short) refers to the activity of detecting patterns
in streams of continuously arriving “event” data over, possibly geographically, distributed
sources. CER is a key ingredient of many contemporary Big Data applications that require
the processing of such event streams in order to obtain timely insights and implement reactive
and proactive measures. Examples of such applications include the recognition of attacks in
computer network nodes, human activities on video content, emerging stories and trends
on the Social Web, traffic and transport incidents in smart cities, error conditions in smart
energy grids, violations of maritime regulations, cardiac arrhythmia, and epidemic spread.
In each application, CER allows to make sense of streaming data, react accordingly, and
prepare for counter-measures.

CER systems become increasingly important as we move from an information economy to
an “intelligent economy”, where it is not only the accessibility to information that matters but
also the ability to analyse, reason, and act upon information, creating competitive advantage
in commercial transactions, enabling sustainable management of communities, and promoting
appropriate distribution of social, healthcare, and educational services. Current businesses
tend to be unable to make sense of the amounts of data that are generated by the increasing
number of distributed data sources that are becoming available daily, and rely more and more
on CER. As an example, traffic management in smart cities requires the analysis of data
from an increasing number of sensors, both mobile (mounted on public transport vehicles and
private cars) and stationary (installed on intersections). Using such data streams, CER may
be used to detect or even forecast traffic congestions, thus allowing for proactively changing
traffic light policies and speed limits, with the aim of reducing carbon emissions, optimising
public transportation, and improving the quality of life and productivity of commuters. As
another example, in smart energy grids, streaming information from power grid elements
sensors, end-user devices, and diverse other sources such as weather forecasts and event
schedules can be combined through CER to improve the grid efficiency and meet the rapidly
increasing electricity demand.

Numerous CER systems and languages have been proposed in the literature. While
these systems have a common goal, they differ in their architectures, data models, pattern
languages, and processing mechanisms, resulting in many heterogeneous implementations
with sometimes fundamentally different capabilities. Their comparative assessment is further
hindered by the fact that they have been developed in different communities, each bringing
in their own terminology and view of the problem.

Moreover, the established CER literature focuses on the practical system aspects of CER.
As a result, little work has been done on its formal foundations. Consequently, and in contrast
to the situation for more traditional fields in Computer Science, we currently lack a common
understanding of the trade-offs between expressiveness and complexity in the design of CER
systems, as well as an established theory for comparing their fundamental capabilities.
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As such, currently, CER frameworks are difficult to understand, extend and generalise.
It is unclear which of the proposed approaches better meets the requirements of a given
application domain, in terms of capturing the intended meaning of the composite events of
interest, as well as detecting them efficiently. Furthermore, the lack of foundations makes
it hard to leverage established results – from automata theory, temporal logics, etc – thus
hindering scientific and technological progress in CER.

At the same time, recent years have witnessed increased activities in diverse fields of
Computer Science on topics that are related to CER: Inductive and deductive reasoning over
streaming data, a field known as Stream Reasoning in Artificial Intelligence. Theoretical
complexity results related to processing database queries under updates, associated with
advances in Incremental View Maintenance in Database Research. Expressiveness and
complexity of logics in the dynamic setting, in Logic research.

The seminar brought together 39 researchers and practitioners working in domains that
are strictly related to CER. The first days of the seminar mainly focused on tutorials and
talks that gave an overview of the approaches, techniques, methodologies, and vocabularies
used in different communities to refer to CER problems. In particular, the following tutorials
were presented:

Applications and requirements for CER
CER in data management
CER in distributed event-based systems
Stream reasoning
CER in logic and AI
CER in business process management

The seminar continued by alternating sessions with focused research talks and group
discussions on the following topics, that the participants identified as the most relevant for
future investigations and research efforts:

CER language formalisms
Towards a common framework for CER expressiveness and complexity
Evaluation strategies: parallel and distributed processing
Uncertainty in CER
Pattern induction and composite event forecasting
Benchmarking

The final sessions of the seminar focused on reporting the results of the group discussions
and in planning follow-up activities, including co-organized workshops and events, joint
publications, and projects.

20071
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3 Overview of Talks

3.1 Complex Event Forecasting
Elias Alevizos (NCSR Demokritos – Athens, GR)

License Creative Commons BY 3.0 Unported license
© Elias Alevizos

Complex Event Processing (CEP) systems have appeared in abundance during the last two
decades. Their purpose is to detect in real-time interesting patterns upon a stream of events
and to inform an analyst for the occurrence of such patterns in a timely manner.However,
there is a lack of methods for forecasting when a pattern might occur before such an occurrence
is actually detected by a CEP engine. We present Wayeb, a framework that attempts to
address the issue of Complex Event Forecasting. Wayeb employs symbolic automata as a
computational model for pattern detection and variable-order Markov models for deriving a
probabilistic description of a symbolic automaton.

References
1 Elias Alevizos, Alexander Artikis, Georgios Paliouras. Event Forecasting with Pattern

Markov Chains. DEBS, 2017.
2 Elias Alevizos, Alexander Artikis, Georgios Paliouras. Wayeb: a Tool for Complex Event

Forecasting. LPAR, 2018.

3.2 Stream Logic
François Bry (LMU München, DE)

License Creative Commons BY 3.0 Unported license
© François Bry

Joint work of François Bry, Thomas Prokosch

Stream Logic is an attempted formalisation of data streams in predicate logic aimed at
enhancing logic programming with streams of (possibly complex) events. The talk motivates
Stream Logic with applications, sketches a syntax and a semantics based on a model theory,
and relatesStream Logic to meta-programming and non-well-founded sets.

3.3 Complex Event Recognition in Logic and AI: A Tutorial
Diego Calvanese (Free University of Bozen-Bolzano, IT)

License Creative Commons BY 3.0 Unported license
© Diego Calvanese

In this tutorial we discuss different frameworks, formalisms, and languages, that have
been developed within the communities of knowledge representation and reasoning, formal
verification, and also database theory and that are in one way or another relevant for the
area of Complex Event Recognition (CER). Such formalisms typically rely on combining
variants of temporal logics with logics used in knowledge representation and reasoning, and
such combination poses challenges with respect to both semantics and computability. The
challenges have been addressed by adopting a variety of techniques and by making various
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assumptions, but the area is still very fragmented and there is no unifying or consolidated
framework. The aim of the presentation is to identify opportunities for collaboration and for
cross-fertilization with the CER community.

3.4 Whole-system Provenance and Composite Event Recognition
David Eyers (University of Otago, NZ)

License Creative Commons BY 3.0 Unported license
© David Eyers

Joint work of Thomas F. J.-M. Pasquier, Jatinder Singh, David M. Eyers, Jean Bacon
Main reference Thomas F. J.-M. Pasquier, Jatinder Singh, David M. Eyers, Jean Bacon: “Camflow: Managed

Data-Sharing for Cloud Services”, IEEE Trans. Cloud Computing, Vol. 5(3), pp. 472–484, 2017.
URL https://doi.org/10.1109/TCC.2015.2489211

Whole-system provenance is becoming increasingly practical as a means to track and audit the
way in which data travels throughout computer systems. For example, Pasquier’s CamFlow
provenance system is implemented as a Linux Security Module so as to facilitate collecting
fine-grained provenance data across both kernel and user-space. However, many forms of
provenance query risk rapidly generating unmanageably large volumes of logging information,
much of which is typically of little value. The CamQuery extension to CamFlow provides
means to facilitate run-time, in-kernel data filtering, involving the detection of patterns of
interest within the graph data that is generated during provenance tracking. CamQuery
already achieves some forms of composite event recognition (CER), but there is significant
potential to integrate CER approaches more directly into CamQuery, to ease querying
whole-system provenance.

3.5 Distributed Data Streaming and the Power of Geometry
Minos Garofalakis (Technical University of Crete – Chania, GR)

License Creative Commons BY 3.0 Unported license
© Minos Garofalakis

Effective Big Data analytics pose several difficult challenges for modern data management
architectures. One key such challenge arises from the naturally streaming nature of big data,
which mandates efficient algorithms for querying and analyzing massive, continuous data
streams (that is, data that is seen only once and in a fixed order) with limited memory and
CPU-time resources. In addition to memory- and time-efficiency concerns, the inherently
distributed nature of such applications also raises important communication-efficiency issues,
making it critical to carefully optimize the use of the underlying network infrastructure. In
this talk, we introduce the distributed data streaming model, and discuss techniques for
tracking complex queries over distributed streams that rely on novel insights from convex
geometry. We also outline possible research directions in this space.

20071

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1109/TCC.2015.2489211
https://doi.org/10.1109/TCC.2015.2489211
https://doi.org/10.1109/TCC.2015.2489211
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


26 20071 – Foundations of Composite Event Recognition

3.6 Towards streaming evaluation of queries with correlation in
complex event processing

Alejandro J. Grez (PUC – Santiago de Chile, CL)

License Creative Commons BY 3.0 Unported license
© Alejandro J. Grez

Joint work of Alejandro J. Grez, Riveros, Cristian
Main reference Alejandro Grez, Cristian Riveros, Martín Ugarte: “A Formal Framework for Complex Event

Processing”, in Proc. of the 22nd International Conference on Database Theory, ICDT 2019,
March 26-28, 2019, Lisbon, Portugal, LIPIcs, Vol. 127, pp. 5:1–5:18, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

URL https://doi.org/10.4230/LIPIcs.ICDT.2019.5

Complex event processing (CEP) has gained a lot of attention for evaluating complex patterns
over high-throughput data streams. Recently, new algorithms for the evaluation of CEP
patterns have emerged with strong guarantees of efficiency, i.e. constant update-time per
tuple and constant-delay enumeration. Unfortunately, these techniques are restricted for
patterns with local filters, limiting the possibility of using joins for correlating the data of
events that are far apart.

In this work, we embark on the search for efficient evaluation algorithms of CEP patterns
with joins. We start by formalizing the so-called partition-by operator, a standard operator
in data stream management systems to correlate contiguous events on streams. Although this
operator is a restricted version of a join query, we show that partition-by (without iteration)
is equally expressive as hierarchical queries, the biggest class of full conjunctive queries that
can be evaluated with constant update-time and constant-delay enumeration over streams.
To evaluate queries with partition-by we introduce an automata model, called chain complex
event automata (chain-CEA), an extension of complex event automata that can compare data
values by using equalities and disequalities. We show that this model admits determinization
and is expressive enough to capture queries with partition-by. More importantly, we provide
an algorithm with constant update time and constant delay enumeration for evaluating
any query definable by chain-CEA, showing that all CEP queries with partition-by can be
evaluated with these strong guarantees of efficiency.

3.7 Event Stream Processing with BeepBeep
Sylvain Hallé (University of Quebec at Chicoutimi, CA)

License Creative Commons BY 3.0 Unported license
© Sylvain Hallé

Main reference Sylvain Hallé: “Event Stream Processing with BeepBeep 3: Log Crunching and Analysis Made
Easy”. Presses de l’Université du Québec, ISBN 978-2-7605-5101-5, 332 pages, 2018.

BeepBeep is simple general purpose event stream processing library. This talk will give a
short introduction to the system, and highlight some of its distinguishing features. BeepBeep
is based on the concept of processors, which are simple, stateful units of computation that
can be composed to perform complex processing chains. These chains are created using
Java code, but can usually be represented graphically using standardized pictograms, as in
Figure 1.

In particular, in this presentation we have shown how it is possible to write Domain-
Specific Languages in a few lines of code, and how BeepBeep integrates some elements of
explainability and traceability for its computed results.
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Figure 1 Example BeepBeep chain.

3.8 Probabilistic and Predictive Stream Reasoning
Fredrik Heintz (Linköping University, SE)

License Creative Commons BY 3.0 Unported license
© Fredrik Heintz

This talk describes stream reasoning in ProbSTL which is an extension of Signal Temporal
Logic (STL) to deal with stochastic signals and predictions. This allows the logic to make
probabilistic, introspective and anticipatory statements about uncertain continuous signals,
which is very important for monitoring of autonomous systems operating in the physical
world. The presentation is based on the paper Incremental Reasoning in Probabilistic Signal
Temporal Logic by Mattias Tiger and Fredrik Heintz published in the International Journal
of Approximate Reasoning 2020.

3.9 Stream Reasoning: A Tutorial
Fredrik Heintz (Linköping University, SE)

License Creative Commons BY 3.0 Unported license
© Fredrik Heintz

Stream reasoning is the research area that deals with the problem of performing incremental
reasoning over rapidly changing information. In this tutorial we give an overview of the area
including the most relevant approaches such as C-SPARQL, CQELS, EP-SPARQL, LARS,
Laser, Ticker, BigSR, and MTL-based stream reasoning.

3.10 Semantic Stream Reasoning For Online Visual Sensor Fusion
Danh Le Phuoc (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Danh Le Phuoc

Driven by deep neural networks (DNN), the recent development of computer vision makes
visual sensors such as stereo cameras and Lidars becoming ubiquitous in autonomous
cars, robotics and traffic monitoring. However, due to certain operational constraints, a
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processing pipeline like object tracking has to hard-wire an engineered set of DNN models to
a fixed processing logic. To remedy this problem, we propose a novel semantic reasoning
approach that uses stream reasoning programmes for representing commonsense and domain
knowledge using non-monotonic rules in Answer Set Programming (ASP) where uncertainty
of probabilistic inference operations is incorporated by weights. Our approach is realised by
a dynamic reasoning framework which enables probabilistic planning to adapt the sensor
fusion pipeline under operational constraints expressed in ASP. Via this talk, we will share
our current implementation experience and experiment results together with our visions
towards open challenges on this research direction.

3.11 Distributed Event-Based Systems: A Tutorial
Ruben Mayer (TU München, DE) and Avigdor Gal (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Ruben Mayer and Avigdor Gal

Distributed event-based systems offer a well-established way to gain high-level insights from
low-level streaming data in real-time. These systems may come in different flavors and stem
from different communities, yet they share common principles and concepts. In this tutorial,
we overview these common concepts. In addition, we focus on the concept of windowing, the
notion of time and the trade-off between latency and accuracy.

3.12 Streaming Graph Partitioning
Ruben Mayer (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Ruben Mayer

Joint work of Ruben Mayer, Kamil Orujzade, Hans-Arno Jacobsen
Main reference Ruben Mayer, Kamil Orujzade, Hans-Arno Jacobsen: “2PS: High-Quality Edge Partitioning with

Two-Phase Streaming”, CoRR, Vol. abs/2001.07086, 2020.
URL https://arxiv.org/abs/2001.07086

Graph partitioning is an important preprocessing step to distributed graph processing. In
edge partitioning, the edge set of a given graph is split into k equally-sized partitions,
such that the replication of vertices across partitions is minimized. Streaming is a viable
approach to partition graphs that exceed the memory capacities of a single server. The graph
is ingested as a stream of edges, and one edge at a time is immediately and irrevocably
assigned to a partition based on a scoring function. However, streaming partitioning suffers
from the uninformed assignment problem: At the time of partitioning early edges in the
stream, there is no information available about the rest of the edges. As a consequence, edge
assignments are often driven by balancing considerations, and the achieved replication factor
is comparably high. In this paper, we propose 2PS, a novel two-phase streaming algorithm
for high-quality edge partitioning. In the first phase, vertices are separated into clusters by a
lightweight streaming clustering algorithm. In the second phase, the graph is re-streamed
and edge partitioning is performed while taking into account the clustering of the vertices
from the first phase. Our evaluations show that 2PS can achieve a replication factor that is
comparable to heavy-weight random access partitioners while inducing orders of magnitude
lower memory overhead.
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3.13 Interval Temporal Logic
Angelo Montanari (University of Udine, IT)

License Creative Commons BY 3.0 Unported license
© Angelo Montanari

Joint work of Laura Bozzelli, Adriano Peron, Pietro Sala, and many others

In the talk, I give a gentle introduction to interval temporal logic. I start with a short
account of its distinctive features as well as of interval modalities. Then, I present the general
picture of the satisfiability and model checking problems for interval temporal logic. Links
to more detailed presentations are provided for interested people. Next, I briefly compare
the expressiveness of interval temporal logic (in model checking) with that of LTL, CTL,
and CTL*, and describe a generalization of the proposed model checking framework with
regular expressions. In the last part of the talk, I outline recent and ongoing research work.
In particular, I introduce and briefly compare interval temporal logics of prefixes, suffixes,
and infixes, suggest possible ways of going beyond finite Kripke structures in model checking,
and illustrate the problem of model checking a single interval model. I conclude the talk by
discussing the appropriateness of interval temporal logic for composite event recognition.

3.14 Modular Materialisation and Incremental Reasoning
Boris Motik (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Boris Motik

Maintenance of materialisation of Datalog programs plays a key role in many applications
of stream reasoning. In our recent work in the KRR group at Oxford University, we have
developed and thoroughly evaluated a number of algorithms that can efficiently address this
problem on a range Datalog programs commonly found in practice. Despite this progress,
certain programs can still be hard for incremental materialisation; for example, programs
containing rules that axiomatise a binary predicate as transitive can be hard.

In this talk, I will present an outline of some of our recent work on modular materialisation
and incremental maintenance of Datalog programs. We combine standard seminaive Datalog
evaluation with custom modules that implement the semantics of a program subset in an
arbitrary (presumably more efficient) way. We thus obtain a general framework that can
integrate specialised algorithms (e.g., algorithms for the maintenance of transitive closure)
with general Datalog reasoning. I will present the results of a performance evaluation showing
the benefits of such a hybrid approach.
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3.15 Trade-offs in Static and Dynamic Evaluation of Hierarchical
Queries

Dan Olteanu (University of Oxford, GB)
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Joint work of Dan Olteanu, Ahmet Kara, Milos Nikolic, Haozhe Zhang

In this talk I will discuss trade-offs in static and dynamic evaluation of hierarchical queries
with arbitrary free variables. In the static setting, the trade-off is between the time to
partially compute the query result and the delay needed to enumerate its tuples. In the
dynamic setting, I also consider the time needed to update the query result in the presence
of single-tuple inserts and deletes to the input database.

I put forward one evaluation approach that unifies both settings. This approach observes
the degree of values in the database and uses different computation and maintenance strategies
for high-degree and low-degree values. For the latter it partially computes the result, while
for the former it computes enough information to allow for on-the-fly enumeration.

The main result of this work defines the preprocessing time, the update time, and the
enumeration delay as functions of the light/heavy threshold and of the factorization width of
the hierarchical query. By conveniently choosing this threshold, the approach can recover a
number of prior results when restricted to hierarchical queries.

3.16 Instance Trees: A data structure for complex logical expressions
Thomas Prokosch (LMU München, DE)
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Complex-event recognition relies upon storing and retrieving complex expressions (repres-
enting events) in a time- and space-efficient manner. This presentation introduces ongoing
research on such a data structure: Instance Trees. The presentation first motivates, then
sketches the concepts of this data structure.

3.17 Elevating the Edge to be a Peer of the Cloud
Umakishore Ramachandran (Georgia Institute of Technology – Atlanta, US)
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Joint work of Umakishore Ramachandran, Harshit Gupta, Adam Hall, Enrique Saurez, Zhuangdi Xu
Main reference Umakishore Ramachandran, Harshit Gupta, Adam Hall, Enrique Saurez, Zhuangdi Xu: “Elevating

the Edge to Be a Peer of the Cloud”, in Proc. of the 12th IEEE International Conference on Cloud
Computing, CLOUD 2019, Milan, Italy, July 8-13, 2019, pp. 17–24, IEEE, 2019.

URL https://doi.org/10.1109/CLOUD.2019.00016

Technological forces and novel applications are the drivers that move the needle in systems
and networking research, both of which have reached an inflection point. On the technology
side, there is a proliferation of sensors in the spaces in which humans live that become
more intelligent with each new generation. This opens immense possibilities to harness the
potential of inherently distributed multimodal networked sensor platforms (aka Internet of
Things – IoT platforms) for societal benefits. On the application side, large-scale situation
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awareness applications (spanning healthcare, transportation, disaster recovery, and the
like) are envisioned to utilize these platforms to convert sensed information into actionable
knowledge. The sensors produce data 24/7. Sending such streams to the cloud for processing
is sub-optimal for several reasons. First, often there may not be any actionable knowledge in
the data streams (e.g., no action in front of a camera), wasting limited backhaul bandwidth
to the core network. Second, there is usually a tight bound on latency between sensing and
actuation to ensure timely response for situation awareness. Lastly, there may be other
non-technical reasons, including sensitivity for the collected data leaving the locale. Sensor
sources themselves are increasingly becoming mobile (e.g., self-driving cars). This suggests
that provisioning application components that process sensor streams cannot be statically
determined but may have to occur dynamically.

All the above reasons suggest that processing should take place in a geo-distributed
manner near the sensors. Fog/Edge computing envisions extending the utility computing
model of the cloud to the edge of the network. We go further and assert that the edge should
become a peer of the cloud. This talk is aimed at identifying the challenges in accomplishing
the seamless integration of the edge with the cloud as peers. Specifically, we want to raise
questions pertaining to (a) frameworks (NOSQL databases, pub/sub systems, distributed
programming idioms) for facilitating the composition of complex latency sensitive applications
at the edge; (b) geo-distributed data replication and consistency models commensurate with
network heterogeneity while being resilient to coordinated power failures; and (c) support
for rapid dynamic deployment of application components, multi-tenancy, and elasticity
while recognizing that both computational, networking, and storage resources are limited at
the edge.
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Vehicle Tracking at the Edge of the Network. ACM Mobicom Workshop on Hot Topics
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3.18 Time-sensitive Complex Event Processing
Kurt Rothermel (Universität Stuttgart, DE)
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For many CEP applications, a limited end-to-end latency is of paramount importance.
Buffering of events in front of operators is a major source of end-to-end latency. An
increasing load may cause buffers to fill up rapidly leading to higher end-to-end latencies.

One approach to reduce latency is to allocate more compute resources for the operators in
the CEP network. A promising way to do that is data parallelism, i.e. the input streams of an
operator are partitioned and each partition is executed by a single operator instance in parallel
with the other partitions. The challenges associated with this approach are manifold, such
as appropriate models to predict overload, to decide where to allocate additional resources
in the network of operators, or to determine how much resources should be added. Similar
problem arises when the load is decreasing and resources can be deallocated.

Another approach to reduce the end-to-end latency is load shedding. This is the only
alternative if resources are scarce (e.g., mobile devices or fog) or the monetary budged limits
the available compute resources. The goal is to shed no more than needed to meet the
given latency bound. Moreover, shedding should be done in a way so that the quality of
CEP processing suffers least. Load shedding in CEP is associated with various interesting
questions related to “Where to shed, how much to shed and what to shed” (e.g., which events
or partial matches).

In the talk, we will report about some of our research results and ongoing work in
this field.

3.19 Applications & Requirements of CER: A Tutorial
Sabri Skhiri (EURA NOVA – Mont-Saint-Guibert, BE)
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The CER/CEP have been on the market for more than 10 years. However, we have seen the
last five years the emergence of a new class of real time use cases. In these use cases, we
have seen a significant increase of the event throughput, a need for expressing new queries,
and a need to make these CER usable and manageable in operations.

The aim of this tutorial is to give an overview of this new generation of use cases while
answering these questions: (1) Which are the application domains of CER? (2) What are
the key requirements of CER concerning data models, recognition language expressiveness,
performance (latency, throughput, predictive accuracy)? (3) How do existing approaches
address these requirements? (4) What are the classes of applications that can take advantage
of CER? We answer these questions by first describing the typical Streaming architecture
where CER are deployed. Then, we illustrate these challenges within Industrial use cases in
crowd management, banking, Telecom, Security & Surveillance and finally SOA &microservice
architecture.From these cases, we summarise the key requirements and the opportunities
for contributions in CER/CEP. Finally, in order to discuss the open challenges in research,
we start from the open challenges in Stream processing and we project them on CER/CEP.
Interestingly, the same challenges apply but in a completely different manner.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Alexander Artikis, Thomas Eiter, Alessandro Margara, and Stijn Vansummeren 33

3.20 CER in Data Management: A Tutorial
Martin Ugarte (Millenium Institute – Santiago de Chile, CL) and Cristian Riveros (PUC –
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Composite Event Recognition (CER) has emerged as the unifying field for technologies
that require processing and correlating distributed data sources in real-time. CER finds
applications in diverse domains, which has resulted in a large number of proposals for
expressing and processing complex events. In this context, the objective of the tutorial is
to give a theoretical perspective of the most common features found in CER. We will start
by presenting a basic setting for CER that will serve to discuss what are the fundamental
properties that, from a Data-Management perspective, could be asked from a CER language:
well-defined sytax and semantics, composability, and denotational declarative semantics.
These properties will then be exemplified by means of a particular language called CEL,
which will also be used to present the main operations found in CER systems. We will discuss
what are the challenges associated to defining these operations formally while satisfying the
mentioned properties. Having a principled perspective on CER languages, we will move to
the problem of evaluating these languages. We will discuss what are the relevant notions of
efficiency and complexity, to then present the kind of lower bounds that can be obtained
for evaluating CER patterns. Finally, we will show particular examples that will serve to
introduce fundamental open problems.

3.21 Complex Event Recognition in Business Process Management: A
Tutorial

Matthias Weidlich (HU Berlin, DE)
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Business processes represent consumers as well as producers of events in many application
scenarios. Common process modelling languages, therefore, include constructs to incorporate
events. At the same time, event-based systems may be used as a basis for process execution
and the analysis of processes. Against this background, the tutorial reviews the relation
between the fields of business process management and complex event recognition. In
particular, opportunities for research at the intersection of the two fields are outlined.
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3.22 Short Introduction to Dynamic Complexity Theory
Thomas Zeume (TU Dortmund, DE)
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Dynamic descriptive complexity theory studies how query results can be updated in a highly
parallel fashion, that is, by constant-depth circuits or, equivalently, by first-order formulas, or
by the relational algebra. After gently introducing dynamic complexity theory, I will discuss
recent results regarding the dynamic complexity of the reachability query.

4 Working groups

4.1 Pattern induction and composite event forecasting
Daniele Dell’Aglio (Universität Zürich, CH)
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Machine learning is a powerful framework to process and analyse temporal and dynamic
data and can find application in composite event recognition as well. In this session we
focused on two tasks. The first is composite event specification learning: what are the rules
that define relevant composite events? The second is composite event forecasting: what are
the next events (or composite events) that will appear from the stream? We identified in
hybrid intelligence and explainability two of the main benefits that machine learning and
CER can lead when combined.

Defining composite events is a challenging task, which requires domain knowledge, as
well as an in-depth understanding of the data itself. As data is increasing in size, variety and
heterogeneity over time, the complexity to define the composite events is growing as well.
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For example, it is often the case that almost matching composite events are not recognised,
as minimal discrepancies between the event definition and the input stream are sufficient to
lead to negative responses. In such a scenario, machine learning can provide useful support to
domain experts. For example, a human may identify the variables of interest, using machine
learning to infer correlations among them. A complementary approach consists in combining
human- and machine-defined rules, where the former introduces rules related to the domain
knowledge, and the latter can timely infer rules related to data shifts and drifts.

At the same time, composite events represent knowledge which can be interpreted by
humans and is a potential solution to achieve explainable machine learning processes. We
envision the adoption of composite event formalisms in the scenarios where the input are
event streams since composite events allow expressing temporal relations.

Combining machine learning and techniques for composite event recognition also poses
challenges for future research. Machine learning processes require a training phase, where
they learn regularities and patters by observing the input data. We traditionally distinguish
between offline and online learning, depending on the fact that the training happens before
or during the analysis of the stream. This depends on the type of machine learning technique,
as well as the data itself. When data shows features that do not vary over time, or that
vary regularly, offline learning usually leads to better outcomes. However, when the data is
characterised by shifts and drifts, the data used to learn become stale over time, degrading
the quality of the analyses over time. In those cases, online learning may be a more suitable
solution. Creating online learning techniques, however, is challenging, since the construction
of the model may be time-consuming, too slow with regards to the drifts happening in the
data, or may require the definition of complex scheduling policies to retrain the algorithms.
A relevant dimension to consider when thinking about machine learning and composite
event recognition is distribution. In scenarios where data has high throughput, is physically
distributed and controlled by different stakeholders, distributed techniques may bring several
advantages. Relevant phenomena could be identified on the edge, exploiting, for example,
federated learning and function shipping solutions to push decentralisation. This may also
lead advantages in terms of privacy, robustness and efficiency. However, the distribution
requires coordination and reconciliation mechanisms, leading to overheads and not applicable
to every use case.

A final challenge which can stimulate future research is the problem of monitoring. In
scenarios like security, smart cities and fraud detection, monitoring the stream leads to
changes in the stream itself. For example, knowing the situation of the city during traffic
jams can lead drivers to opt for different paths, with the potential risk of generating new
traffic jams. Possible ways to tackle this challenge are the design of cost functions that focus
on the community, e.g. a navigation system may try to optimize the average speed of all the
cars in the city. Another solution may come from game theory through the identification of
equilibrium points. Another problem related to monitoring is the evaluation: changes in the
input stream make it hard to test and systematically compare alternative solutions. One
could follow analytical analyses, or exploit simulators to run experimental tests. However,
both approaches may be complex and costly to follow.
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4.2 Process strategies, parallelization and geo-distribution
Daniele Dell’Aglio (Universität Zürich, CH)
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Nowadays, networks are usually complex environment, with nodes heterogeneous in
computational power, storage capabilities, network connections, geographical locations and
ownership. This is the case of modern edge infrastructures, where networks have powerful
central nodes (private or public cloud infrastructures) and nodes with limited resources at
the edge.

Moreover, network failures (e.g. congestion and broken nodes) bring dynamics in such
networks. Dynamics also happen in specific contexts, such as in automotive, where edge
nodes move and affect the network topology, varying the connections among the network
nodes. On top of those networks, stakeholders want to detect events of interests, based on
either the data collected by a node itself or the data exchanged by other nodes.

To recognize composite events over these heterogeneous and dynamic networks, we need
flexible processing frameworks that expose the following features. Such frameworks should
be flexible, able to move both the data and the recognizing functions across the network.
Flexibility is important for runtime performance, to improve time performance metrics (e.g.
latency and throughput), as well for privacy purposes (e.g. process the data locally). Another
feature processing frameworks should offer robustness. The frameworks should be able to
cope with network failures, to do not stop the execution if a node breaks or connection is
congested, by exploiting, for example, redundancy. At the same time, the processing should
be robust to the presence of noise and wrong data. Detecting the same composite events
with data observed by different nodes may offer different perspectives, allowing to detect
and isolate wrong results. Finally, such frameworks should be observable, to monitor the
execution of the system and potentially detect failures and issues.

To design and build such processing frameworks, we should take into account the existence
of features that can hardly co-exist in the same solution. There exists a trade-off between
expressiveness and performance: the more expressive the constructs in the programming
frameworks, the more complex the business logic, with subsequent loss of performance. There
is also a trade-off between generalization and specialization: domain-specific solutions may
exploit the context to introduce specific optimizations and solutions, at the price of being
usable only in a specific number of use cases. The framework should be able to detect
composite events in a continuous fashion, coping with issues in the input streams, such
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as noise and out of orders. The detection should also be distributed, with the need for
consensus mechanisms to reach agreements on the identification of the events. It is essential
to observe that different nodes may have different perceptions of reality, which could be
captured through local ontologies.

4.3 Expressiveness, Compositionality & Hierarchies, and Common
Framework

Boris Motik (University of Oxford, GB) and Martin Ugarte (Millenium Institute – Santiago
de Chile, CL)
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This is a summary of the outcomes of two discussion sessions held during the Dagstuhl
20071 seminar on Foundations of Composite Event Recognition. The topics of the two
sessions were quite related, so it is natural to summarise them jointly.

4.3.1 Expressiveness, Compositionality & Hierarchies

The discussion in this session was motivated by an observation that the field of Complex Event
Recognition (CER) is very broad and diverse, which makes understanding the relationships
between various approaches proposed in the literature quite difficult. The discussion revolved
around a number of issues, as summarised next.

CER from an abstract perspective. It was observed that the community has not agreed
on a common abstract perspective of the CER problem. The following three possibilities
have been proposed and discussed.

CER is a model checking problem – that is, the problem of verifying whether a finite
input satisfies a particular property. After a discussion, there was consensus that this
perspective most likely does not adequately capture CER.
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CER is a monitoring problem – that is, the problem of detecting the instant when
monotonically increasing input satisfies a particular property. There was a sentiment
that a minority of CER applications may fall into this category.
CER is a synthesis problem – that is, the problem of transforing an infinite input into an
infinite output using a predetermined specification. This view was identified as closest to
most CER applications.

Providing a common model. It was noted that agreeing on a common model had a
tremendous impact in areas such as databases and description logics, and so doing the same
in the context of CER might produce similar benefits: it would allow for an easier comparison
of the expressiveness and the capabilities of different approaches, both formally and informally,
and standardisation might foster interoperability of tools and systems produced by different
groups. To achieve these goals, both data and query models should be agreed upon. This
raised a question of what should CER systems produce as output, and the following views
were put forward.

An answer is a sequence of time-annotated facts.
An answer is a sequence of time-annotated sets of tuples. That is, database queries
produce sets of tuples, so by analogy CER systems should produce streams of sets of
tuples.
An answer is a sequence of time-annotated sets of facts from the input that constitute a
complex event.

Who would use a common model? It was noted that defining a common model was
difficult partly because of a lack of clarity about who its intended users would be. The
following possibilities were discussed.

A common model would be used by end-users (i.e., practitioners) in the field. In this
view, a common model would play the role analogous to SQL by defining an interface
that CER systems would provide. In such a case, an important design guideline would
be to produce an intuitive model that closely reflects the end-users’ problems.
A common model would be used mainly by researchers as an agreed-upon yardstick for
analysing various approaches from a conceptual and/or theoretical standpoint. Thus,
a common model would have to be very expressive and general, whereas its practical
applicability would be less important. It was noted that such a model would play a role
similar to that of a Turing machine.
A common model would be used by both end-users and researchers. This would be an
ideal outcome, but it might be difficult to attain.

The role of time. There was considerable discussion about the role of time in such a model.
The following opinions were voiced.

Time is not special. In this view, time is just another piece of data that may or may
not be present in the stream elements. The common model could be just the relational
model, where time instants and intervals could be modelled using one or two temporal
attributes, respectively.
Time is immanent to CER, and it provides and orthogonal dimension to the stream
content. That is, the data in the stream can be seen as ‘opaque’: we just need to be able
to manipulate data items using an appropriate algebra. For example, data items can be
relational, in which case they are manipulated using the relational algebra; or data items
can be XML documents, in which case they are manipulated using XPath and XQuery.
A CER system can be built on top of any data model by considering a time-annotated
sequence of data items. The CER system should provide constructs for manipulating the
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temporal component of the stream, which can be integrated with the underlying algebra
in a modular fashion. It was observed that this underpins the CQL approach by Widom
et al.

Time instants vs. time intervals. There was a long discussion about whether a common
model for CER should be based on time instants or time intervals. The following arguments
were put forward in favour of each view.

In the former view, input events are instantaneous occurrences on a discrete, partially
ordered timeline. Complex events can be thought of as patterns in the input, and they
are also instantaneous in the sense that they occur at instants at which the patterns are
recognized. In this way, there is no distinction between input events and complex events,
so the latter can be used as input to create event hierarchies. It was argued that such
a viewpoint is appropriate for CER because sensor readings are instantaneous and the
observed value between two successive readings is unknown. Finally, it was argued that
duration of an event can be defined as the time period between the event’s onset and
cessation. For example, one can identify the time points at which the ‘Fire is detected’
event commences and stops, which gives the duration of the event.
The latter view assumes that events are inherently durative in nature, so a CER system
should have the notion of a duration built into it. It was pointed out that this view is
more general than the time point view, and it was argued that durations are strictly
necessary for temporal aggregation. Finally, it was argued that an interval view might
provide a more natural user interface to a CER system.

Proposals for a common model. Several different formalisms were proposed as candidates
for a common model.

Relational model seemed to be a natural candidate. It was argued that no specific
treatment of time would be needed in such a setting as temporal information could be
encoded using one (for point-based events) or two (for interval-based events) temporal
attributes.
First-order logic could be used analogously, and it could be extended with second-order
features such as Kleene closure.
Various temporal logics (either point- or interval-based) were also put forward as natural
candidates.

A key question was what kind of object should be produced by query evaluation. One
view was that queries can be seen as formulas with free variables, so answers are variable
substitutions that make the formula true.

A common model is not needed. It was also argued that agreeing on a common model for
CER might be too difficult or even undesirable. The argument was that the model should
be chosen to fit the application at hand; however, the application space seems to be too
heterogenous to be unified, so it might be difficult to come up with a one-size-fits-all solution.
Instead, different approaches should be compared directly – for example, by providing
pairwise translations between approaches.

4.3.2 Common Framework

As the discussion in the ‘Expressiveness, Compositionality, & Hierarchies’ session revealed,
reaching agreement in the community on a single common model for CER might be too
ambitious at this point. Therefore, the discussion in the ‘Common Framework’ session
explored the possibility of providing a common meta-model for CER. The objective was
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to present a more abstract view of CER that would clearly identify key elements of most
CER systems. Specifically, this meta-model would specify what a CER system does, without
focussing on how this is done. The meta-model would not necessarily focus on a specific
language for encoding events and queries; rather, it would provide a list of conceptual
components that could be instantiated in different ways. The main benefit of such a meta-
model would be to provide a common way of thinking and talking about CER, which would
make discussions in the community easier.

The rest of this section summarises the meta-model that was proposed and discussed at
the seminar.

4.3.2.1 Abstract View of CER

Seen from an abstract point of view, a CER system observes an ever-increasing amount of
information about an application environment. This information is delivered to the CER
system in discrete, finite chunks called updates. Thus, at each instant i, a CER system has
observed a finite number of such updates. The task of a CER system is to extract useful
information from all information observed up to a given instant. More precisely, a CER
system should exhibit behaviour that looks as if the following steps were performed at each
instant i.
1. All observed updates are combined into a world view Wi. The role of Wi is to reflect the

history (or, in some cases, the relevant part of the history) of the application environment.
Often, this step will involve background knowledge K about the environment that, for all
intents and purposes, can be assumed to be immutable.

2. A fixed query Q is evaluated overWi, and the answer Ai is sent to the user at time instant
i. The job of Q is to specify which part of the world view is relevant for the application
at hand. In other words, Q is a function that extracts useful information from Wi.

This idea can be summarised formally as follows. A CER system is parameterised by
immutable background knowledge K, an aggregation function AGG, and a query Q. Function
AGG must be applicable to K and a finite sequence of updates U1.U2 . . . Ui, and query Q is a
function that must be applicable to the aggregation result. Then, given an infinite stream
S = U1.U2 . . . of updates, the job of a CER system is to produce the infinite sequence of
answers A1.A2 . . . where, for each i ≥ 1, we have Ai = Q(Wi) for Wi = AGG(K,U1.U2 . . . Ui).

It is crucial to understand that this specification does not mandate that the system
necessarily has to compute Wi and then evaluate Q on Wi at each instant i. Rather, this
specification only specifies what the observable behaviour of the system should be, and the
system is free to choose any appropriate implementation/evaluation strategy. In fact, it is
usually reasonable to introduce various assumptions about the properties of the computation
that a CER system should use. We call such assumptions nonfunctional requirements in order
to stress that these specify certain aspects of a system’s operation, rather than restrict the
answers that the system must compute. For example, a common nonfunctional requirement
might be that a CER system should use a bounded amount of memory during its operation.
Such requirements will determine whether a CER system can correctly process the query Q
or not.

It is useful to further assume that background knowledge, updates, and queries are
all expressed in appropriate knowledge, update, and query languages LK , LU , and LQ,
respectively. Formally, these languages can be seen as classes whose members constitute legal
values for K, Ui, and Q. In some cases it might be useful to restrict not just the form of each
update, but also to place certain structural constraints on the stream itself. For example, a
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structural constraint might be ‘The time stamps cannot be decreasing’. Then, the objective
of CER research can be framed as the task of studying the algorithmic methods that produce
the correct answers for specific combinations of nonfunctional requirements, languages LK ,
LU , and LQ, and structural constraints on the stream.

4.3.2.2 Examples

To clarify these ideas, this section presents several very simple instantiations of the CER
meta-model.

I Example 1. Let the update language LU consist of all finite sets of relational facts of the
form R(a1, . . . , an, t), where R is a relation, all aj are constants, and t is a time point. In
other words, each update Ui is a finite set of relational facts with a time stamp. Moreover,
ignoring any question of background knowledge for the moment, let the aggregation function
be defined by

AGG(U1.U2 . . . Ui) = {Now(i)} ∪
i⋃

j=1
Uj . (1)

In other words, AGG takes the union of all updates, but it also introduces a fact that
represents the current time point. Each world view Wi thus contains all information that
the CER system observed up to instant i, as well as information about where in the stream
we are.

As an example, consider the stream that consists of the following updates:

U1 = {temp(burner1, 40, 1)} (2)
U2 = {temp(burner2, 20, 2)} (3)

U3 = {temp(burner1, 60, 2), temp(burner2, 45, 3)} (4)

Intuitively, each update represents temperature readings of gas burners, where each reading
is associated with an instant at which the reading has been produced. Note that the instants
inside the updates do not necessarily correspond to the instants at which an update has
been received. For example, update U3 is received at instant 3, but fact temp(burner1, 60, 2)
refers to time instant 2. We next investigate languages for querying Wi.

First-order logic provides the formal foundations for a substantial part of SQL, so it is
reasonable to try to use it in a streaming setting. Thus, let us define queries over Wi as
domain-independent first-order formulas with free variables; moreover, we define an answer
to a query on Wi as the set of all substitutions of the free variables that make the query true
on Wi. Such a language is very expressive, and in particular it allows us to ask questions
about both past and present instants. For example, the following query identifies the most
recent time instant after which the temperature reading for burner1 was above 35 for two
consecutive instants:

Q(t) = ∃tnow∃x1∃x2.[
Now(tnow) ∧
temp(burner1, x1, t) ∧ x1 ≥ 35 ∧
temp(burner1, x2, t+ 1) ∧ x1 ≥ 35 ∧
∀t′∀x′.(t+ 2 ≤ t′ ≤ tnow ∧ temp(burner1, x

′, t′))⇒ x′ < 35
]

(5)

20071



42 20071 – Foundations of Composite Event Recognition

Note that Q can return answers about past time instants. For example, A3 = {t 7→ 1} – that
is, evaluating Q at time instant 3 produces an answer that refers to time instant 1. This
illustrates the benefit of distinguishing time instants at which a query is evaluated from time
instants that the query talks about. The former time instant determines what updates have
been observed and thus plays a prominent role in the conceptual view of CER. In contrast,
associating updates with time stamps can be viewed as a question of modelling – that is,
they can be handled as part of the CER “model content”.

I Example 2. While the query language from Example 1 is very expressive, it has a significant
drawback: answering any first-order query correctly over an arbitrary stream requires storing
all observed information. Therefore, it might be interesting to identify query languages for
which each query can be processed on an arbitrary stream using a finite amount of memory.

A very simple way to achieve this is to evaluate each query inside a temporal window. For
the purpose of this example, let us extend the notion of a query to a pair (ϕ, n), where ϕ is a
domain-independent first-order formula, and n is an integer specifying the window aperture.
To evaluate such a query over a world view Wi, one evaluates ϕ over the subset of all facts
in Wi whose time stamp is between tnow −−n and tnow, for Now(tnow) ∈Wi. One can now
investigate the nonfunctional requirements and the structural constraints on the stream that
will allow a CER system to answering an arbitrary such query over an arbitrary stream.

Answering queries in this query language is still difficult, for at least the following two
reasons.

Updates are not bounded in size. That is, we cannot answer any first-order query using a
finite amount of memory if the number of facts in each update can exceed the available
memory.
We have not placed any restriction on the relation between the instant i of an update Ui

and the time stamps of the facts contained inside Ui. As a result, Ui can refer to instants
that will become relevant arbitrarily far in the future, and storing all such instants may
require an unbounded amount of memory.

To overcome these difficulties, we may place the following two structural constraints on
the stream.

We assume that each update Ui contains no more than ` facts for some fixed integer `.
For example, this constraint may hold in a setting where the number of sensors is limited
to `.
We assume that the time stamp of each fact in Ui must be between i − −℘ and i for
some fixed integer ℘. This constraint may hold in a setting where a global clock ensures
that no sensor produces “future” time stamps, and that all sensor readings are delivered
to the CER system within ℘ time instants.

The above structural constraints on the stream may not hold in every setting. If, however,
they hold, then a CER system can answer every query with window n by storing only the last
n updates, which requires a bounded amount of memory. In turn, this conceptual observation
opens to door to further investigation of the algorithms and data structures necessary to
evaluate such queries efficiently.

I Example 3. In Examples 1 and 2, new observations were simply appended to the world
view (while updating the current time stamp). Our meta-model for CER, however, allows us
to also capture a setting where updates can retract information from the world view. For
example, let us assume that we equip the gas burners from Example 1 with an additional
sensor that can determine that a reading produced at an earlier time instant was invalid.
To incorporate this, we can extend the update language so that each update is of the form
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Ui = ◦iFi, where ◦i is either + or −, and Fi is a set of time-stamped facts as in Example 1.
Then, we can define the aggregation function inductively as follows, where ε is the empty
sequence of updates:

AGG(ε) = ∅ (6)
AGG(U1.U2 . . . U1.Ui−1.+ Fn) = AGG(U1.U2 . . . U1.Ui−1) ∪ Fn (7)
AGG(U1.U2 . . . U1.Ui−1.− Fn) = AGG(U1.U2 . . . U1.Ui−1) \ Fn (8)

In other words, aggregating updates now involves both adding and retracting facts. Note
that each Wi reflects the information that is believed to be true at instant i. For example,
consider the following updates:

U1 = +{temp(burner1, 40, 1)} (9)
U2 = +{temp(burner2, 20, 2)} (10)
U3 = −{temp(burner1, 40, 2)} (11)

World view W2 contains both temp(burner1, 40, 1) and temp(burner2, 20, 2), whereas world
view W3 contains only the latter fact and thus takes into account that the former fact was
found to be in error.

I Example 4. We can further extend Example 3 and assume that each update involves
addition or retraction of a logical formula expressed in a temporal logic. The aggregation
function can combine all updates into the current world view using belief revision operators.
Finally, a query can involve checking entailment of facts/formulas from world views.

I Example 5. All examples thus far considered updates and queries encoded using symbolic
languages, but the proposed CER meta-model makes no such assumptions. For example, the
query can be given as a neural network, updates can consist of readings for various inputs
to the network, and the aggregation function should determine how to combine different
updates into the input to the network. Then, we can analyse which classes of neural networks
can express what kinds of queries.

4.3.2.3 Next Steps

It was suggested during the seminar that the natural next step would be to prepare a survey
paper that would (i) describe the meta-model in more detail, (ii) discuss how to instantiate
this meta-model in order to capture the various proposals from the literature, and (iii) identify
classes of languages and constraints found in the existing body of literature. It was suggested
that such a publication might be produced jointly by the interested parties at one of relevant
future events, such as the Stream Reasoning Workshop.
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Domain-specific benchmarks aim to foster technological progress by guaranteeing a fair
assessment [5]. To this extent, Gray’s seminal work identifies important principles that drive
the design of data system benchmarks.

Relevance: a benchmark must measure the price/performance ration of systems when
performing typical operations within its domain.
Portability: a benchmark must be easy to implement on many heterogeneous systems
and architectures.
Scalability: a benchmark should apply to small and large computer systems.
Simplicity: a benchmark must be understandable, otherwise it will lack credibility.

In addition, Karl Huppler pushed the benchmark guidelines event further. In “The art of
building a good benchmark” [6], he identifies the following three additional principles.

Repeatability: there is confidence that the benchmark can be run a second time with the
same result.
Fairness: all systems and/or software being compared can participate equally.
Verifiability: there is confidence that the documented result is real.

Gray and Huppler stressed the economical aspects of benchmarking. Intuitively, a good
benchmark should be representative yet sustainable for the community to adopt it. For a
proper evaluation, it is not necessary to be compliant with all the listed principles but only
to those reflecting the benchmarking purpose [6].

In the context of complex event recognition (CER) a consolidated benchmark is still
missing. In the related literature, few attempts tried to identify use-cases, key performance
indicators (KPI), and relevant challenges to the research community to address [8, 2, 1].

Nevertheless, performance evaluations are still not homogeneous. In absence of real-
world event streams, researchers are forced to adapt analytic benchmarks like the Linear
Road [1], database benchmarks like BEAST [3], or benchmarks designed for Message-
Oriented Middleware [7]. Intuitively, this handcrafted approach to benchmarking limits the
repeatability and reproducibility of the results. The cost of maintenance of the customized
benchmarks is entirely on the individual research groups and, as a result, it is hard to
guarantee long-term support.

To this extent, the working group focused on identifying a sustainable path with concrete
operational steps that could lead to the design of a domain-specific benchmark for CEP that
is maintainable by the community.
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4.4.1 Types of benchmarks (relevance, simplicity, and fairness)

Initially, the discussion focused on identifying interesting types of benchmarks. Two main
areas emerged, i.e., macro- (also known as use-case driven) and micro-benchmarks. The
former focuses on evaluating systems with respect to specific workloads, typically inspired
by real-world scenarios. The latter, instead, focuses on evaluating the performance of single
operators.

Macro-benchmarks directly relate with the ongoing effort behind the DEBS Grand
Challenges, which yearly provide interesting use-cases and workloads for the community to
solve. On the other hand, micro-benchmarks relate to the definition of a common model for
CER e/o a core algebra of operation that CER engines must support.

4.4.2 Lack of standards (portability)

Industrial and academic research on CER highlights the lack of shared data and query
models towards a standardization. These agreements are crucial to develop and maintain a
benchmarking suite for the community.

In particular, during the meeting is emerged that the identification of data formats and
query languages is of paramount importance to move forwards any activity in the context of
benchmarking.

4.4.3 Technical support (scalability, repeatability, and verifiability)

Last but not least, the working group has highlighted the issue related to technical supports.
To this extent, similar criteria used for data publishing should be adopted. Community
benchmarks should be FAIR [9], i.e.,

Findable: it must be identifiable and registered in searchable resources.
Accessible: it must be retrievable by their identifiers using open and standard protocols.
Interoperable: it must use a formal and shared language for it representation and reference
other relevant resources.
Reusable: it must be described with a plurality of accurate and relevant attributes, e.g.,
licenses, and provenance metadata.

4.4.4 Conclusion and roadmap

In conclusion, the working group has identified two concrete steps towards the definition of a
standard benchmark for CER. The two steps plan is described below by indicating, for each
step, a minimum set of subtask and potential outcomes:
1. Design a replication study and literature analysis (including DEBS Grand Challenges)

Identify the dimensions of interest for the literature starting from the recent works [4];
identify the systems and experiments of interest for the replication study starting from
the DEBS Grand Challenges;
consider as input the ongoing work on uniforming languages and models.

2. Start a working group that has the extent of creating a community benchmark.
Contact the Linked Data Benchmark Council
Invite people from DEBS Grand Challenge community.
Integrate this into the Stream Reasoning COST Action organized by Thomas Eiter.
Identify other academics and industrial groups.
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Figure 2 Addressing uncertainty in CER

J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons. The
fair guiding principles for scientific data management and stewardship. Scientific Data, 3
(1):160018, 2016. 10.1038/sdata.2016.18. URL https://doi.org/10.1038/sdata.2016.18.
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Uncertainty is inherent in many use cases for complex event recognition (CER). This
uncertainty stems from two main sources. One source is noise and errors in the input data for
complex event recognition. For instance, measurements from input sensors may be incorrect
or incomplete. The other source for uncertainty lies in the inference for CER. That is, the
inference of a complex event from simpler events may be of probabilistic nature. For instance,
a system may classify a situation as an emergency, even though it turns out to be a false
alarm.
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Uncertainty can also come from the deliberate intention of an event publisher to prevent
complete disclosure of an event stream to its subscribers. One possible manifestation of this
situation is when a source of events is subject to access control constraints, such as privacy
policies. In the same way that the access to statistical databases can be restricted in order
to preserve anonymity (e.g. query restriction and query perturbation [1]) by the deliberate
blocking or insertion of noise, one can imagine that a data stream may be subjected to
similar conditions, which themselves may depend on the past content of the stream, as in
history-based access control [2]. In such cases, the reason for the presence of uncertainty
is not technical or fortuitous in nature; uncertainty may even be inserted with the precise
design of actively preventing some processing of the stream by downstream agents.

We argue that uncertainty cannot be avoided in many applications of CER and see the
need to explicitly account for it in CER systems. In particular, we see the need for reasoning
about uncertainty (of confidence) when reacting to events. If a system detects an emergency
with very low confidence, we may react with different measures than if the confidence is high.
However, our threshold for acting on a possible emergency is lower than for less consequential
situations. CER systems should therefore provide means to make uncertainty explicit. Yet,
it is common practice to simply employ – often fixed – thresholds in CER an treat detected
events as if they were certain. This not only projects a false sense of certainty, if prohibits
any reasoning about uncertainty when taking action. We therefore see the need to expand
general frameworks for CER with means to capture and reason about uncertainty. As results,
we augmented a general architecture for CER with specific extension points. These extension
points show what is missing in current CER frameworks to add the dimension of uncertainty.
Figure 2 provides an overview of the extended CER framework.

A range of candidate techniques for implementing the identified extension point as well as
many tradeoffs amongst them exists. We believe that the CER would benefit from explicitly
capturing the design options along with their strengths and weaknesses in an overarching
framework.
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