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Abstract
This report documents the program and activities of Dagstuhl Seminar 21121 “Computational
Complexity of Discrete Problems,” which was held online in March 2021. Starting with a
description of the organization of the online meeting and the topics covered, we then list the
different talks given during the seminar in alphabetical order of speakers, followed by the abstracts
of the talks, including the main references and relevant sources where applicable. Despite the fact
that only a compressed daily time slot was available for the seminar with participants from time
zones spanning the whole globe and despite the fact that informal discussions were harder to hold
than in a typical on-site seminar, the rate of participation throughout the seminar was very high
and many lively scientific debates were held.
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1 Executive Summary

Anna Gál (University of Texas, Austin, Unites States)
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Computational complexity studies the amount of resources (such as time, space, randomness,
or communication) that are necessary to solve computational problems in various models
of computation. Finding efficient algorithms for solving computational tasks is crucial for
practical applications. Despite a long line of research, for many problems that arise in practice
it is not known if they can be solved efficiently – in particular, in polynomial time. Beside
questions about the existence of polynomial time algorithms for problems like Satisfiability
or Factoring, where the best known algorithms run in exponential time, there is a huge
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class of practical problems where algorithms with polynomial running time (such as cubic
or even quadratic time) are known, but it would be important to establish whether these
running times are best possible, to what extent they can be improved, and whether parallel
algorithms allow improvements of the runtime.

These fundamental questions motivate developments in various areas from algorithm
design to circuit complexity, communication complexity and proof complexity. During this
Dagstuhl Seminar 21121, some of the most exciting recent developments in those areas
related to computational complexity were presented in a series of talks. The seminar was the
most recent one in the series of Dagstuhl Seminars entitled “Computational Complexity of
Discrete Problems” – seminars 19121, 17121, 14121, 11121.

Owing to the pandemic and associated travel restrictions, the seminar was held in a purely
online format. With 52 researchers from across the world participating in the event, resident
in time zones ranging from Japan to California, the window for common acceptable time slots
was small. We decided to have a two-hour time slot each day for technical sessions, followed
by an additional hour or more each day for social interactions. The Webex platform was
used for technical sessions, and gather.town additionally for some of the social interactions.
Despite the challenges of making the online event interesting given the ubiquitous screen-time
fatigue, the meetings saw high participation level (between at least 80% and typically over
90% participation on all days) and were highly interactive – primarily due to the excellent
nature of the given talks.

The seminar started with the creation of a “graph of interests” (using a Miro whiteboard),
enabling participants to discover shared research interests with other participants. Following
this, during the week, there were 20 research talks, coming from a range of topics including
lower bounds on formula size and circuit size, complexity measures of Boolean functions,
the algorithmic method for proving lower bounds, fixed parameter tractability and hardness
magnification, communication complexity and lifting techniques, as well as proof complexity.
Some specific results presented include:

An improved lower bound, after many years, on the number of hyperplanes needed to
slice all edges of the Boolean hypercube.
A lower bound for monotone arithmetic circuit size using techniques from communication
complexity.
A new potential technique for de Morgan formula lower bounds.
More refined notions of unambiguous certificate complexity and block sensitivity, with a
separation that lifts to communication complexity.

The titles and abstracts of all the talks appear later in this report.
In addition, there was a rump session with short talks by Amit Chakrabarti, Amit

Sinhababu, and Prahladh Harsha.
On the social interactions front, in the designated coffee slots there were some meet-

random-people-in-a-break-out sessions. The traditional Wednesday hike was replaced by a
“virtual hike” using Google Earth imagery, that went over one of the shorter hike trails near
Schloss Dagstuhl and then virtually visited some participants’ institutes. The “wine-cheese-
music party” became an online party on gather.town following the Schloss Dagstuhl map,
and included music, games, and a commentary on the hardness of travelling.

The organizers, Anna Gál, Meena Mahajan, Rahul Santhanam, and Till Tantau, thank
all participants for the many contributions they made. We would also like to especially
thank the Dagstuhl staff for their cooperation in the current challenging circumstances,
their encouragement for going ahead with an online event, and their unstinted help with
organizational matters. We would also like to thank Max Bannach for his invaluable help
assembling and preparing this report.
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3 Overview of Talks

3.1 Cryptographic Hardness under Projections for Time-Bounded
Kolmogorov Complexity

Eric Allender (Rutgers University – Piscataway, US)

License Creative Commons BY 4.0 International license
© Eric Allender

Joint work of Eric Allender, John Gouwar, Shuichi Hirahara, Caleb Robelle
Main reference Eric Allender, John Gouwar, Shuichi Hirahara, Caleb Robelle: “Cryptographic Hardness under

Projections for Time-Bounded Kolmogorov Complexity”, Electron. Colloquium Comput. Complex.,
Vol. 28, p. 10, 2021.

URL https://eccc.weizmann.ac.il/report/2021/010

A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in
the past several years, due to its close connection to circuit complexity and to the Minimum
Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also
for MKTP (the problem of computing the KT complexity of a string). Both MKTP and
MCSP are hard for SZK (Statistical Zero Knowledge) under BPP-Turing reductions; neither
is known to be NP-complete. Recently, some hardness results for MKTP were proved that
are not (yet) known to hold for MCSP. In particular, MKTP is hard for DET (a subclass of
P) under nonuniform NC0 m-reductions.

We improve this, to show that MKTP is hard for the (apparently larger) class NISZKL

under not only NC0 m-reductions but even under projections. Also MKTP is hard for NISZK
under P/poly m-reductions. Here, NISZK is the class of problems with non-interactive
zero-knowledge proofs, and NISZKL is the non-interactive version of the class SZKL that
was studied by Dvir et al.

As an application, we provide several improved worst-case to average-case reductions to
problems in NP.

This is joint work with John Gouwar, Shuichi Hirahara, and Caleb Robelle.

3.2 Dynamic Kernels for Hitting Sets and Set Packing
Max Bannach (Universität zu Lübeck, DE)

License Creative Commons BY 4.0 International license
© Max Bannach

Joint work of Max Bannach, Zacharias Heinrich, Rüdiger Reischuk, Till Tantau
Main reference Max Bannach, Zacharias Heinrich, Rüdiger Reischuk, Till Tantau: “Dynamic Kernels for Hitting

Sets and Set Packing”, Electron. Colloquium Comput. Complex., Vol. 26, p. 146, 2019.
URL https://eccc.weizmann.ac.il/report/2019/146

Computing kernels for the hitting set problem (the problem of finding a size-k set that
intersects each hyperedge of a hypergraph) is a well-studied computational problem. For
hypergraphs with m hyperedges, each of size at most d, the best algorithms can compute
kernels of size O(kd) in time O(2dm). We generalize this task to the dynamic setting where
hyperedges may be continuously added and deleted and we always have to keep track of
a hitting set kernel (including moments when no size-k hitting set exists). We present a
deterministic solution, based on a novel data structure, that needs worst-case time O∗(3d)
for updating the kernel upon hyperedge inserts and time O∗(5d) for updates upon deletions –
thus nearly matching the time O∗(2d) needed by the best static algorithm per hyperedge.
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3.3 Quantified Boolean formulas: proofs, solving, and circuits
Olaf Beyersdorff (Universität Jena, DE)

License Creative Commons BY 4.0 International license
© Olaf Beyersdorff

Joint work of Beyersdorff, Olaf, Benjamin Böhm, Meena Mahajan, Joshua Blinkhorn
Main reference Olaf Beyersdorff, Benjamin Böhm: “Understanding the Relative Strength of QBF CDCL Solvers and

QBF Resolution”, in Proc. of the 12th Innovations in Theoretical Computer Science Conference,
ITCS 2021, January 6-8, 2021, Virtual Conference, LIPIcs, Vol. 185, pp. 12:1–12:20, Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021.

URL https://doi.org/10.4230/LIPIcs.ITCS.2021.12
Main reference Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan: “Hardness Characterisations and Size-Width

Lower Bounds for QBF Resolution”, in Proc. of the LICS ’20: 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pp. 209–223, ACM, 2020.

URL https://doi.org/10.1145/3373718.3394793

This talk will start with an overview of the relatively young field of QBF proof complexity,
explaining QBF proof systems (including QBF resolution) and an assessment of which lower
bound techniques are available for QBF proof systems. In the main part of the talk, I will
explain hardness characterisations for QBF proof systems in terms of circuit complexity,
yielding very direct connections between circuit lower bounds and QBF proof system lower
bounds. The talk will also cover the relations between QBF resolution and QCDCL solving
algorithms. Modelling QCDCL as proof systems we show that QCDCL and Q-Resolution
are incomparable.

This talk is based on two recent papers, joint with Joshua Blinkhorn and Meena Mahajan
(LICS’20) and with Benjamin Böhm (ITCS’21).

3.4 Majority versus Approximate Linear Sum and Average-Case
Complexity Below NC1

Igor Carboni Oliveira (University of Warwick – Coventry, GB)

License Creative Commons BY 4.0 International license
© Igor Carboni Oliveira

Joint work of Igor Carboni Oliviera, Lijie Chen, Zhenjian Lu, Xin Lyu
Main reference Lijie Chen, Zhenjian Lu, Xin Lyu, Igor Carboni Oliveira: “Majority vs. Approximate Linear Sum

and Average-Case Complexity Below NC1”, Electron. Colloquium Comput. Complex., Vol. 28, p. 40,
2021.

URL https://eccc.weizmann.ac.il/report/2021/040

We develop a general framework that characterizes strong average-case lower bounds against
circuit classes C contained in NC1, such as AC0[mod 2] and ACC0. We apply this framework
to show:

Generic seed reduction: Pseudorandom generators (PRGs) against C of seed length < n

and error ϵ = n−ω(1) can be converted into PRGs of sub-polynomial seed length.
Hardness under natural distributions: If E (deterministic exponential time) is average-case
hard against C under some distribution, then E is average-case hard against C under the
uniform distribution.
Equivalence between worst-case and average-case hardness: Worst-case lower bounds
against MAJ-C for problems in E are equivalent to strong average-case lower bounds
against C. This can be seen as a certain converse to the Discriminator Lemma [Hajnal et
al., JCSS’93].

These results were not known to hold for circuit classes that do not compute majority.
Additionally, we prove that classical and recent approaches to worst-case lower bounds
against ACC0 via communication lower bounds for NOF multi-party protocols [Hastad and
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Goldmann, CC’91; Razborov and Wigderson, IPL’93] and Torus polynomials degree lower
bounds [Bhrushundi et al., ITCS’19] also imply strong average-case hardness against ACC0

under the uniform distribution.
Crucial to these results is the use of non-black-box hardness amplification techniques

and the interplay between Majority (MAJ) and Approximate Linear Sum (apxSUM) gates.
Roughly speaking, while a MAJ gate outputs 1 when the sum of the m input bits is at least
m/2, a apxSUM gate computes a real-valued bounded weighted sum of the input bits and
outputs 1 (resp. 0) if the sum is close to 1 (resp. close to 0), with the promise that one
of the two cases always holds. As part of our framework, we explore ideas introduced in
[Chen and Ren, STOC’20] to show that, for the purpose of proving lower bounds, a top layer
MAJ gate is equivalent to a (weaker) apxSUM gate. Motivated by this result, we extend
the algorithmic method and establish stronger lower bounds against bounded-depth circuits
with layers of MAJ and apxSUM gates. Among them, we prove that:

Lower bound: NQP does not admit fixed quasi-polynomial size MAJ-apxSUM-ACC0-THR
circuits.

This is the first explicit lower bound against circuits with distinct layers of MAJ, apxSUM,
and THR gates. Consequently, if the aforementioned equivalence between MAJ and apxSUM
as a top gate can be extended to intermediate layers, long sought-after lower bounds against
the class THR-THR of depth-2 polynomial-size threshold circuits would follow.

3.5 Estimating Size of Union of Sets in Streaming Model
Sourav Chakraborty (Indian Statistical Institute – Kolkata, IN)

License Creative Commons BY 4.0 International license
© Sourav Chakraborty

Joint work of Sourav Chakraborty, Kuldeep Meel, N.V. Vinodchandran

We present a very simple and efficient sampling-based algorithm for estimating the union
of sets in the streaming setting. Suppose we have a collection of sets S1, . . . , SM subsets
of T , arriving one by one in a stream; the sets are not given explicitly to us but rather
defined implicitly via the following oracles: for each set, we can know the size of the set, get
a uniform sample from the set, and given a point check whether it belongs to the set. The
goal is to estimate the size of union of the sets S1, . . . , SM .

We present a simple algorithm that estimates the size of the union, upto a (1 + ϵ) factor,
in space complexity and update time complexity O(log(M) log(T )/ϵ2).

Our algorithm gives the best streaming solutions for various problems like the Klee
Measure, Test Coverage Estimation, and DNF Model Counting. Our algorithm provides
the first algorithm with linear dependence on the dimension for Klee’s measure problem in
streaming setting, thereby settling the open problem of Woodruff and Tirthpura (PODS-12).

This work is from a recent paper, with Kuldeep Meel and Vinodchandran, that was
accepted to PODS recently.
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3.6 Lower Bounds for Monotone Arithmetic Circuits Via
Communication Complexity

Arkadev Chattopadhyay (TIFR – Mumbai, IN)

License Creative Commons BY 4.0 International license
© Arkadev Chattopadhyay

Joint work of Arkadev Chattopadhyay, Rajit Datta, Partha Mukhopadhyay
Main reference Arkadev Chattopadhyay, Rajit Datta, Partha Mukhopadhyay: “Lower bounds for monotone

arithmetic circuits via communication complexity”, in Proc. of the STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pp. 786–799,
ACM, 2021.

URL https://doi.org/10.1145/3406325.3451069

Valiant (1980) showed that general arithmetic circuits with negation can be exponentially
more powerful than monotone ones. We give the first improvement to this classical result: we
construct a family of polynomials Pn in n variables, each of its monomials has non-negative
coefficient, such that Pn can be computed by a polynomial-size depth-three formula but
every monotone circuit computing it has size 2Ω(n1/4/ log(n)). Moreover, our result shows an
exponential separation of the powers of multilinear and monotone arithmetic circuits for
computing a monotone polynomial. As far as we know, no super-polynomial separation was
known before our work.

The polynomial Pn embeds the SINK ◦ XOR function devised recently by Chattopadhyay,
Mande and Sherif (2020) to refute the Log-Approximate-Rank Conjecture in communication
complexity. To prove our lower bound for Pn, we develop a general connection between
corruption of combinatorial rectangles by any function f ◦ XOR and corruption of product
polynomials by a certain polynomial P f that is an arithmetic embedding of f . This connection
should be of independent interest.

Using further ideas from communication complexity, we construct another family of
set-multilinear polynomials fn,m such that both Fn,m − −ϵ · fn,m and Fn,m + ϵ · fn,m have
monotone circuit complexity 2Ω(n/ log(n)) if ϵ ≥ 2−Ω(m) and Fn,m :=

∏n
i=1

(
xi,1 + · · · + xi,m

)
,

with m = O(n/ log n). The polynomials fn,m have 0/1 coefficients and are in VNP. Proving
such lower bounds for monotone circuits has been advocated recently by Hrubeš (2020) as a
first step towards proving lower bounds against general circuits via his new approach.

3.7 Convex influences and a quantitative Gaussian correlation inequality
Anindya De (University of Pennsylvania – Philadelphia, US)

License Creative Commons BY 4.0 International license
© Anindya De

Joint work of Anindya De, Shivam Nadimpalli, Rocco Servedio
Main reference Anindya De, Shivam Nadimpalli, Rocco A. Servedio: “Quantitative Correlation Inequalities via

Semigroup Interpolation”, in Proc. of the 12th Innovations in Theoretical Computer Science
Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, LIPIcs, Vol. 185, pp. 69:1–69:20,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

URL https://doi.org/10.4230/LIPIcs.ITCS.2021.69

The Gaussian correlation inequality (GCI), proven by Royen in 2014, states that any
two centrally symmetric convex sets (say K and L) in the Gaussian space are positively
correlated. We will prove a new quantitative version of the GCI which gives a lower bound
on this correlation based on the “common influential directions” of K and L. This can
be seen as a Gaussian space analogue of Talagrand’s well known correlation inequality for
monotone functions. To obtain this inequality, we propose a new approach, based on analysis
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of Littlewood type polynomials, which gives a recipe to transfer qualitative correlation
inequalities into quantitative correlation inequalities. En route, we also give a new notion
of influences for convex symmetric sets over the Gaussian space which has many of the
properties of influences from Boolean functions over the discrete cube. Much remains to be
explored, in particular, about this new notion of influences for convex sets.

3.8 Bounded indistinguishability for simple sources
Yuval Filmus (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
© Yuval Filmus

Joint work of Yuval Filmus, Akshayaram Srinivasan, Andrej Bogdanov, Avi Kaplan, Krishnamoorthy Dinesh,
Yuval Ishai

Bogdanov, Ishai, Viola, and Williamson constructed a pair of
√

n-indistinguishable sources
X, Y which OR tells apart.

In contrast, Braverman showed that if X, Y are polylog(n)-indistinguishable and Y is
the uniform distribution, then X, Y fool all of AC0.

For which sources Y beside the uniform distribution does a Braverman-style theorem
hold?

3.9 Circuit Depth Reductions
Alexander Golovnev (Georgetown University – Washington, DC, US)

License Creative Commons BY 4.0 International license
© Alexander Golovnev

Joint work of Alexander Golovnev, Alexander S. Kulikov, Ryan Williams
Main reference Alexander Golovnev, Alexander S. Kulikov: “Circuit Depth Reductions”, CoRR,

Vol. abs/1811.04828, 2018.
URL https://arxiv.org/abs/1811.04828

The best known size lower bounds against unrestricted circuits have remained around 3n for
several decades. Moreover, the only known technique for proving lower bounds in this model,
gate elimination, is inherently limited to proving lower bounds of less than 5n. In this work,
we propose a non-gate-elimination approach for obtaining circuit lower bounds, via certain
depth-three lower bounds. We prove that every (unbounded-depth) circuit of size s can be
expressed as an OR of 2s/3.9 16-CNFs. For DeMorgan formulas, the best known size lower
bounds have been stuck at around n3−o(1) for decades. Under a plausible hypothesis about
probabilistic polynomials, we show that n4−ϵ-size DeMorgan formulas have 2n1−Ω(ϵ)-size
depth-3 circuits which are approximate sums of n1−Ω(ϵ)-degree polynomials over F2. While
these structural results do not immediately lead to new lower bounds, they do suggest new
avenues of attack on these longstanding lower bound problems.

Our results complement the classical depth-3 reduction results of Valiant, which show
that logarithmic-depth circuits of linear size can be computed by an OR of 2ϵnnδ-CNFs,
and slightly stronger results for series-parallel circuits. It is known that no purely graph-
theoretic reduction could yield interesting depth-3 circuits from circuits of super-logarithmic
depth. We overcome this limitation (for small-size circuits) by taking into account both the
graph-theoretic and functional properties of circuits and formulas.
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We show that improvements of the following pseudorandom constructions imply super-
linear circuit lower bounds for log-depth circuits via Valiant’s reduction: dispersers for
varieties, correlation with constant degree polynomials, matrix rigidity, and hardness for
depth-3 circuits with constant bottom fan-in. On the other hand, our depth reductions
show that even modest improvements of the known constructions give elementary proofs of
improved (but still linear) circuit lower bounds.

3.10 Unambiguous DNFs from Hex
Mika Göös (EPFL Lausanne, CH)

License Creative Commons BY 4.0 International license
© Mika Göös

Joint work of Mika Göös, Kaspars Balodis, Shalev Ben-David, Siddhartha Jain, Robin Kothari
Main reference Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari: “Unambiguous DNFs from Hex”,

Electron. Colloquium Comput. Complex., Vol. 28, p. 16, 2021.
URL https://eccc.weizmann.ac.il/report/2021/016

We exhibit an unambiguous k-DNF formula that requires CNF width Ω(k2). As a corollary,
we get a near-optimal solution for the Alon-Saks-Seymour problem in graph theory, which
asks: How large a gap can there be between the chromatic number of a graph and its bipartite
packing number?

3.11 Ideal-theoretic Explanation of Capacity-achieving codes
Prahladh Harsha (TIFR – Mumbai, IN)

License Creative Commons BY 4.0 International license
© Prahladh Harsha

Joint work of Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, Madhu Sudan
Main reference Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, Madhu Sudan: “Ideal-theoretic Explanation

of Capacity-achieving Decoding”, CoRR, Vol. abs/2103.07930, 2021.
URL https://arxiv.org/abs/2103.07930

In this work, we present an abstract framework for some algebraic error-correcting codes
with the aim of capturing codes that are list-decodable to capacity, along with their decoding
algorithm. In the polynomial ideal framework, a code is specified by some ideals in a
polynomial ring, messages are polynomials and their encoding is the residue modulo the
ideals. We present an alternate way of viewing this class of codes in terms of linear operators,
and show that this alternate view makes their algorithmic list-decodability amenable to
analysis. Our framework leads to a new class of codes that we call affine Folded Reed-Solomon
codes (which are themselves a special case of the broader class we explore). These codes
are common generalizations of the well-studied Folded Reed-Solomon codes and Multiplicity
codes, while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a
large family of codes that were not previously known/studied.

More significantly our framework also captures the algorithmic list-decodability of the
constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal
theoretic codes and show that the decodability reduces to the analysis of the distance of
some related codes. We show that good bounds on this distance lead to capacity-achieving
performance of the underlying code, providing a unifying explanation of known capacity-
achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework
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shows that they are list-decodable up to capacity (for appropriate setting of the parameters),
thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive
Folded Reed-Solomon codes.

3.12 Average-Case Hardness of NP from Exponential Worst-Case
Hardness Assumptions

Shuichi Hirahara (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 4.0 International license
© Shuichi Hirahara

Main reference Shuichi Hirahara: “Average-Case Hardness of NP from Exponential Worst-Case Hardness
Assumptions”, Electron. Colloquium Comput. Complex., Vol. 28, p. 58, 2021.

URL https://eccc.weizmann.ac.il/report/2021/058

Basing the average-case hardness of NP on the worst-case hardness of NP is a long-standing
and central open question in complexity theory, which is known as the question of excluding
Heuristica from Impagliazzo’s five possible worlds. It has been a long-standing open question
to base the average-case hardness of PH on the exponential worst-case hardness of UP, and
a large body of research has been devoted to explaining why standard proof techniques fail
to resolve the open question.

In this work, we develop new proof techniques and resolve the open question. We prove
that if UP is not in DTIME(2O(n/ log n)), then NP is hard on average. Our proofs are based
on the meta-complexity of time-bounded Kolmogorov complexity: We analyze average-case
complexity through the lens of worst-case meta-complexity by using several new notions such
as universal heuristic scheme and P-computable average-case polynomial-time.

3.13 Interactive Error Correcting Codes and the Magical Power of
Adaptivity

Gillat Kol (Princeton University, US)

License Creative Commons BY 4.0 International license
© Gillat Kol

Error correcting codes (ECCs) allow for reliable data transfer over noisy channels. They had a
profound impact on both the practical and theoretical communities, and over the last decades
were one of the main enablers of the digital revolution. However, modern communication
systems often go beyond one-way data transfer and instead operate over many rounds of
interactive communication between different parties. Interactive ECCs are a generalization
of classical ECCs, and they allow the conversion of any interactive communication protocol
to a noise resilient one. In this talk we will focus on a modeling decision that is unique to
interactive ECCs, namely, the order of communication, and see its impact on the existence
of good interactive ECCs.
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3.14 Network Coding Conjecture and Data Structure Lower Bounds
Michal Koucký (Charles University – Prague, CZ)

License Creative Commons BY 4.0 International license
© Michal Koucký

Joint work of Pavel Dvorák, Michal Koucký, Karel Král, Veronika Slívová
Main reference Pavel Dvorák, Michal Koucký, Karel Král, Veronika Slívová: “Data Structures Lower Bounds and

Popular Conjectures”, CoRR, Vol. abs/2102.09294, 2021.
URL https://arxiv.org/abs/2102.09294

In this talk I will present our new results on the relative power of several conjectures that
attracted recently a lot of interest. We establish a connection between the Network Coding
Conjecture of Li and Li (2010) and several data structure like problems such as non-adaptive
function inversion of Hellman (1980) and the well studied problem of polynomial evaluation
and interpolation. In turn these data structure problems imply super-linear circuit lower
bounds for explicit functions such as integer sorting and multi-point polynomial evaluation.

3.15 Complexity of Linear Operators
Alexander S. Kulikov (Steklov Institute – St. Petersburg, RU)

License Creative Commons BY 4.0 International license
© Alexander S. Kulikov

Joint work of Alexander S. Kulikov, Ivan Mikhailin, Andrey Mokhov, Vladimir V. Podolskii
Main reference Alexander S. Kulikov, Ivan Mikhailin, Andrey Mokhov, Vladimir V. Podolskii: “Complexity of

Linear Operators”, in Proc. of the 30th International Symposium on Algorithms and Computation,
ISAAC 2019, December 8-11, 2019, Shanghai University of Finance and Economics, Shanghai, China,
LIPIcs, Vol. 149, pp. 17:1–17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

URL https://doi.org/10.4230/LIPIcs.ISAAC.2019.17

Let A be an n × n 0/1-matrix with z zeroes and u ones and x be an n-dimensional vector
of formal variables over a semigroup (S, ◦). How many semigroup operations are required
to compute the linear operator Ax? As we observe in this paper, this problem contains as
a special case the well-known range queries problem and has a rich variety of applications
in such areas as graph algorithms, functional programming, circuit complexity, and others.
It is easy to compute Ax using O(u) semigroup operations. The main question studied
in this paper is: can Ax be computed using O(z) semigroup operations? We prove that
in general this is not possible: there exists a matrix A with exactly two zeroes in every
row (hence z = 2n) whose complexity is Θ(nα(n)) where α(n) is the inverse Ackermann
function. However, for the case when the semigroup is commutative, we give a constructive
proof of an O(z) upper bound. This implies that in commutative settings, complements of
sparse matrices can be processed as efficiently as sparse matrices (though the corresponding
algorithms are more involved). Note that this covers the cases of Boolean and tropical
semirings that have numerous applications, e. g., in graph theory. As a simple application of
the presented linear-size construction, we show how to multiply two n × n matrices over an
arbitrary semiring in O(n2) time if one of these matrices is a 0/1-matrix with O(n) zeroes
(i. e., a complement of a sparse matrix).
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3.16 Amortized Circuit Complexity, Formal Complexity Measures, and
Catalytic Algorithms

Robert Robere (McGill University – Montreal, CA)

License Creative Commons BY 4.0 International license
© Robert Robere

Joint work of Robert Robere, Jeroen Zuiddam
Main reference Robert Robere, Jeroen Zuiddam: “Amortized Circuit Complexity, Formal Complexity Measures, and

Catalytic Algorithms”, Electron. Colloquium Comput. Complex., Vol. 28, p. 35, 2021.
URL https://eccc.weizmann.ac.il/report/2021/035

Some of the central questions in complexity theory address the amortized complexity of
computation (also sometimes known as direct sum problems). While these questions appear
in many contexts, they are all variants of the following:

Is the best way of computing T many times in parallel simply to compute T independently
each time, or, can we achieve an economy of scale and compute all copies of T more efficiently
on average?

In this talk, we discuss some recent results studying the amortized circuit complexity of
computing boolean functions in various circuit models. The amortized circuit complexity
of a Boolean function f is defined to be the limit, as m tends to infinity, of the circuit
complexity of computing f on the same input m times, divided by m. We prove a new
duality theorem for amortized circuit complexity in any circuit model, showing that the
amortized circuit complexity of computing f is equal to the best lower bound achieved by
any “formal complexity measure” applied to f . This new duality theorem is inspired by,
and closely related to, Strassen’s duality theorem for semirings, which has been fruitfully
used to characterize the matrix multiplication exponent, the Shannon Capacity of graphs, as
well as other important parameters in combinatorics and complexity. We discuss how our
new duality theorem can be used to give alternative proofs of upper bounds on amortized
circuit complexity, and also the close relationship between amortized circuit complexity and
catalytic algorithms, in which an algorithm is provided with an extra input of advice bits
that it is free to use, as long as it outputs a new copy of the extra advice on termination.

3.17 Reconstruction Algorithms for Low-Rank Tensors
Shubhangi Saraf (Rutgers University – Piscataway, US)

License Creative Commons BY 4.0 International license
© Shubhangi Saraf

Joint work of Vishwas Bhargava, Shubhangi Saraf, Ilya Volkovich
Main reference Vishwas Bhargava, Shubhangi Saraf, Ilya Volkovich: “Reconstruction Algorithms for Low-Rank

Tensors and Depth-3 Multilinear Circuits”, Electron. Colloquium Comput. Complex., Vol. 28, p. 45,
2021.

URL https://eccc.weizmann.ac.il/report/2021/045

In this talk we will discuss new and efficient black-box reconstruction algorithms for some
classes of depth-3 arithmetic circuits. As a consequence, we will show how to obtain the first
randomized polynomial-time algorithm for computing the tensor rank and for finding the
optimal tensor decomposition as a sum of rank-one tensors when then input is a constant-rank
tensor.
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3.18 A Lower Bound on Determinantal Complexity
Ben Lee Volk (University of Texas – Austin, US)

License Creative Commons BY 4.0 International license
© Ben Lee Volk

Joint work of Mrinal Kumar, Ben Lee Volk
Main reference Mrinal Kumar, Ben Lee Volk: “A Lower Bound on Determinantal Complexity”, Electron.

Colloquium Comput. Complex., Vol. 27, p. 129, 2020.
URL https://eccc.weizmann.ac.il/report/2020/129

The determinantal complexity of a polynomial f is the minimal integer m such that there
exists an m × m matrix M of linear functions such that f(x) = det(M(x)). This is an
important measure in algebraic complexity which is related to circuit and formula complexity.
I will show a proof of a lower bound of 1.5n on the determinantal complexity of an explicit
n-variate polynomial. This is the strongest lower bound known as a function of the number
of variables. I will also talk about possible ways of extending this result to a super-linear
lower bound.

3.19 Toward Solving LPs in Matrix-Multiplication Time
Omri Weinstein (Columbia University – New York, US)

License Creative Commons BY 4.0 International license
© Omri Weinstein

Joint work of Shunhua Jiang, Zhao Song, Omri Weinstein, Hengjie Zhang
Main reference Shunhua Jiang, Zhao Song, Omri Weinstein, Hengjie Zhang: “Faster Dynamic Matrix Inverse for

Faster LPs”, CoRR, Vol. abs/2004.07470, 2020.
URL https://arxiv.org/abs/2004.07470

Interior-point methods (IPMs) make a clever use of second-order local search (Newton steps)
to reduce a convex optimization problem to a dynamic sequence of slowly-changing linear
systems. The past three or so years have witnessed the dramatic potential of dynamic data
structures in reducing the cost-per-iteration of IPMs, leading to many breakthroughs on
decade-old problems in TCS (e. g., solving LPs and Empirical Risk Minimization in close to
matrix-multiplication time (∼ nw+1/18), and near-linear time bipartite matching). I will give
a (short) high-level overview of this framework.

3.20 Slicing the Hypercube is Not Easy
Amir Yehudayoff (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
© Amir Yehudayoff

Joint work of Gal Yehuda, Amir Yehudayoff
Main reference Gal Yehuda, Amir Yehudayoff: “Slicing the hypercube is not easy”, CoRR, Vol. abs/2102.05536,

2021.
URL https://arxiv.org/abs/2102.05536

We prove that at least order n0.57 hyperplanes are needed to slice all edges of the n-dimensional
hypercube. We provide a couple of applications: lower bounds on the computational
complexity of parity, and a lower bound on the cover number of the hypercube by skew
hyperplanes.
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