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Abstract
Tensors are higher-dimensional analogs of matrices, and represent a key data abstraction for
many applications in computational science and data science. In contrast to the wide availability
on diverse hardware platforms of high-performance numerical libraries for matrix computations,
only limited software infrastructure exists today for high-performance tensor computations.

Recent research developments have resulted in the formulation of many machine learning
algorithms in terms of tensor computations. Tensor computations have also emerged as funda-
mental building blocks for many algorithms in data science and computational science. Therefore,
several concurrent efforts have targeted the development of libraries, frameworks, and domain-
specific compilers to support the rising demand for high-performance tensor computations. How-
ever, there is currently very little coordination among the various groups of developers. Further,
the groups developing high-performance libraries/frameworks for tensor computations are still
rather disconnected from the research community that develops applications using tensors as a
key data abstraction.

The main goal of this Dagstuhl Seminar has been to bring together the following two com-
munities: first researchers from disciplines developing applications centered around tensor compu-
tations, and second researchers developing software infrastructure for efficient tensor computation
primitives. Invitees from the former group included experts in machine learning and data analyt-
ics, and computational scientists developing tensor-based applications. Invitees from the latter
group spanned experts in compiler optimization and experts in numerical methods.

A very fruitful exchange of ideas across these four research communities took place, with
discussions on the variety of needs and use-cases for tensor computations and the challenges/op-
portunities in the development of high-performance software to satisfy those needs.
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1 Executive Summary
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This seminar was planned for 40 participants, but due to travel restrictions resulting from
Covid-19, only 15 were able to attend – though several key talks were delivered via telecon-
ferencing. As a result, the Seminar was very focused, and very productive. Some aspects
were lost, perhaps in particular representation in-person of the full breadth of applications
communities.

It was very evident from the presentations and lively discussions at the Seminar that the
field of “Tensor Computations” is vibrant, multi-faceted, interdisciplinary, and fundamental
to progress in a diverse range of important areas which are driving researchers in different
fields to search for common foundations and common tools.

One of the communities with an interest in tensor computations can be described as
“classical” computational science, focusing, for example, on partial differential equations in
fluid dynamics, and electronic structure computations in chemistry and materials science.
Tensor contractions have been identified as a powerful way of representing the computational
structure in the architecture of compilers for domain-specific languages serving these com-
munities. Exploiting this algebraic intermediate representation in the compiler has enabled
important performance optimizations far beyond the scope of conventional compilers based
on loop nests and polyhedral techniques.

Another major community is primarily concerned with tensor decomposition – finding low-
rank approximations of tensors. This is fundamental to data analytics and machine learning
applications. Tensor factorization also provides a powerful framework for deep learning
and representation learning, and provides a promising strategy for weight compression in
convolutional neural networks.

Tensor contractions, in the form of tensor networks, have enormous importance as a tool
for understanding and computation in particle and quantum physics. Indeed mapping the
connections between these topics, as exposed through the structure of the tensor network
representation, offers an exciting frontier with the potential to underpin these different
disciplines with common language and shared software.

The Seminar developed a focus, to some extent as a result of the participants able to
attend, on tensor contractions, recognising that this provides a foundation for implementation
of numerical methods for tensor decompositions. Revisiting this is a key topic to be addressed
in following up this Seminar in the future.

A major focus for progress was identified in characterization of safety and correctness
properties – ensuring that tensor contraction expressions are well-formed and meaningful. A
related topic that was identified as critical concerns how structure is captured, represented
and used. This is not only conceptually valuable, but provides a pathway to exploiting block,
band and symmetry structure in generating efficient code.

An open question remains in how to capture, track and exploit the properties of tensors
with unstructured (i.e. data-dependent) sparsity.
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A key outcome from the Seminar was to recognize the massive replication of efforts in
terms of software development. Many tools and libraries are being re-developed within
different communities, while failing to share techniques and experience in high-performance
implementation. The aim of this Seminar was to address this lack of cohesive, coherent
community effort to develop computational building blocks. The results of this effort are
being realized in the form of a “white paper”, offering a manifesto for how to bridge the
discipline divides and realize the potential for tensor computations in the future.
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3 Overview of Talks

3.1 Building blocks: from matrix to tensor operations
Paolo Bientinesi and Lars Karlsson (Umeå University, SE)
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© Paolo Bientinesi and Lars Karlsson

The entire domain of matrix computations is tightly connected to the concept of building
blocks, i.e., computational kernels that support one well defined mathematical operation. For
almost 50 years, the linear algebra community has been identifying, layering, implementing,
and optimizing building blocks. Significant benefits include portable performance, self-
documenting quality of code, and robust implementations. Furthermore, standardization and
wide adoption of interfaces paved the road towards automated approaches to code generation
and performance tuning, and enabled abstraction (via high-level languages). Nowadays there
exists a sophisticated and comprehensive hierarchy of libraries for dense and sparse linear
algebra (e.g., BLAS, LAPACK, PETSc, etc.); these libraries provide invaluable support for a
vast ecosystem of applications.

We are convinced that the tensor community could benefit from similar ideas. The need for
a better computational infrastructure was publicly recognized already in 2009 (if not earlier)
at a workshop organized by Charles Van Loan [1]. Despite many years of development, in 2020
the software landscape for tensor computations is still heavily fragmented and dominated
by sophisticated MATLAB toolboxes and niche C++ libraries. Libraries similar to the
BLAS and LAPACK are not even on the radar. We believe that it is (still) time for a major
community effort to agree on the functionality and possibly the interface of a few low-level
tensor operations, to then focus on high performance and parallel scalability.

References
1 E Acar, O Alter et al. Workshop Report: Future Directions in Tensor-Based Com-

putation and Modeling (2009). https://www.cs.cornell.edu/cv/TenWork/FinalReport.pdf
10.13140/2.1.4040.4807

3.2 Theory and practice of tensor computations
Peter Braam (University of Oxford, GB)
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Tensor computation packages usually silently include and omit easily identified components
such as DSLs or notation, reduction of arithmetic intensity, data and index organization
and code generation and optimizations for hardware platforms. In many new domains, the
existing features offered by such components don’t suffice as illustrated by the failure to find
a package for the significant computations required by the SKA telescope. We will review
the components and ask if there is a structure for these packages that is more broadly useful
across domains like there is for compilers, operating systems etc?
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3.3 A universal representation for safe tensor computations
Charisee Chiw (Galois – Portland, US)
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Joint work of Charisee Chiw, Eric Davis

My previous work involved representing, compiling, generating, and testing code for tensor
computations. I’m wondering if some of those tasks are shared among the participants at the
seminar, and I expect they have been. My goal is to find out, if there is a way to leverage all
the work being done in this field, into a unifying framework.

I worked on Diderot [1], a domain-specific language designed for scientific visualization
and image analysis. New Visualization techniques are implemented to improve what we can
understand from the data. Without our DSL, the user would need to write a lot of bespoke
python code that can be error-prone and tedious. To enable new types of algorithms the
scientists would compute mathematically complicated computations. The DSL we created
ended up needing to be retargeted. Instead of it being a DSL designed to enable visualization,
it needed to be a DSL designed for math, specifically tensor math.

Our design goals included tensor operations on and between tensors and tensor fields
including differentiation. The compiler shouldn’t just stop working with a certain combination
of operators, and shapes, which is what some tools currently do. Our new goal was to
support a flexible, rich tensor calculus based language. To enable that, we designed EIN, an
intermediate representation based on Einstein Index Notation. We adapted regular compiler
techniques and leveraged domain-specific optimizations to move past compilation issues. For
us, correctness meant creating this automatic test generation tool, DATm. DATm compared
the output of tensor computations to the output when using a symbol tool in Python.

Working at Galois, I’ve wondered if Diderot’s standard of correctness holds up. There are
various strategies in this avenue; coq is considered the gold standard, function verification
can help prove properties about data, automatic test generation (metamorphic, differential
testing), policy enforcement, and user defined DSLs.

Could we create a generic tensor representation framework? Once we have a universal
framework, can we significantly lower the lift to add new backends, add optimization passes,
and do test case generation? Can we add a separate parallel track to check for correctness
of our tensor computations? Connecting our ideas will both improve the expressivity
and performance we have in various user-facing DSLS and tools. By losing our domain
knowledge, are we losing performance-enhancing knowledge? If so, can we tag the data
and/or computations to have a certain property so it hints to the compiler what optimization
and execution paths to take?

References
1 Kindlmann, Gordon & Chiw, Charisee & Seltzer, Nicholas & Samuels, Lamont & Reppy,

John. (2015). Diderot: A Domain-Specific Language for Portable Parallel Scientific Visual-
ization and Image Analysis. IEEE Transactions on Visualization and Computer Graphics.
22. 1-1. doi:10.1109/TVCG.2015.2467449.
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3.4 Low tensor rank approximations and computations, a short
introduction

Jeremy Cohen (CNRS – IRISA – Rennes, FR)
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Tensor decompositions can be seen as a field with specific, complicated notions such as tensor
rank, and even more complicated notations. In this talk, I try to explain in simple terms,
using matrix factorizations as a starting point, where these notions and notations come from.
Moreover, I show how in particular the MTTKRP appears when trying to solve the tensor
low-rank approximation problem.

3.5 Efficient implementation of tensor contractions for electronic
structure computations

Anna Engels-Putzka (DLR – Köln, DE)

License Creative Commons BY 3.0 Unported license
© Anna Engels-Putzka

Joint work of Anna Engels-Putzka, Michael Hanrath
Main reference Michael Hanrath, Anna Engels-Putzka: “An efficient matrix-matrix multiplication based

antisymmetric tensor contraction engine for general order coupled cluster”, J Chem Phys.
2010;133(6):064108

URL https://doi.org/10.1063/1.3467878

The equations of wave function-based methods in quantum chemistry, like Configuration
interaction (CI) or Coupled Cluster (CC), consist of products of one or more excitation
operator coefficients (amplitudes) with matrix elements of the Hamilton operator (one- and
two-electron integrals), which can be interpreted as tensor contractions.

Since the terms have to be evaluated multiple times during the iterative solution of the
equations, an efficient implementation of these contractions is crucial for such methods, in
particular for high excitation levels.

The talk discusses two aspects of an implementation aimed at arbitrary excitation
levels, on the one hand the determination of an optimized contraction order and choice of
intermediates (together referred to as factorization), on the other hand the contractions
themselves.

Special emphasis is put on the internal structure of the tensors, which leads to a conflict
between storage efficiency and easy accessibility of the entries. On the one hand, there is the
antisymmetry with respect to certain index permutations due to the indistinguishability of
the electrons, which leads to many entries being redundant or zero. On the other hand, if
spatial symmetries of the considered molecule or certain spin properties of the wave function
are exploited, only those tensor entries are non-zero where the indices fulfil certain restrictions.
For contractions, the tensor entries are rearranged so that the actual multiplication can be
carried out as a sequence of highly efficient matrix-matrix multiplications.

By using optimized addressing structures, the overhead of this step can be reduced
such that – for sufficiently large problems – the matrix multiplication dominates the total
computational costs.
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References
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the highly excited coupled-cluster factorization problem. The Journal of Chemical Physics
134, 124106, 2011
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tisymmetric tensor contraction engine for general order coupled cluster, The Journal of
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3.6 Understanding generalization in deep learning through tensor
methods

Furong Huang (University of Maryland – College Park, US)
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Main reference Jingling Li, Yanchao Sun, Jiahao Su, Taiji Suzuki, Furong Huang: “Understanding Generalization

in Deep Learning via Tensor Methods”, CoRR, Vol. abs/2001.05070, 2020.
URL https://arxiv.org/abs/2001.05070

Deep neural networks generalize well on unseen data though the number of parameters
often far exceeds the number of training examples. We advance the understanding of the
relations between the network’s architecture and its generalizability from the compression
perspective. Using tensor analysis, we propose a series of intuitive, data-dependent and
easily-measurable properties that tightly characterize the compressibility and generalizability
of neural networks; thus, in practice, our generalization bound outperforms the previous
compression-based ones, especially for neural networks using tensors as their weight kernels
(eg CNNs). Moreover, these intuitive measurements provide further insights into designing
neural network architectures with properties favorable for better/guaranteed generalizability.

3.7 Tensors as morphisms in a linear fusion category: from
mathematics to high performance numerics using Julia

Jutho Haegeman (Ghent University, BE)
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URL https://github.com/Jutho/TensorKit.jl

I will discuss a Julia package for representing and manipulating tensors, where tensors can
have an internal structure that is dictated by the rules of (unitary) tensor fusion categories. In
particular, this encompasses tensors with a block sparsity pattern (corresponding to abelian
symmetries), but also goes beyond this to the setting of non-abelian group symmetries as
well as more general fusion categories with non-trivial braiding and twists, associated with
the physics of fermions and anyons. Such tensors arise in the context of tensor network
simulations in quantum physics. The implementation has elements from category theory
built in at the lowest level, but tries to hide these from the user whenever possible, and at the
same time aims at high efficiency and flexibility, e.g. to exploit multithreading and GPUs.
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3.8 The tensor problems in finite element assembly
David Ham (Imperial College London, GB), Paul H. J. Kelly (Imperial College London, GB),
Lawrence Mitchell (Durham University, GB), Tianjiao Sun, and Sophia Vorderwuelbecke
(Imperial College London, GB)
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Main reference Miklós Homolya, Lawrence Mitchell, Fabio Luporini, David A. Ham: “TSFC: A
Structure-Preserving Form Compiler”, SIAM J. Sci. Comput., Vol. 40(3), 2018.

URL http://dx.doi.org/10.1137/17M1130642

Finite element assembly can be represented as a sequence of (relatively) small tensor opera-
tions. I will discuss how the Firedrake system exploits tensor computation abstractions to
achieve performance optimizations such as sum factorization and vectorization. I will also
indicate the limitations of our current approach, in particular with respect to affine index
extents.

3.9 Parallel non-negative CP decomposition of dense tensors
Koby Hayashi (Georgia Institute of Technology – Atlanta, US)
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The CP tensor decomposition is a low-rank approximation of a tensor. We present a
distributed-memory parallel algorithm and implementation of an alternating optimization
method for computing a CP decomposition of dense tensor data that can enforce nonnegativity
of the computed low-rank factors. The principal task is to parallelize the matricized-
tensor times Khatri-Rao product (MTTKRP) bottleneck subcomputation. The algorithm
is computation efficient, using dimension trees to avoid redundant computation across
MTTKRPs within the alternating method. Our approach is also communication efficient,
using a data distribution and parallel algorithm across a multidimensional processor grid that
can be tuned to minimize communication. We benchmark our software on synthetic as well as
hyperspectral image and neuroscience dynamic functional connectivity data, demonstrating
that our algorithm scales well to 100s of nodes (up to 4096 cores) and is faster and more
general than the currently available parallel software.

3.10 Compiling for data not code
Paul H. J. Kelly (Imperial College London, GB)
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Joint work of Paul H. J. Kelly, Thomas Debrunner, Sajad Saeedi, BD Wozniak, FD Witherden, FP Russell, PE
Vincent, Mehedi Paribartan

Main reference Thomas Debrunner, Sajad Saeedi, Paul H. J. Kelly: “AUKE: Automatic Kernel Code Generation
for an Analogue SIMD Focal-Plane Sensor-Processor Array”, TACO, Vol. 15(4), pp. 59:1–59:26,
2019.

URL https://doi.org/10.1137/17M1130642

Compiling is like skiiing: we struggle up the mountain, trying to analyse the program the
programmer wrote. We build, at the mountaintop, a representation of everything we know.
From this, we now can go downhill – synthesising optimized code, exploiting the space
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of possible code generation alternatives allowed by the dependence information we have
gathered and guided by other information, like sizes and loop bounds and data volumes. But
in this talk I reflect on our experience in building various compilers whose input is not code,
but data. I mentioned our AUKE tool for generation code for convolutions on the SCAMP-5
analog SIMD image sensor. I mentioned our GiMMiK code generator for small-matrix
multiplications, as found in the PyFR tool for computational fluid dynamics. I talked about
the libxsmm JIT, developed at Intel, for small matrix and convolution operations. However,
this work starts with the raw numerical values – we are again struggling up the analysis
mountain. We should aim instead to take a helicopter ride to the top – and start from a
compact, abstract description of the structure of the data.

3.11 Representing structure in computational meshes
Lawrence Mitchell (Durham University, GB)
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Many mesh-based simulations occur on meshes with some regular structure. Examples include,
but are not limited to: composite macro-elements and high continuity spline discretizations;
regular refinement in geometric multigrid; structured mesh extrusion (common in ocean, ice
sheet, and atmospheric modelling); and octree-like AMR.

An unanswered question is how to handle these and other kinds of structure in meshes in
a composable way. For example, what if I want a macro-element on an extruded mesh must
I program that case by hand?

I presented the way in which we (in the Firedrake project) represent unstructured meshes
and provided some nascent musing on symbolic interfaces for code generators that might
exploit some structure. A particular focus was maintaining the ability to perform topological
queries of the “symbolic” meshes.

3.12 Safety and correctness: essential for tensor languages?
Norman Rink (TU Dresden, DE)
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Main reference Norman A. Rink, Jerónimo Castrillón: “TeIL: a type-safe imperative tensor intermediate

language”, in Proc. of the 6th ACM SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming, ARRAY@PLDI 2019, Phoenix, AZ, USA, June 22, 2019,
pp. 57–68, ACM, 2019.

URL http://dx.doi.org/10.1145/3315454.3329959

Recent years have seen an inflationary rise of tensor frameworks, each with its own tensor
language (formerly “array language”). The programming language community has a long-
standing tradition of analyzing languages, including array languages, for properties such as
memory safety. In addition, the last two decades have produced significant work on provably
correct compilers and runtime systems – in the sense that these tools adhere strictly to
the definition of the language they implement. Little of this existing work on safety and
correctness has found its way into the recent tensor frameworks or, more generally, into tools
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that are used in developing tensor-based applications. With this talk, I would like to start a
discussion about whether this should change. In other words, how much pain is caused by
the lack of safety and correctness results for tensor or array languages and tools?

3.13 Representation learning and tensor factorization
Volker Tresp (Siemens AG – München, DE)
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Representation learning is hugely successful in natural language processing and knowledge
graph modelling. The basic concept is that entities or words are mapped to latent vectors of
a given dimension and a shallow or a deep neural network then maps those representations
to one or several probabilistic statements. We discuss relationships between representation
learning and tensor factorization. We show how tensor embedding models can be used in
selection tools for industrial products, in scene graph analysis in vision and in cognitive
models for perception and memory.

References
1 Nickel, M., Tresp, V., & Kriegel, H. P. (2011, June). A three-way model for collective

learning on multi-relational data. In Icml (Vol. 11, pp. 809-816).
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learning for knowledge graphs. Proceedings of the IEEE, 104(1), 11-33.
3 Yang, Y., Krompass, D., & Tresp, V. (2017, August). Tensor-train recurrent neural net-
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3.14 A BLAS for stencil computation
Richard M. Veras (Louisiana State Univ. – Baton Rouge, US)
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Stencil computations are an important class of problems that arise in a variety of fields where
performance across a diverse set of architectures is critical. This includes areas ranging from
physics, engineering, bioinformatics and machine learning. Thus any improvement in the
efficiency of stencil computations yields increased computational productivity in those fields.
Translating the regularity of a stencil into performance across SIMD vectors, multiple cores
and deep memory hierarchies involves the coordination of many moving parts and requires
knowledge of the target problem that may not be accessible at the compiler level. In this
work we develop a systematic approach for generating high performance code for stencil
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kernels from the parameters of the target architecture. We then propose a BLAS-like library
for stencil computations that casts high-order and high-dimensional stencil operations in
terms of these generated kernels. The result is performance portable stencil computations
that reach near machine peak performance.

3.15 Slate: a system for linear algebra operaton tensor expressions of
finite element problems

Sophia Vorderwuelbecke (Imperial College London, GB)
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Joint work of Thomas H. Gibson, Lawrence Mitchell, David A. Ham, Colin J. Cotter
Main reference T. H. Gibson, L. Mitchell, D. A. Ham, C. J. Cotter: “Slate: extending Firedrake’s domain-specific

abstraction to hybridized solvers for geoscience and beyond”, Geoscientific Model Development,
Vol. 13(2), pp. 735–761, 2020.

URL https://doi.org/10.5194/gmd-13-735-2020

Hybridization is a technique for mixed or discontinuous finite element problems, which loosens
inter element coupling. It comes with the advantage that algebraic manipulations to produce
condensed systems, involving expensive operations, can happen on a local level on smaller
systems. Slate is a domain-specific language in the Firedrake framework encapsulating local
tensor algebra on finite element expressions, for example for condensation. I explained key
components, current drawbacks and potential optimizations of the language and its compiler.
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