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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21071 “Scalable Data
Structure”. Even if the field of data structures is quite mature, new trends and limitations in
computer hardware together with the ever-increasing amounts of data that need to be processed
raise new questions with respect to efficiency and continuously challenge the existing models of
computation. Thermal and electrical power constraints have caused technology to reach “the
power wall” with stagnating single processor performance, meaning that all nontrivial applications
need to address scalability with multiple processors, a memory hierarchy and other communication
challenges. Scalable data structures are pivotal to this process since they form the backbone of the
algorithms driving these applications. The extended abstracts included in this report contain both
recent state of the art advances and lay the foundation for new directions within data structures
research.
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About the seminar
Scalable data structures form the backbone for computing: Computing is about processing,
exchanging, and storing data. The organization of data profoundly influences the performance
of accessing and manipulating data. By optimizing the way data is stored, performance
can be improved by several orders of magnitude when data scales. This Dagstuhl seminar
brought together researchers from several research directions to illuminate solutions to the
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scalability challenge of data structures. The seminar was the 14th in a series of loosely
related Dagstuhl seminars on data structures. Due to the ongoing Covid-19 pandemic the
seminar was purely virtual.

Topics
The presentations covered both advances in classic data structure fields, as well as insights
addressing the scalability of computing for different models of computation.

Classic data structure questions on dictionaries, hashing, filters, and heaps were the topic
of several talks. Wild (Section 4.8) considered new pointer based search trees, Kozma (Sec-
tion 4.24) discussed algorithms related to self-adjusting trees and heaps, Bercea (Section 4.4)
presented results for dictionaries and filters, Even (Section 4.21) discussed dynamic stable
perfect hashing, and Farach-Colton (Section 4.2) presented results for succinct stable hash
tables. Johnson (Section 4.25) presented the vector quotient filter based on Robin Hood
hashing and designed to exploit SIMD instructions. An external memory dictionary was
presented by Conway (Section 4.20) who presented the SplinterDB key-value store for NVMe
solid state drives.

For data structure problems on strings, Gørtz (Section 4.9) discussed the support for
random access in compact representations of strings, and Starikovskaya (Section 4.22)
dictionary look-ups with mismatches.

Data structures for storing and querying static and dynamic graphs were the topic of
a sequence of talks. Pettie (Section 4.1) considered trade-offs between space usage and
query time for supporting exact distance queries in planar graphs. Rotenberg (Section 4.5)
considered planarity testing of dynamic graphs under the insertion and deletion of edges
with polylogarithmic update time. Kopelowitz (Section 4.6) considered maintaining the
orientation of edges in dynamic forests under the insertion of edges, guaranteeing low out
degree of all nodes. Henzinger (Section 4.16) presented an algorithm for maintaining a
(∆ + 1)-vertex coloring of a graph with maximal degree ∆ with constant time edge insertions
and deletions. Bast (Section 4.27) gave a demonstration of an implementation of algorithms
for real-time searching knowledge graphs with billions of edges.

Parallel algorithms for problems on graphs were addressed in multiple talks. Liu (Sec-
tion 4.10) considered a parallel algorithm for counting triangles (cliques of size three) in
graphs under batched updates of edge insertions and deletions, and Blelloch (Section 4.15)
considered parallel batched dynamic algorithms for the minimum spanning tree and min-
imum cut problems. Sun (Section 4.13) considered a parallel algorithm for the single source
shortest path problem using lazy batched priority queues. Shun (Section 4.3) considered a
parallel index-based algorithm for graph clustering and an approximation algorithm using
locality-sensitive hashing.

Computational models supporting massive parallelism, like GPUs and TCUs, were
addressed in talks by Owens (Section 4.11) who considered open-addressing hashing on
GPUs, by Geil (Section 4.18) who consider how to solve the maximum clique problem on
GPUs, and by Silvestri (Section 4.14) who addressed similarity search with tensor core units.
Sitchinava & Jacob (Section 4.19) in their joint talk, considered the power of the atomic and
non-atomic versions of the parallel fork-join model. Sanders (Section 4.12) considered how
to execute MapReduce computations robustly and efficiently on realistic distributed-memory
parallel machines.
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Ellen (Section 4.17) considered labelling schemes for networks supporting distributed
deterministic radio broadcast using labels of constant-length at the nodes of the network.
Lincoln (Section 4.23) presented new techniques for proving fine-grained average-case hardness
results, and Fagerberg (Section 4.26) considered the fragile complexity of adaptive algorithms.
Finally, Driemel (Section 4.7) considered approximate-near-neighbor data structures for time
series under the continuous Fréchet distance.

Final Thoughts
The organizers would like to thank the Dagstuhl team for their continuous support and
allowing this seminar to happen as a purely virtual Dagstuhl seminar. They also thank all
participants for their contributions to this seminar.

Previous seminars in the series had few female participants. A focus for this seminar was
to significantly increase the female attendance. 50 % of the invited participants were female,
resulting in a 38 % female attendance.

Even though the seminar was challenged by the different time zones of the participants,
on average 37 of the 48 participants participants attended the talks, and all talks were
attended by at least 30 partcipants. In the post-seminar survey it was appreciated that the
seminar took place as a virtual seminar instead of being cancelled, but it was also stated
that the virtual format can never be as productive as an in-person seminar and showed how
much we should appreciate the possibilities Dagstuhl offers under regular circumstances.
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3 Seminar program

Since the seminar was converted into a purely virtual seminar, the program had to accom-
modate participants from many time zones – primarily from Europe and US. The program
consisted of two blocks 16:00–18:00 and 20:00–22:00 Dagstuhl time (CET) from Monday to
Thursday, i.e. during 17:00–23:00 in Israel, 10:00–16:00 on the US East Coast, 7:00–13:00 on
the US West Coast, and 5:00–11:00 in Hawaii. Most talks were 30 minutes. All talks took
place using the Zoom platform. The Wonder.me platform was used for social interaction, to
replace the otherwise informal interactions happening during coffee breaks, meals, evenings
etc. when at a physical Dagstuhl seminar. Participants were encouraged to visit Wonder.me
15 minutes before session start and after talks ended.

Monday February 15, 2021
16:00 One slide presentations & Group picture
17:00 Planar Distance Oracles with Better Time-Space Tradeoffs

Seth Pettie
17:30 Succinct, Stable Hash Tables

Martin Farach-Colton

20:00 Parallel Index-Based Structural Graph Clustering and Its Approximation
Julian Shun

20:30 Dictionaries et al.
Ioana Bercea

21:00 Fully-dynamic Planarity Testing in Polylogarithmic Time
Eva Rotenberg

21:15 Orientations in Incremental Forests
Tsvi Kopelowitz

Tuesday February 16, 2021
16:00 Approximate Near-Neighbor under the (continuous) Fréchet distance

Anne Driemel
16:30 Lazy Search Trees

Sebastian Wild
17:00 Random Access in Persistent Strings

Inge Li Gørtz
17:30 Parallel Batch-Dynamic Triangle Counting

Quanquan Liu

20:00 Open-Addressing Hashing on GPUs
John Owens

20:30 Connecting MapReduce Computations to Realistic Machine Models
Peter Sanders

21:00 Parallel SSSP using Lazy Batch Priority Queues
Yihan Sun

21:30 Similarity Search with Tensor Core Units
Francesco Silvestri
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Wednesday February 17, 2021
16:00 Parallel Batch Dynamic Algorithms

Guy Blelloch
16:30 Fully Dynamic (∆ + 1)-Vertex Coloring in constant time per operation

Monika Henzinger
17:00 Open problem session

20:00 Constant-length Labelling Schemes for Deterministic Radio Broadcast
Faith Ellen

20:30 Using GPUs to Solve the Maximum Clique Problem
Afton Noelle Geil

21:00 Atomic Power in Forks
Nodari Sitchinava & Riko Jacob

21:30 SplinterDB: A NVMe Key-Value Store on the Iacono-Patrascu Lower Bound
Alex Conway

Thursday February 18, 2021
16:00 Dynamic Stable Perfect Hashing, Extendable?!

Guy Even
16:30 Dictionary look-up with mismatches

Tatiana Starikovskaya
17:00 New Techniques for Proving Fine-Grained Average-Case Hardness

Andrea Lincoln
17:30 Self-adjusting Trees and Heaps

László Kozma

20:00 Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design
Rob Johnson

20:30 Fragile Complexity of Adaptive Algorithms
Rolf Fagerberg

21:00 Searching Knowledge Graphs with Billions of Edges
Hannah Bast

4 Overview of Talks

4.1 Planar Distance Oracles with Better Time-Space Tradeoffs
Seth Pettie (University of Michigan – Ann Arbor, US)

License Creative Commons BY 4.0 International license
© Seth Pettie

Joint work of Yaowei Long, Seth Pettie
Main reference Yaowei Long, Seth Pettie: “Planar Distance Oracles with Better Time-Space Tradeoffs”, in Proc. of

the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January
10 – 13, 2021, pp. 2517–2537, SIAM, 2021.

URL https://doi.org/10.1137/1.9781611976465.149

In a recent breakthrough, Charalampopoulos, Gawrychowski, Mozes, and Weimann (2019)
showed that exact distance queries on planar graphs could be answered in no(1) time by a
data structure occupying n1+o(1) space, i.e., up to o(1) terms, optimal exponents in time (0)
and space (1) can be achieved simultaneously. Their distance query algorithm is recursive:
it makes successive calls to a point-location algorithm for planar Voronoi diagrams, which
involves many recursive distance queries. The depth of this recursion is non-constant and
the branching factor logarithmic, leading to (log n)ω(1) = no(1) query times.
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In this paper we present a new way to do point-location in planar Voronoi diagrams, which
leads to a new exact distance oracle. At the two extremes of our space-time tradeoff curve
we can achieve either n1+o(1) space and log2+o(1) n query time, or n log2+o(1) n space and
no(1) query time.

4.2 Succinct, Stable Hash Tables
Martin Farach-Colton (Rutgers University – Piscataway, US)

License Creative Commons BY 4.0 International license
© Martin Farach-Colton

Joint work of Michael Bender, Abhishek Bhattacharjee, Alex Conway, Martin Farach-Colton, Rob Johnson,
Sudarsun Kannan, William Kuszmaul, Nirjhar Mukherjee, Don Porter, Guido Tagliavini, Janet
Vorobyeva, Evan West

Main reference Michael Bender, Abhishek Bhattacharjee, Alex Conway, Martin Farach-Colton, Rob Johnson,
Sudarsun Kannan, William Kuszmaul, Nirjhar Mukherjee, Don Porter, Guido Tagliavini, Janet
Vorobyeva, Evan West: “Parallel Index-Based Structural Graph Clustering and Its Approximation”.
To appear in Symposium on Parallelism in Algorithms and Architectures (SPAA), 2021.

Hash tables is one of the most extensively studied data structures, and yet surprising basic
questions have yet to be answered. For example, is it possible to be stable and cache efficient?
Or stable and succinct? Stability is a property that has been heavily exploited in practice
but has received little theoretical treatment.

We present a hash table that is stable and meets or exceeds the state of the art in CPU
cost, External Memory cost, succinctness, failure probability and resizability. We then show
to use this hash table to improve address translation, a critical component of virtual memory
systems.

4.3 Parallel Index-Based Structural Graph Clustering and Its
Approximation

Julian Shun (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
© Julian Shun

Joint work of Julian Shun, Tom Tseng, Laxman Dhulipala
Main reference Tom Tseng, Laxman Dhulipala, Julian Shun: “Parallel Index-Based Structural Graph Clustering and

Its Approximation”, CoRR, Vol. abs/2012.11188, 2020.
URL https://arxiv.org/abs/2012.11188

SCAN (Structural Clustering Algorithm for Networks) is a well-studied, widely used graph
clustering algorithm. For large graphs, however, sequential SCAN variants are prohibitively
slow, and parallel SCAN variants do not effectively share work among queries with different
SCAN parameter settings. Since users of SCAN often explore many parameter settings to
find good clusterings, it is worthwhile to precompute an index that speeds up queries.

This talk presents a practical and provably efficient parallel index-based SCAN algorithm
based on GS*-Index, a recent sequential algorithm. Our parallel algorithm improves upon
the asymptotic work of the sequential algorithm by using integer sorting. It is also highly
parallel; it achieves logarithmic span for both index construction and clustering queries.
Furthermore, we apply locality-sensitive hashing (LSH) to design a novel approximate SCAN
algorithm and prove guarantees for its clustering quality.
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We present an experimental evaluation of our parallel algorithms on large real-world
graphs. On a 48-core machine with two-way hyper-threading, our parallel index construction
achieves 50–151× speedup over the construction of GS*-Index. In fact, even on a single
thread, our index construction algorithm is faster than GS*-Index. Our parallel index query
implementation achieves 5–32× speedup over GS*-Index queries across a range of SCAN
parameter values, and our implementation is always faster than ppSCAN, a state-of-the-art
parallel SCAN algorithm. Moreover, our experiments show that applying LSH results in
much faster index construction on denser graphs without large sacrifices in clustering quality.

4.4 Dictionaries et al.
Ioana Oriana Bercea (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
© Ioana Oriana Bercea

Joint work of Ioana Oriana Bercea, Guy Even
Main reference Ioana O. Bercea, Guy Even: “A Dynamic Space-Efficient Filter with Constant Time Operations”, in

Proc. of the 17th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2020, June
22-24, 2020, Tórshavn, Faroe Islands, LIPIcs, Vol. 162, pp. 11:1–11:17, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020.

URL https://doi.org/10.4230/LIPIcs.SWAT.2020.11

In this talk, we discuss recent advancements in dictionary and filter design. A dynamic
dictionary is a data structure that maintains sets under insertions and deletions and supports
membership queries of the form “is an element x in the set?”. A filter performs approximate
membership in the sense in which it must always answer “yes” if the element is in the set but
otherwise, it can make an error with probability at most ε. Both dictionaries and filters are
fundamental data structures that are employed in data management projects which require a
space-efficient representation of and fast access to large datasets. In the first part of the talk,
we review some of the most recent designs for dictionaries and propose some open problems
on how to improve them. We then focus on two solutions to an open problem of Arbitman,
Naor, and Segev [FOCS 2010] on designing dynamic dictionaries on multisets and dynamic
filters. The presentation is based on two recent papers by Bercea and Even.

While a straightforward reduction turns every incremental (insertions only) dictionary
into an incremental filter with similar performance guarantees, the reduction is known to fail
in the dynamic setting. Conventional wisdom holds that one should instead reduce from a
dynamic dictionary on multisets, in which every element can have arbitrary multiplicity. In
the first result we discuss, we show that such a strong dictionary is not required. Instead,
we show that it is enough to employ a dynamic dictionary for random multisets, in which
each element is chosen independently and uniformly at random from the universe. We then
give the first dynamic dictionary for random multisets, and subsequently, the first dynamic
filter, that is space-efficient and performs all operations in constant time in the worst case.
In the second result we discuss, we show how to get a dynamic dictionary for multisets via
a different balls-into-bins experiment that allows us to efficiently store binary counters at
the expense of only an additive linear term increase in space. We conclude with the open
problem of designing a dynamic filter that performs all operations in worst-case constant
time and is succinct when ε is a constant.
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4.5 Fully-dynamic Planarity Testing in Polylogarithmic Time
Eva Rotenberg (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 4.0 International license
© Eva Rotenberg

Joint work of Eva Rotenberg, Jacob Holm
Main reference Jacob Holm, Eva Rotenberg: “Fully-dynamic planarity testing in polylogarithmic time”, in Proc. of

the Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pp. 167–180, ACM, 2020.

URL https://doi.org/10.1145/3357713.3384249

Given a dynamic graph subject to insertions and deletions of edges, a natural question is
whether the graph presently admits a planar embedding. We give a deterministic fully-
dynamic algorithm for general graphs, running in amortized O(log3 n) time per edge in-
sertion or deletion, that maintains a bit indicating whether or not the graph is presently
planar.

4.6 Orientations in Incremental Forests
Tsvi Kopelowitz (Bar-Ilan University – Ramat Gan, IL)

License Creative Commons BY 4.0 International license
© Tsvi Kopelowitz

Joint work of Michael Bender, Tsvi Kopelowitz, William Kuszmaul, Ely Porat, Clifford Stein

For any forest G = (V, E) it is possible to orient the edges E so that no vertex in V has
out-degree greater than 1. This paper considers the incremental edge-orientation problem, in
which the edges E arrive over time and the algorithm must maintain a low-out-degree edge
orientation at all times. We give an algorithm that maintains a maximum out-degree of 3
while flipping at most O(log log n) edge orientations per edge insertion, with high probability
in n. The algorithm requires worst-case time O(log n log log n) per insertion, and takes
amortized time O(1). The previous state of the art required up to O(log n/ log log n) edge
flips per insertion.

4.7 Approximate Near-Neighbor under the (Continuous) Fréchet
Distance

Anne Driemel (Universität Bonn, DE)

License Creative Commons BY 4.0 International license
© Anne Driemel

Joint work of Anne Driemel, Ioannis Psarros

We study approximate-near-neighbor data structures for time series under the continuous
Fréchet distance. For an attainable approximation factor c > 1 and a query radius r, an
approximate-near-neighbor data structure can be used to preprocess n curves in R (aka
time series), each of complexity m, to answer queries with a curve of complexity k by either
returning a curve that lies within Fréchet distance cr, or answering that there exists no
curve in the input within distance r. In both cases, the answer is correct. Our first data
structure achieves a (5 + ε) approximation factor, uses space in n · O

(
ε−1)k + O(nm) and

has query time in O (k). Our second data structure achieves a (2 + ε) approximation factor,
uses space in n · O

(
m
kε

)k + O(nm) and has query time in O
(
k · 2k

)
. Our third positive
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result is a probabilistic data structure based on locality-sensitive hashing, which achieves
space in O(nm) and query time in O(k), and which answers queries with an approximation
factor in O(k). All of our data structures make use of the concept of signatures, which were
originally introduced for the problem of clustering time series under the Fréchet distance.
In addition, we show lower bounds for this problem. Consider any data structure which
achieves an approximation factor less than 2 and which supports curves of arclength up
to L and answers the query using only a constant number of probes. We show that under
reasonable assumptions on the word size any such data structure needs space in LΩ(k).

4.8 Lazy Search Trees
Sebastian Wild (University of Liverpool, GB)

License Creative Commons BY 4.0 International license
© Sebastian Wild

Joint work of Sebastian Wild, Bryce Sandlund
Main reference Bryce Sandlund, Sebastian Wild: “Lazy Search Trees”, in Proc. of the 61st IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020, pp. 704–715, IEEE, 2020.

URL https://doi.org/10.1109/FOCS46700.2020.00071

We introduce the lazy search tree data structure. The lazy search tree is a comparison-based
data structure on the pointer machine that supports order-based operations such as rank,
select, membership, predecessor, successor, minimum, and maximum while providing dynamic
operations insert, delete, change-key, split, and merge. We analyze the performance of our
data structure based on a partition of current elements into a set of gaps {∆i} based on
rank. A query falls into a particular gap and splits the gap into two new gaps at a rank r

associated with the query operation. If we define B =
∑

i |∆i| log2(n/|∆i|), our performance
over a sequence of n insertions and q distinct queries is O(B + min(n log log n, n log q)). We
show B is a lower bound.

Effectively, we reduce the insertion time of binary search trees from Θ(log n) to
O(min(log(n/|∆i|) + log log |∆i|, log q)), where ∆i is the gap in which the inserted ele-
ment falls. Over a sequence of n insertions and q queries, a time bound of O(n log q + q log n)
holds; better bounds are possible when queries are non-uniformly distributed. As an extreme
case of non-uniformity, if all queries are for the minimum element, the lazy search tree
performs as a priority queue with O(log log n) time insert and decrease-key operations. The
same data structure supports queries for any rank, interpolating between binary search trees
and efficient priority queues.

Lazy search trees can be implemented to operate mostly on arrays, requiring only
O(min(q, n)) pointers, suggesting smaller memory footprint, better constant factors, and
better cache performance compared to many existing efficient priority queues or binary search
trees. Via direct reduction, our data structure also supports the efficient access theorems
of the splay tree, providing a powerful data structure for non-uniform element access, both
when the number of accesses is small and large.
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4.9 Random Access in Persistent Strings
Inge Li Gørtz (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 4.0 International license
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Joint work of Inge Li Gørtz, Philip Bille
Main reference Philip Bille, Inge Li Gørtz: “Random Access in Persistent Strings”, in Proc. of the 31st International

Symposium on Algorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong Kong,
China (Virtual Conference), LIPIcs, Vol. 181, pp. 48:1–48:16, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020.

URL https://doi.org/10.4230/LIPIcs.ISAAC.2020.48
Main reference Philip Bille, Inge Li Gørtz: “Random Access in Persistent Strings”, CoRR, Vol. abs/2006.15575,

2020.
URL https://arxiv.org/abs/2006.15575

We consider compact representations of collections of similar strings that support random
access queries. The collection of strings is given by a rooted tree where edges are labeled by
an edit operation (inserting, deleting, or replacing a character) and a node represents the
string obtained by applying the sequence of edit operations on the path from the root to the
node. The goal is to compactly represent the entire collection while supporting fast random
access to any part of a string in the collection. This problem captures natural scenarios
such as representing the past history of an edited document or representing highly-repetitive
collections. Given a tree with n nodes, we show how to represent the corresponding collection
in O(n) space and O(log n/ log log n) query time. This improves the previous time-space
trade-offs for the problem. Additionally, we show a lower bound proving that the query
time is optimal for any solution using near-linear space. To achieve our bounds for random
access in persistent strings we show how to reduce the problem to the following natural
geometric selection problem on line segments. Consider a set of horizontal line segments
in the plane. Given parameters i and j, a segment selection query returns the jth smallest
segment (the segment with the jth smallest y-coordinate) among the segments crossing the
vertical line through x-coordinate i. The segment selection problem is to preprocess a set of
horizontal line segments into a compact data structure that supports fast segment selection
queries. We present a solution that uses O(n) space and support segment selection queries
in O(log n/ log log n) time, where n is the number of segments. Furthermore, we prove that
that this query time is also optimal for any solution using near-linear space.

4.10 Parallel Batch-Dynamic Triangle Counting
Quanquan C. Liu (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
© Quanquan C. Liu

Joint work of Laxman Dhulipala, Quanquan C. Liu, Julian Shun, Shangdi Yu
Main reference Laxman Dhulipala, Quanquan C. Liu, Julian Shun: “Parallel Batch-Dynamic k-Clique Counting”,

CoRR, Vol. abs/2003.13585, 2020.
URL https://arxiv.org/abs/2003.13585

In this talk, we present new batch-dynamic algorithms for the triangle counting problem,
which are dynamic algorithms where the updates are batches of edge insertions and deletions.
We study this problem in the parallel setting, where the goal is to obtain algorithms with low
(polylogarithmic) depth. The result we provide in this talk is a new parallel batch-dynamic
triangle counting algorithm with O(

√
m) amortized work per update and O(log(m)) depth

with high probability, and O(B + m) space for a batch of B edge insertions or deletions. We
also present a multicore CPU implementation of our parallel batch-dynamic triangle counting
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algorithm. On a 72-core machine with two-way hyper-threading, our implementation achieves
36.54–74.73× parallel speedup, and in certain cases achieves significant speedups over existing
parallel algorithms for the problem, which are not theoretically-efficient.

4.11 Open-Addressing Hashing on GPUs
John Owens (University of California, Davis, US)

License Creative Commons BY 4.0 International license
© John Owens

Joint work of Muhammad Awad, Saman Ashkiani, Serban Porumbescu, Martín Farach-Colton, John Owens

We describe the implementation and performance of several open-addressing-based hash
table designs on GPUs: cuckoo hashing; bucketed cuckoo hashing; power-of-two-choices
hashing; and iceberg hashing. We target query rate, build rate, and load factor as our metrics
of choice, and static-sized workloads with large batches. In general, a three-hash-function
bucketed cuckoo hash implementation with a bucket size of 16 was the best performer overall.

4.12 Connecting MapReduce Computations to Realistic Machine
Models

Peter Sanders (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 4.0 International license
© Peter Sanders

Main reference Peter Sanders: “Connecting MapReduce Computations to Realistic Machine Models”, CoRR,
Vol. abs/2002.07553, 2020.

URL https://arxiv.org/abs/2002.07553

We explain how the popular, highly abstract MapReduce model of parallel computation
(MRC/MPC) can be rooted in reality by showing how to execute MapReduce computations
robustly and efficiently on realistic distributed-memory parallel machines. First, a refined
model MRC+ is introduced that includes parameters for total work w, bottleneck work ŵ,
data volume m, and maximum object sizes m̂. Then matching upper and lower bounds
are established for executing a MapReduce calculation on distributed-memory machines –
Θ(w/p + ŵ + log p) work and Θ(m/p + m̂ + log p) bottleneck communication volume using p

processing elements. The theorem is formulated in such a way that multiple MapReduce
steps can be chained. The result is obtained using a careful combination of several load
balancing algorithms some of which may be of independent interest.

This also appeared at IEEE BigData 2020.
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4.13 Parallel SSSP using Lazy Batch Priority Queues
Yihan Sun (University of California – Riverside, US)

License Creative Commons BY 4.0 International license
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Joint work of Xiaojun Dong, Yan Gu, Yihan Sun, Yunming Zhang
Main reference Xiaojun Dong, Yan Gu, Yihan Sun, Yunming Zhang: “Efficient Stepping Algorithms and

Implementations for Parallel Shortest Paths”, CoRR, Vol. abs/2105.06145, 2021.
URL https://arxiv.org/abs/2105.06145

In this paper, we study the single-source shortest-path (SSSP) problem with nonnegative
edge weights, which is a notoriously hard problem in the parallel context. In practice, the
∆-stepping algorithm proposed by Meyer and Sanders has been widely adopted.

However, ∆-stepping has no known worst-case bounds for general graphs. The performance
of ∆-stepping also highly relies on the parameter ∆, which requires exhaustive tuning. There
have also been lots of theoretical algorithms, such as Radius-stepping, but they either have
no implementations available or are much slower than ∆-stepping in practice.

In this paper, we propose a stepping algorithm framework that generalizes existing
algorithms such as ∆-stepping and Radius-stepping, and a new abstract data type, lazy-
batched priority queue, or LaB-PQ, that abstracts the semantics of the priority queue
needed by the stepping algorithms. The framework allows all stepping algorithms, whether
theoretical or practical, to be analyzed similarly and implemented similarly. We provide two
data structures to support LaB-PQ, with the goal of theoretical and practical efficiency,
respectively.

Based on the new framework and the new LaB-PQ, we show a new stepping algorithm, ρ-
stepping, that is simple, supporting worst-case cost bounds, fast in practice, and preprocessing-
free. Meanwhile, we also show new bounds for a list of existing algorithms, including
Radius-Stepping, ∆∗-stepping (our new variant of ∆-stepping), and others.

The stepping algorithm framework also provides almost identical implementations for
three algorithms: Bellman-Ford, ∆∗-stepping, and ρ-stepping. We compare our performance
with four state-of-the-art implementations. On the five social and web graphs, our ρ-stepping
is at least 20% faster than all the existing implementations. On the two road graphs, our
∆∗-stepping is at least 20% faster than existing implementations, while our ρ-stepping is
also competitive. The almost identical implementations also allow for in-depth analyses and
comparisons among the stepping algorithms in practice.

4.14 Similarity Search with Tensor Core Units
Francesco Silvestri (University of Padova, IT)

License Creative Commons BY 4.0 International license
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Joint work of Thomas D. Ahlem, Francesco Silvestri
Main reference Thomas D. Ahle, Francesco Silvestri: “Similarity Search with Tensor Core Units”, in Proc. of the

Similarity Search and Applications – 13th International Conference, SISAP 2020, Copenhagen,
Denmark, September 30 – October 2, 2020, Proceedings, Lecture Notes in Computer Science,
Vol. 12440, pp. 76–84, Springer, 2020.

URL https://doi.org/10.1007/978-3-030-60936-8_6

Tensor Core Units (TCUs) are hardware accelerators developed for deep neural networks,
which efficiently support the multiplication of two dense

√
m ×

√
m matrices, where m is a

given hardware parameter. In this talk, we show that TCUs can speed up similarity search
problems as well. We propose algorithms for the Johnson-Lindenstrauss dimensionality
reduction and for similarity join that, by leveraging TCUs, achieve a

√
m speedup up with

respect to traditional approaches.
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4.15 Parallel Batch Dynamic Algorithms
Guy E. Blelloch (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 4.0 International license
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Joint work of Daniel Anderson, Guy E. Blelloch
Main reference Daniel Anderson, Guy E. Blelloch: “Parallel Minimum Cuts in O(m log2(n)) Work and Low Depth”,

CoRR, Vol. abs/2102.05301, 2021.
URL https://arxiv.org/abs/2102.05301

In the talk I present work on dynamic algorithms that process batches of operations as well
as individual operations. The advantage being that it allows for parallelism. I first present
a batch incremental algorithm for MST, and describe some applications to sliding window
updates. I then describe an approach to apply mixed batches of queries and updates on trees
in parallel. This is used as part of recent results on a parallel algorithm for min-cut.

4.16 Fully Dynamic (∆ + 1)-Vertex Coloring in Constant Time per
Operation

Monika Henzinger (Universität Wien, AT)

License Creative Commons BY 4.0 International license
© Monika Henzinger

Joint work of Monika Henzinger, Pan Peng
Main reference Monika Henzinger, Pan Peng: “Constant-Time Dynamic (∆+1)-Coloring”, in Proc. of the 37th

International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13,
2020, Montpellier, France, LIPIcs, Vol. 154, pp. 53:1–53:18, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020.

URL https://doi.org/10.4230/LIPIcs.STACS.2020.53

We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time
per update that maintains a proper (∆ + 1)-vertex coloring of a graph with maximum degree
at most ∆. This improves upon the previous O(log ∆)-time algorithm by Bhattacharya et
al. (SODA 2018). Our algorithm uses an approach based on assigning random ranks to
vertices and does not need to maintain a hierarchical graph decomposition. We show that our
result does not only have optimal running time, but is also optimal in the sense that already
deciding whether a ∆-coloring exists in a dynamically changing graph with maximum degree
at most ∆ takes Ω(log n) time per operation.
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4.17 Constant-length Labelling Schemes for Deterministic Radio
Broadcast

Faith Ellen (University of Toronto, CA)
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2019.
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Main reference Faith Ellen, Seth Gilbert: “Constant-Length Labelling Schemes for Faster Deterministic Radio
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Broadcast is a fundamental network communication primitive, in which a source node has
a message that has to be received by all other nodes. In synchronous radio networks, this
problem is non-trivial. This follows from the fact that, if two or more neighbours of a node
transmit at the same time, it hears nothing. In fact, if nodes do not store any information,
broadcast is impossible deterministically, even in a four-cycle. If the nodes have distinct
identifiers from a small name space, then a round-robin strategy suffices, but it takes a long
time.

This talk will show that every radio network can be labelled using a small constant
number of bits so that broadcast can be accomplished by a fixed deterministic algorithm
that does not know the network topology nor any bound on its size. Specifically, there is
a labelling scheme that stores 2 (carefully chosen) bits per nodes that allows broadcast to
be performed in O(n) rounds, where n is the size of the network. There is a variant of this
algorithm using 4 bits per node that completes broadcast in O(

√
Dn) rounds, where D is

the source eccentricity of the network. This number of rounds is shown to be optimal for a
class of algorithms that includes both.

Then, using ideas from some old algorithms, which assume nodes have distinct identifiers,
a deterministic algorithm is constructed that uses 3 bits per node and completes in O(D log2 n)
rounds. A randomized construction of a labelling scheme with 3 bits per node for a broadcast
algorithm that completes in O(D log n + log2 n) rounds is also presented.

This talk is based on a SPAA 2019 paper with Barun Gorain, Avery Miller, and Andrzej
Pelc and a SPAA 2020 paper with Seth Gilbert.

4.18 Using GPUs to Solve the Maximum Clique Problem
Afton Noelle Geil (University of California, Davis, US)

License Creative Commons BY 4.0 International license
© Afton Noelle Geil

In this talk, I discuss different maximum clique algorithms and their suitability for imple-
mentation on GPUs. First, I consider depth-first branch and bound strategies, which have
been used for previous parallel implementations on CPUs, but present significant challenges
for efficient implementation on GPUs. I then discuss my implementation of a breadth-first
maximum clique algorithm, which exposes much more parallel work for the thousands of
GPU threads. I describe methods for utilizing bounds for pruning in the breadth-first
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traversal to eliminate many candidate cliques; however, even with this pruning, these memory
requirements are still excessive for computing breadth-first maximum clique on many graphs.
Finally, I propose using a hybrid, tunable, breadth-/depth-first traversal of the search tree
as a method of balancing the available parallelism and memory requirements. This choice
enables us to choose a strategic ordering of vertices and to discover new lower bounds for
the maximum clique size more quickly than with the breadth-first implementation, thereby
increasing the effectiveness of the search tree pruning.

4.19 Atomic Power in Forks
Nodari Sitchinava (University of Hawaii at Manoa – Honolulu, US)
Riko Jacob (IT University of Copenhagen, DK)
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Lower Bound for Implementing Butterfly Networks in the Nonatomic Binary Fork-Join Model”, in
Proc. of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 – 13, 2021, pp. 2141–2153, SIAM, 2021.
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We prove an Ω(log n log log n) lower bound for the span of implementing the n input, log n-
depth FFT circuit (also known as butterfly network) in the nonatomic binary fork-join model.
In this model, memory-access synchronizations occur only through fork operations, which
spawn two child threads, and join operations, which resume a parent thread when its child
threads terminate. Our bound is asymptotically tight for the nonatomic binary fork-join
model, which has been of interest of late, due to its conceptual elegance and ability to capture
asynchrony. Our bound implies super-logarithmic lower bound in the nonatomic binary
fork-join model for implementing the butterfly merging networks used, e.g., in Batcher’s
bitonic and odd-even mergesort networks. This lower bound also implies an asymptotic
separation result for the atomic and nonatomic versions of the fork-join model, since, as we
point out, FFT circuits can be implemented in the atomic binary fork-join model with span
equal to their circuit depth.

4.20 SplinterDB: A NVMe Key-Value Store on the Iacono-Patrascu
Lower Bound

Alex Conway (VMware Research – Palo Alto, US)

License Creative Commons BY 4.0 International license
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Joint work of Vijay Chidambaram, Martin Farach-Colton, Abhishek Gupta, Rob Johnson, Richard Spillane, Amy
Tai

NVMe and NVRAM present new challenges and opportunities to the world of storage systems.
For example, RocksDB, a state-of-the-art key-value store, may use 30% or less of a single
device’s bandwidth for insertions, even when using many cores. Because key-value store
performance is essential to overall application performance, this can be a critical bottleneck.

In this talk, I discuss how to understand and model performance on NVMe and how to
design theoretically optimal data structures which are also fast in practice.
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I present SplinterDB, a key-value store which can saturate an NVMe device with low IO
amplification under a wide range of parameters. SplinterDB outperforms RocksDB by 6-9x
on write-heavy workloads, and by 30-80% on read-heavy workloads.

4.21 Dynamic Stable Perfect Hashing, Extendable?!
Guy Even (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
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Joint work of Ioana Bercea, Guy Even

A dynamic stable perfect hashing is an injective function that assigns hashcodes in a given
range to elements in a dynamically changing set such that the hashcode of an element does
not change while the element is continuously in the set. We study the problem of maintaining
a perfect hash function in the extendable setting, in which the goal is to design data structures
whose space requirements adapt to the current cardinality of the set at all points in time.

It is not possible to support stable perfect hashing of fully dynamic sets (i.e., insertions
and deletions). However, we show that it is possible to support insertions (and a few deletions
provided that they only slightly reduce the cardinality). We refer to a model in which
insertions are allowed (but without deletions) as the “incremental model”.

We overview the previous constructions of stable dynamic perfect in the non-extendable
setting by Mortensen, Pagh, Patrascu [2005] and Demaine, Mayer auf der Hyde, Pagh,
Patrascu [2006]. Our observation is that these constructions are two level constructions
in which the first level is, in fact, a filter without duplicates. Each level also contains a
repository for free hashcodes.

Since extendable constructions for dictionaries and filters are known, the missing com-
ponent for incremental stable hashing is extendable hashcode repositories (which we refer to
as “motels”). We distinguish between two issues in the design of motels. The first issue is
that over-provisioning in motels leads to an increase in the range of the perfect hashing. The
second issue is that bigger motels (i.e., bins for hashcode repositories) lead to improved load
balancing, thus reducing the probability of an overflow.

We present an extendable motel design. Our construction involves splitting of a motel
in to two motels as the number of elements increases in a way that retains hashcodes of
elements as long as they are continuously in the dataset.

To summarize, we present an extendable incremental stable perfect hashing data structure
with the following properties. Let nt denote the cardinality of the dataset at time t. We
assume that nmin ≤ nt ≤ nmax, where nmax/nmin = n

O(1)
min . (Thus, we allow a polynomial

number of insert operations.) The space of the data structure at time t is O(nt · log log nt).
Each query and insertion is completed in constant time in the worst case. The range of the
perfect hashing at time t is [nt + rt], where rt = nt/logO(1)nt. The probability that an insert
operation causes a failure is 1/poly(nmax). As a corollary, we obtain an extendable data
structure for retrieval in the incremental setting.
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4.22 Dictionary Look-up with Mismatches
Tatiana Starikovskaya (ENS – Paris, FR)
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Main reference Vincent Cohen-Addad, Laurent Feuilloley, Tatiana Starikovskaya: “Lower bounds for text indexing
with mismatches and differences”, in Proc. of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 1146–1164,
SIAM, 2019.

URL https://doi.org/10.1137/1.9781611975482.70
Main reference Pawel Gawrychowski, Tatiana Starikovskaya: “Streaming Dictionary Matching with Mismatches”, in

Proc. of the 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20,
2019, Pisa, Italy, LIPIcs, Vol. 128, pp. 21:1–21:15, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019.

URL https://doi.org/10.4230/LIPIcs.CPM.2019.21
Main reference Pawel Gawrychowski, Gad M. Landau, Tatiana Starikovskaya: “Fast Entropy-Bounded String

Dictionary Look-Up with Mismatches”, in Proc. of the 43rd International Symposium on
Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK,
LIPIcs, Vol. 117, pp. 66:1–66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

URL https://doi.org/10.4230/LIPIcs.MFCS.2018.66

In the problem of dictionary look-ups with k mismatches, we are given a dictionary of strings
and must preprocess it into the data structure that supports the following queries: given a
string Q, find all strings in the dictionary within Hamming distance k from Q. We discuss
recent advances for this problem, both on the upper bound side and the lower bound side.

4.23 New Techniques for Proving Fine-Grained Average-Case Hardness
Andrea Lincoln (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
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Joint work of Mina Dalirrooyfard, Andrea Lincoln, Virginia Vassilevska Williams.
Main reference Mina Dalirrooyfard, Andrea Lincoln, Virginia Vassilevska Williams: “New Techniques for Proving

Fine-Grained Average-Case Hardness”, CoRR, Vol. abs/2008.06591, 2020.
URL https://arxiv.org/abs/2008.06591

In this talk I will cover a new technique for worst-case to average-case reductions. There
are two primary concepts introduced in this talk: “factored” problems and a framework
for worst-case to average-case fine-grained (WCtoACFG) self reductions. We will define
new versions of OV, kSUM and zero-k-clique that are both worst-case and average-case
fine-grained hard assuming the core hypotheses of fine-grained complexity. We then use these
as a basis for fine-grained hardness and average-case hardness of other problems. Our hard
factored problems are also simple enough that we can reduce them to many other problems,
e.g. to edit distance, k-LCS and versions of Max-Flow. We further consider counting variants
of the factored problems and give WCtoACFG reductions for them for a natural distribution.
To show hardness for these factored problems we formalize the framework of [Boix-Adsera
et al. 2019] that was used to give a WCtoACFG reduction for counting k-cliques. We
define an explicit property of problems such that if a problem has that property one can use
the framework on the problem to get a WCtoACFG self reduction. In total these factored
problems and the framework together give tight fine-grained average-case hardness for various
problems including the counting variant of regular expression matching.
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4.24 Self-adjusting Trees and Heaps
László Kozma (FU Berlin, DE)
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Self-adjusting data structures allow a flexible structure, with little or no bookkeeping, and
are usually easy to implement. Their analysis is, however, often difficult, requiring the
development of sophisticated potential functions or other techniques. There are several
natural self-adjusting strategies, variants of classical algorithms, that seem reasonable, but
whose analysis is lacking or incomplete. In my talk I review a number of results and open
questions related to such structures.

4.25 Vector Quotient Filters: Overcoming the Time/Space Trade-Off in
Filter Design

Rob Johnson (VMware – Palo Alto, US)
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4.26 Fragile Complexity of Adaptive Algorithms
Rolf Fagerberg (University of Southern Denmark – Odense, DK)

License Creative Commons BY 4.0 International license
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Joint work of Prosenjit Bose, Pilar Cano, Rolf Fagerberg, John Iacono, Riko Jacob, Stefan Langerman
Main reference Prosenjit Bose, Pilar Cano, Rolf Fagerberg, John Iacono, Riko Jacob, Stefan Langerman: “Fragile

Complexity of Adaptive Algorithms”, CoRR, Vol. abs/2102.00338, 2021.
URL https://arxiv.org/abs/2102.00338

The fragile complexity of a comparison-based algorithm is f(n) if each input element
participates in O(f(n)) comparisons. We explore the fragile complexity of algorithms
adaptive to various restrictions on the input, i.e., algorithms with a fragile complexity
parameterized by a quantity other than the input size n. We show that searching for the
predecessor in a sorted array has fragile complexity Θ(log k), where k is the rank of the
query element, both in a randomized and a deterministic setting. For predecessor searches,
we also show how to optimally reduce the amortized fragile complexity of the elements
in the array. We also prove the following results: Selecting the kth smallest element has
expected fragile complexity O(log log k) for the element selected. Deterministically finding
the minimum element has fragile complexity Θ(log(Inv)) and Θ(log(Runs)), where Inv is the
number of inversions in a sequence and Runs is the number of increasing runs in a sequence.
Deterministically finding the median has fragile complexity O(log(Runs) + log log n) and
Θ(log(Inv)). Deterministic sorting has fragile complexity Θ(log(Inv)) but it has fragile
complexity Θ(log n) regardless of the number of runs.
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4.27 Searching Knowledge Graphs with Billions of Edges
Hannah Bast (Universität Freiburg, DE)
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Joint work of Hannah Bast, Johannes Kalmbach
Main reference Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer, Niklas Schnelle: “Efficient

SPARQL Autocompletion via SPARQL”, CoRR, Vol. abs/2104.14595, 2021.
URL https://arxiv.org/abs/2104.14595

In the talk, I gave a quick introduction to knowledge graphs and their standard query language
SPARQL, a variant of SQL. I presented QLever, our SPARQL engine that can efficiently
answer queries on knowledge graphs with tens of billions of triples on a single machine.
SPARQL queries can be very complex and hard to formulate even for experts. I presented
an autocompletion mechanism that allows a user to type SPARQL queries incrementally by
obtaining, after each keystroke, context-sensitive suggestions on how to continue the query.
The beauty of the mechanism is that the suggestions are themselves SPARQL queries, which
are supported by QLever efficiently enough to enable interactive suggestions even for huge
knowledge graphs. This feat is achieved by no other SPARQL engine on the market.

5 Open problems

In addition to the many open problems mentioned during the talks, the seminar on Wednesday
included an open problem session during which the following problems were discussed.

5.1 Open Problem 1: A Suggestion for the Extension of the Word RAM
Model

Guy Even (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
© Guy Even

The Word RAM Model was formulated by Fredman and Willard in 1990. This formulation
was invented as an answer to the sorting algorithm of Paul and Simon [1984] that sorts in
linear time but uses operands whose length is n2 log u bits long. The Word length (in bits)
is denoted by w and it satisfies w = log u, where u denotes the size of the universe. Thus,
every element can be represented by a single word. One can access (read or write) a word
in memory in constant time. In addition, the following instructions require constant time:
addition, subtraction, multiplication, division, shifting, and bitwise operations (AND, OR,
XOR). Works based on the Word RAM Model often employ sophisticated manipulations
to perform fast computations using only the basic instructions of the Word RAM Model
(see Baumann and Hagerup 2018 and references therein). Circuits that implement the
constant-time arithmetic instructions of the Word RAM model require logarithmic depth.
The size of practical multipliers is quadratic. In light of this fact, we propose the following
extension of the Word RAM model.
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Extended Word RAM Model

Extend the Word RAM Model so that every Boolean function over O(w) bits that can be
computed by a circuit of depth O(log w) and size O(w2) is executable in constant time. Why
extend the Word RAM model?

1. The set of instructions in the Word RAM model is simply taken from instructions that
are available in CPU’s (naturally, the execution of these instructions requires a constant
number of clock cycles).

2. Spare us from the pain of “bit-games” needed to implement new instructions using old
instructions.

3. If a new instruction is useful, it will be added to CPU instruction sets and a special
circuit will be used to compute this instruction.

5.2 Open Problem 2: Dynamic All Pairs Shortest Paths
Monika Henzinger (Universität Wien, AT)

License Creative Commons BY 4.0 International license
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Give a fully dynamic algorithm for all pairs shortest paths (APSP) with Õ(m) time per
update operation and Õ(1) time per query.

5.3 Open Problem 3: Sequences of Heap Operations
László Kozma (FU Berlin, DE)

License Creative Commons BY 4.0 International license
© László Kozma

Consider a simple heap supporting two operations: Insert and DeleteMin. In the
comparison model one of the two operations must take Ω(lg n) time if the heap has n

elements by the lower bound for sorting. What is the complexity if the sequence of operations
is known in advance and we must report the remaining elements? E.g. for the sequence

Ins(5), Ins(3), Ins(7), DeleteMin, Ins(9), Ins(6), Ins(10), DeleteMin, DeleteMin

we must report the elements 7, 9, 10. Can we compute the result in o(n lg n) or maybe O(n)
comparisons?

Observation 1

The number of possible answers is < 2n, which means the simple lower does not apply.

Observation 2

If all Insert operations are before all DeleteMin operations we can report the elements in
O(n) time using linear time selection.
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