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Computational Geometry
The field of computational geometry is concerned with the design, analysis, and imple-
mentation of algorithms for geometric and topological problems, which arise naturally in a
wide range of areas, including computer graphics, CAD, robotics, computer vision, image
processing, spatial databases, GIS, molecular biology, sensor networks, machine learning,
data mining, scientific computing, theoretical computer science, and pure mathematics.
Computational geometry is a vibrant and mature field of research, with several dedicated in-
ternational conferences and journals and strong intellectual connections with other computing
and mathematics disciplines.

In the early years mostly theoretical foundations of geometric algorithms were laid and
fundamental research remains an important issue in the field. Meanwhile, as the field ma-
tured, researchers have started paying close attention to applications and implementations of
geometric and topological algorithms. Several software libraries for geometric computation
(e.g. leda, cgal, core) have been developed. Remarkably, this emphasis on applications and
implementations has emerged from the originally theoretically oriented computational geo-
metry community itself, so many researchers are concerned now with theoretical foundations
as well as implementations.
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Seminar Topics
The emphasis of this seminar was on presenting recent developments in computational
geometry, as well as identifying new challenges, opportunities, and connections to other fields
of computing. In addition to the usual broad coverage of new results in the field, the seminar
included broad survey talks on Computational Topology on Surfaces and Graphs as well as
Combinatorial Complexity of Geometric Structures.

Computational Topology on Surfaces and Graphs

Computational topology has seen exciting advances in a number of topics. Indeed, best
paper awards in several recent SoCGs went to papers on these topics. In 2019, Cohen-Addad
et al. give a lower bound to a cutting problem in embedded graphs, essentially matching the
running time of the fastest algorithm known and settling a 17-year old question. In 2018,
Goaoc et al. proved that it is NP-complete to decide if a d-dimensional simplicial complex
is shellable for d ≥ 2, resolving a question of Danaraj and Klee in 1978. In 2017, Despré
and Lazarus presented simple quasi-linear algorithms for questions regarding geometric
intersection number of a curve on a surface. Progress in these and related topics have had
influences in problems on graphs embedded on surfaces, maximum flows and multiple-source
shortest paths in planar graphs, collapsibility of simplicial complexes, metric learning, etc.
The seminar highlighted these topics with two overview talks. The first by Hsien-Chih Chang
was on Tightening Curves on Surfaces, and provided a overview of recent advancements in this
area, and exciting directions for future work on flipping triangulations and morphing planar
multicurves using electrical moves. The second by Uli Wagner discussed Embeddability of
Simplicial Compexes, and also the flurry of recent research in this area, and pinpointed the
several remaining questions and where the community has not yet been able to resolve the
embeddability and why the challenges remain. These talks, and other on recent advances,
helped summarize the state of this area, and generate new avenues towards moving the field
further forward.

Combinatorial Complexity of Geometric Structures

The understanding of the combinatorial properties of geometric structures is at the core
of computational geometry. A lot of these structures such as union of shapes, cuttings,
arrangements, Delaunay triangulation, Voronoi diagram have found numerous applications
in algorithm design. For example, the analysis of the complexity of the union of translates
of a convex body allows us to understand the complexity of the free space in planning
the motion of that convex body under translation. Their studies have also triggered the
development of new theoretical tools such as the polynomial method that has been gaining a
lot of attention lately. There are also new applications that require the modeling of uncertain
data and hence call for a study of many geometric structures under a stochastic setting.
The seminar promoted these topics via two overview talks. The first overview talk was by
Mikkel Abrahamsen on Minimum Fence Enclosure and Separation Problems; this line of
work generalizes the notion of convex hull by identifies other minimally enclosing structures
called fences, and the interesting combinatorial properties that arise. The second overview
talk by Evanthia Papadopoulou was on Problems in Voronoi and Voronoi-like diagrams.
This talk discussed the advancement in generalizations of the classic geometric object of
Voronoi diagrams to be defined among geometric objects beyond points, and to higher-order
complexes. In addition to providing snapshots of these exciting subareas, they provided
future directions for research within these topics and in how they can interact across the
broader computational geometry landscape.
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Participants and Participation
Dagstuhl seminars on computational geometry have been organized in a two year rhythm since
a start in 1990. They have been extremely successful both in disseminating the knowledge and
identifying new research thrusts. Many major results in computational geometry were first
presented in Dagstuhl seminars, and interactions among the participants at these seminars
have led to numerous new results in the field. These seminars have also played an important
role in bringing researchers together, fostering collaboration, and exposing young talent
to the seniors of the field and vice versa. They have arguably been the most influential
meetings in the field of computational geometry. The organizers held a lottery for the fifth
time this year; the lottery allows to create space to invite younger researchers, rejuvenating
the seminar, while keeping a large group of senior and well-known scholars involved. The
seminar has now a more balanced attendance in terms of seniority and gender than in the
past. This year, 36 researchers from various countries and continents attended the seminar,
despite the virtual nature due to COVID-19, showing the strong interest of the community
for this event.

Due to the COVID-19 pandemic, the seminar was held entirely virtually. Talks were held
over four days. Each day had 2 two-hour blocks of talks, separated by a 2-hour meal break.
They were held in the late-afternoon and evening in Europe, which allowed for participants
from North America to join in during their morning hours. Unfortunately, this timing
was late for those in Asia. The talks were held on Zoom, a Slack server was set up for a
more persistent text-based discussion, and a Wonder.me instance was arranged for dynamic
forming of group discussions before and after each session. All of these settings were used
to communicate research, form collaborations, and attack open problems. Although not as
wonderful as actually being at Schloss Dagstuhl, these online mechanisms provided for a
workable replacement for what a normal Dagstuhl seminar provides in this abnormal time.

The feedback from participants was very positive. The participants viewed the composition
of the group positively, remarking how it was well-balanced in terms of seniority and gender.
They also praised the quality of the talks as of very high quality – making the virtual-only
participation worthwhile.

We warmly thank the scientific, administrative and technical staff at Schloss Dagstuhl!
Dagstuhl made virtual hosting possible and easy in a time filled with complications. Despite
not providing a physical space to meet, socialize, and collaborate, their help in organizing
the event made it a success despite the less than ideal circumstances.
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3 Overview of Talks

3.1 Minimum Fence Enclosure and Separation Problems
Mikkel Abrahamsen (University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
© Mikkel Abrahamsen

The classical problem of computing the convex hull of a given set of points in the plane can
be formulated in a natural way as a fence enclosure problem: Find the shortest fence that
encloses the points. In this talk, we survey our recent work on related problems that appear
when the formulation is changed slightly. We will touch upon the following problems:
1. Given a set of points in the plane, find the two fences of minimum total length that

together enclose all the points. We will outline an algorithm with O(n log2 n) running
time.

2. Given a set of points and a number k, find a system of at most k fences of minimum total
length that enclose the points. We will explain how this problem can be attacked via
dynamic programming, which leads to a polynomial-time, although very slow, algorithm.

3. Given a set of unit disks, find a system of fences of minimum total length that enclose all
the disks (with no restriction on the number of fences). We report on a near-linear time
algorithm for this and related problems.

4. Finally, we consider the problem where the input consists of pairwise interior-disjoint
polygons in the plane, and each polygon has a color. We want to compute the fence
of minimum total length that separates all pairs of polygons of different colors. This
problem can be solved in polynomial time when there are just two colors, but it becomes
NP-hard already for three colors. We report on an approximation algorithm. During the
talk, we will suggest directions for future research.

3.2 On the Union of Cubes in 3D
Pankaj Kumar Agarwal (Duke University – Durham, US)

License Creative Commons BY 4.0 International license
© Pankaj Kumar Agarwal

Joint work of Pankaj K. Agarwal, Micha Sharir, Alex Steiger
Main reference Pankaj K. Agarwal, Micha Sharir, Alex Steiger: “Decomposing the Complement of the Union of

Cubes in Three Dimensions”, in Proc. of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pp. 1425–1444, SIAM, 2021.

URL http://dx.doi.org/10.1137/1.9781611976465.86

Let C be a set of n axis-aligned cubes of arbitrary sizes in 3D, let K = R3 \ U(C) be
the complement of their union (i.e. free space). The complexity of K, denoted by k, can
vary between O(1) and O(n2). This talk presents two main results: (i) An output-sensitive
algorithm to compute K in time O(npolylog(n) + k) time; and (ii) an output-sensitive
algorithm to partition K into O((n + k)polylog(n)) boxes in the same time bound. These
results can be slightly improved if the cubes in C have roughly the same size or if they have
bounded depth (i.e. any point in R3 lies in O(1) cubes).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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http://dx.doi.org/10.1137/1.9781611976465.86
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3.3 Fine-grained Complexity of Nearest Neighbors for Fréchet Distance
Karl Bringmann (Universität des Saarlandes – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Karl Bringmann

Joint work of Karl Bringmann, Anne Driemel, André Nusser, Ioannis Psarros

Fine-grained complexity theory is the area of theoretical computer science that proves
conditional lower bounds based on the 3-SUM Hypothesis, the Strong Exponential Time
Hypothesis, and similar conjectures. This talk is an introduction to recent fine-grained
lower bounds in computational geometry, with a focus on lower bounds for polynomial-time
problems based on the Orthogonal Vectors Hypothesis. Specifically, we discuss conditional
lower bounds for nearest neighbor search under the Euclidean distance and Fréchet distance.
We see that lower bounds for the Bichromatic Closest Pair problem follow from the Orthogonal
Vectors Hypothesis by simple embeddings. This implies a near-linear lower bound for the
query time of nearest neighbor data structures. Then we see Unbalanced Orthogonal Vectors,
a simple trick to even rule out any polynomial preprocessing time and near-linear query time
for nearest neighbors. Finally, we discuss recent, unpublished work on approximate nearest
neighbor data structures for the Fréchet distance.

3.4 Around k-fold filtrations
Mickaël Buchet (TU Graz, AT)

License Creative Commons BY 4.0 International license
© Mickaël Buchet

Joint work of Mickaël Buchet, Bianca B. Dornelas, Michael Kerber

Given a point set P , a number k and a radius r, the k-fold cover is defined as the union of
all intersections of k balls of radius r around points of P . This cover has two parameters
(k and r) and defines a very natural bi-filtration of the space. This bi-filtration represents
one natural occurrence for multi-parameter persistent homology. Unfortunately, the usual
combinatorial objects used to represent the bi-filtration are not bi-filtration themselves
and are of larger size. I will talk about several ways to tackle this issue through various
approximations, constructions and sparsifications, mostly adapted from techniques used in
the one-parameter case but where the nature of the k-fold cover raises new challenges and
interesting open questions.

3.5 Computing the inverse geodesic length in graphs of bounded
treewidth

Sergio Cabello (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Sergio Cabello

Main reference Sergio Cabello: “Computing the inverse geodesic length in planar graphs and graphs of bounded
treewidth”, CoRR, Vol. abs/1908.01317, 2019.

URL https://arxiv.org/abs/1908.01317

The inverse geodesic length of a graph G is the sum of the inverse of the distances between
all pairs of distinct vertices of G. In some domains it is known as the Harary index or the
global efficiency of the graph. We show that, if G has n vertices and constant treewidth,
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then the inverse geodesic length of G can be computed in near-linear time. To achieve this
we use techniques developed for computing the sum of the distances, which does not have
“inverse” component, together with batched evaluations of rational functions.

3.6 Tightening Curves on Surfaces
Hsien-Chih Chang (Dartmouth College – Hanover, US)

License Creative Commons BY 4.0 International license
© Hsien-Chih Chang

In this talk we survey the recent advancements in tightening curves on surfaces under different
categories of curves and deformations in the past few decades. We then present two possible
directions for future research, one on computing geodesics by flipping triangulations and
the other on the complexity of morphing planar multicurves using electrical moves. Open
questions are provided for the curious to ponder.

3.7 Multicuts in planar and surface-embedded graphs
Éric Colin de Verdière (CNRS, LIGM, Marne-la-Vallée, FR)

License Creative Commons BY 4.0 International license
© Éric Colin de Verdière

Joint work of Vincent Cohen-Addad, Vincent, Éric Colin de Verdière, Dániel Marx, Arnaud de Mesmay

The Multicut problem is defined as follows. Given an edge-weighted graph G and pairs of
vertices (s1, t1), . . . , (sk, tk), compute a minimum-weight subset of edges whose removal
disconnects each pair (si, ti).

This problem is NP-hard, APX-hard, and W[1]-hard in the number of pairs of terminals,
even in very simple cases, such as planar graphs.

We will survey some recent results on this problem, on planar graphs and more generally
on graphs embedded on a fixed surface: An exact algorithm, whose running time is a
polynomial in the genus and the number of terminals [1]; a matching lower bound assuming
ETH [2]; and an approximation scheme with running time O(n log n) if the approximation
factor, the genus, and the number of terminals are fixed [3].

All these results rely on topological methods: The subgraph of the dual of G, made of
the edges dual to a multicut, has nice properties, which can be exploited using classical tools
from algebraic topology such as homotopy, homology, and universal covers of surfaces.

References
1 Éric Colin de Verdière. Multicuts in planar and bounded-genus graphs with bounded number

of terminals. Algorithmica, 78:1206–1224, 2017.
2 Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost

tight lower bounds for hard cutting problems in embedded graphs. In Proc. Int. Symp. on
Computational Geometry, pages 27:1–27:16, 2019. Full version to appear in J. ACM.

3 Vincent Cohen-Addad, Éric Colin de Verdière, and Arnaud de Mesmay. A near-linear
approximation scheme for multicuts of embedded graphs with a fixed number of terminals.
SIAM J. Comput., 50(1):1–33, 2021.

https://creativecommons.org/licenses/by/4.0/
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3.8 Fine-grained Complexity of the k-Shortcut Fréchet distance
Jacobus Conradi (Universität Bonn, DE)

License Creative Commons BY 4.0 International license
© Jacobus Conradi

Joint work of Jacobus Conradi, Anne Driemel

The Fréchet distance is a popular measure of dissimilarity for polygonal curves. It is defined
as a min-max formulation that considers all direction-preserving continuous bijections of the
two curves. Because of its susceptibility to noise, Driemel and Har-Peled introduced the
shortcut Fréchet distance in 2012, where one is allowed to take shortcuts along one of the
curves, similar to the edit distance for sequences. We analyse the parametrized version of this
problem, where the number of shortcuts is bounded by a parameter k. The corresponding
decision problem can be stated as follows: Given two polygonal curves T and B of at most n

vertices, a parameter k and a distance threshold δ, is it possible to introduce k shortcuts
along B such that the Fréchet distance of the resulting curve and the curve T is at most δ?
We study this problem for polygonal curves in the plane. We provide a complexity analysis
for this problem with the following results: (i) assuming the exponential-time-hypothesis
(ETH), there exists no algorithm with running time bounded by no(k); (ii) there exists a
decision algorithm with running time in O(kn2k+2 log n). In contrast, we also show that
efficient approximate decider algorithms are possible, even when k is large. We present a
(3 + ε)-approximate decider algorithm with running time in O(kn2 log2 n) for fixed ε. In
addition, we can show that, if k is a constant and the two curves are c-packed for some
constant c, then the approximate decider algorithm runs in near-linear time.

3.9 Contractibility on 3-manifold boundaries and compressed problems
on surfaces

Arnaud de Mesmay (University Paris-Est – Marne-la-Vallée, FR)

License Creative Commons BY 4.0 International license
© Arnaud de Mesmay

Joint work of Erin W. Chambers, Arnaud de Mesmay, Francis Lazarus, Salman Parsa
Main reference Erin Wolf Chambers, Francis Lazarus, Arnaud de Mesmay, Salman Parsa: “Algorithms for

Contractibility of Compressed Curves on 3-Manifold Boundaries”, CoRR, Vol. abs/2012.02352, 2020.
URL https://arxiv.org/abs/2012.02352

We show that the problem of deciding whether a closed curve on the boundary of a 3-
manifold is contractible is in NP, and furthermore we provide an algorithm that is FPT in the
complexity of the manifold. This relies on techniques to solve various topological problems
for curves on surfaces with compressed inputs. The talk assumes no topological background
and focuses on explaining why issues with compression appear naturally in this line of work.
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3.10 Practical volume approximation of H, V, and Z-polytopes
Ioannis Emiris (University of Athens & Athena Research Center, GR)

License Creative Commons BY 4.0 International license
© Ioannis Emiris

Joint work of Apostolos Chalkis, Ioannis Z. Emiris, Vissarion Fisikopoulos
Main reference Apostolos Chalkis, Ioannis Z. Emiris, Vissarion Fisikopoulos: “Practical Volume Estimation by a

New Annealing Schedule for Cooling Convex Bodies”, CoRR, Vol. abs/1905.05494, 2019.
URL http://arxiv.org/abs/1905.05494

We tackle the problem of efficiently approximating the volume of convex polytopes, when these
are given in 3 different representations: H-polytopes, which have been studied extensively, V -
polytopes, and zonotopes (Z-polytopes). We design a novel practical Multiphase Monte Carlo
(MMC) algorithm that leverages geometric random walks. Our algorithmic contributions
include: (i) a uniform sampler employing billiard walk for the first time in volume computation,
showing it mixes much faster than Hit-and-Run variants, (ii) a new simulated annealing
schedule, generalizing existing MMC, by introducing adaptive convex bodies which, moreover,
(iii) probabilistically restricts volume ratios to a target interval, thus drastically reducing
the number of bodies in MMC. Extensive experiments indicate that our method requires
about O(d2) oracle calls compared to the best theoretical bound of O∗(d3), where d is the
dimension. For zonotopes, we appropriately use centrally symmetric polytopes which yield
an MMC with constant number of phases, when the ratio of generators over dimension
is small. We present a detailed experimental evaluation of our algorithm using Birkhoff
polytopes and polytopes of all 3 classes. Our open-source C++ software offers the first
method that scales up to thousands of dimensions for H-polytopes and in the hundreds for
V - and Z-polytopes on moderate hardware. We illustrate it on SDP optimization, by means
of sampling spectrahedra, and on sampling structured polytopes obtained from modeling
financial portfolios.

3.11 Consistent Digital Line Segments
Matias Korman (Siemens EDA – Wilsonville, US)

License Creative Commons BY 4.0 International license
© Matias Korman

Joint work of Man-Kwun Chiu, Matias Korman, Martin Suderland, Takeshi Tokuyama
Main reference Man-Kwun Chiu, Matias Korman, Martin Suderland, Takeshi Tokuyama: “Distance Bounds for High

Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays”, in Proc. of the
28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy
(Virtual Conference), LIPIcs, Vol. 173, pp. 34:1–34:22, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

URL http://dx.doi.org/10.4230/LIPIcs.ESA.2020.34

In this talk I will introduce the concept of “consistent digital segments”: In short, we look
for an axiomatic construction of segments in discrete spaces, akin to the construction that we
have in Euclidean segments. After discussing movivation, we will focus on known results in
two and higher dimensions. Each result will be followed with discussion on what are the big
open problems that remain and what are possible lines of research that could be followed.
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3.12 Approximating Maximum Independent Set in the Plane
Joseph S. B. Mitchell (Stony Brook University, US)

License Creative Commons BY 4.0 International license
© Joseph S. B. Mitchell

Main reference Joseph S. B. Mitchell: “Approximating Maximum Independent Set for Rectangles in the Plane”,
CoRR, Vol. abs/2101.00326, 2021.

URL https://arxiv.org/abs/2101.00326

We give a polynomial-time constant-factor approximation algorithm for maximum independ-
ent set for (axis-aligned) rectangles in the plane. Using a polynomial-time algorithm, the
best approximation factor previously known is O(log log n). The results are based on a new
form of recursive partitioning in the plane, in which faces that are constant-complexity and
orthogonally convex are recursively partitioned in a constant number of such faces.

3.13 Efficient Near-Neighbor Search via Average Distortion Embeddings
Aleksandar Nikolov (University of Toronto, CA)

License Creative Commons BY 4.0 International license
© Aleksandar Nikolov

Joint work of Deepanshu Kush, Aleksandar Nikolov, Haohua Teng
Main reference Deepanshu Kush, Aleksandar Nikolov, Haohua Tang: “Near Neighbor Search via Efficient Average

Distortion Embeddings”, CoRR, Vol. abs/2105.04712, 2021.
URL https://arxiv.org/abs/2105.04712

A recent series of papers by Andoni, Naor, Nikolov, Razenshteyn, and Waingarten (STOC
2018, FOCS 2018) has given approximate near neighbour search (ANN) data structures for
a wide class of distance metrics, including all norms. In particular, these data structures
achieve approximation on the order of p for ℓp norms with space complexity nearly linear in
the dataset size n and polynomial in the dimension d, and query time sub-linear in n and
polynomial in d. The main shortcoming is the exponential in d pre-processing time required
for their construction. In this talk, we describe a more direct framework for constructing ANN
data structures for general norms. More specifically, we show via an algorithmic reduction
that an efficient ANN data structure for a given metric is implied by an efficient average
distortion embedding of the metric into the Manhattan norm or into Euclidean space. In
particular, the resulting data structures require only polynomial pre-processing time, as long
as the embedding can be computed in polynomial time. As a concrete instantiation of this
framework, we give an ANN data structure for ℓp with efficient pre-processing that matches
the approximation factor, space and query complexity of the aforementioned data structure
of Andoni et al.
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3.14 Problems in Voronoi and Voronoi-like diagrams
Evanthia Papadopoulou (University of Lugano, CH)

License Creative Commons BY 4.0 International license
© Evanthia Papadopoulou

Joint work of Kolja Junginger, Evanthia Papadopoulou
Main reference Kolja Junginger, Evanthia Papadopoulou: “Deletion in Abstract Voronoi Diagrams in Expected

Linear Time”, in Proc. of the 34th International Symposium on Computational Geometry, SoCG
2018, June 11-14, 2018, Budapest, Hungary, LIPIcs, Vol. 99, pp. 50:1–50:14, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.50
Main reference Kolja Junginger, Evanthia Papadopoulou: “Deletion in abstract Voronoi diagrams in expected linear

time”, CoRR, Vol. abs/1803.05372, 2018.
URL http://arxiv.org/abs/1803.05372

Differences between classical Voronoi diagrams of points, versus segments, circles, or polygons
are often forgotten or underestimated. Abstract Voronoi diagrams (AVDs) offer a unifying
framework for many such Voronoi diagrams in the plane; however, diagrams of points are not
a representative concrete structure for AVDs. In this talk, I will first survey fundamental
differences between higher order Voronoi diagrams of points and their counterparts of
segments or AVDs. I will then address the problem of site-deletion in abstract Voronoi
diagrams in expected linear time. Although linear-time algorithms for site-deletion in planar
point Voronoi diagrams had been well-known to exist since the late 80’s, the corresponding
problems for non-point Voronoi diagrams remained open, until recently. As a byproduct, I will
introduce abstract Voronoi-like diagrams, a relaxed Voronoi structure of independent interest,
which leads to a very simple randomized incremental technique to perform site-deletion in
abstract Voronoi diagrams. The technique extends to computing various tree-like Voronoi
diagrams such as constructing the farthest abstract Voronoi diagram, after the order of its
regions at infinity is known, constructing the order-(k + 1) subdivision within an order-k
Voronoi region, and others. The time analysis introduces a simple alternative to backwards
analysis applicable to order-dependent structures.

3.15 Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions
Natan Rubin (Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 4.0 International license
© Natan Rubin

Main reference Natan Rubin: “Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions”, CoRR,
Vol. abs/2104.12654, 2021.

URL https://arxiv.org/abs/2104.12654

Given a finite point set P in Rd, and ϵ > 0 we say that N ⊆ Rd is a weak ϵ-net if it pierces
every convex set K with |K ∩ P | ≥ ϵ|P |.

Let d ≥ 3. We show that for any finite point set in Rd, and any ϵ > 0, there exist a weak

ϵ-net of cardinality O

(
1

ϵd−1/2+γ

)
, where γ > 0 is an arbitrary small constant.

This is the first improvement of the bound of O∗
(

1
ϵd

)
that was obtained in 1993 by

Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl for general point sets in dimension
d ≥ 3.1

1 O∗(·)-notation hides multiplicative factors that are polylogarithmic in log 1/ϵ.
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3.16 Terrain prickliness: theoretical grounds for low complexity
viewsheds

Maria Saumell (The Czech Academy of Sciences – Prague & Czech Technical University in
Prague, CZ)

License Creative Commons BY 4.0 International license
© Maria Saumell

Joint work of Ankush Acharyya, Ramesh K. Jallu, Maarten Löffler, Gert G. T. Meijer, Maria Saumell, Rodrigo I.
Silveira, Frank Staals, Hans Raj Tiwary

Main reference Ankush Acharyya, Ramesh K. Jallu, Maarten Löffler, Gert G. T. Meijer, Maria Saumell, Rodrigo I.
Silveira, Frank Staals, Hans Raj Tiwary: “Terrain prickliness: theoretical grounds for low complexity
viewsheds”, CoRR, Vol. abs/2103.06696, 2021.

URL https://arxiv.org/abs/2103.06696

An important task when working with terrain models is computing viewsheds: the parts
of the terrain visible from a given viewpoint. When the terrain is modeled as a polyhedral
terrain, the viewshed is composed of the union of all the triangle parts that are visible
from the viewpoint. The complexity of a viewshed can vary significantly, from constant to
quadratic in the number of terrain vertices, depending on the terrain topography and the
viewpoint position.

In this work we study a new topographic attribute, the prickliness, that measures
the number of local maxima in a terrain from all possible perspectives. We show that
the prickliness effectively captures the potential of 2.5D terrains to have high complexity
viewsheds, and we present near-optimal algorithms to compute the prickliness of 1.5D and
2.5D terrains. We also report on some experiments relating the prickliness of real word 2.5D
terrains to the size of the terrains and to their viewshed complexity.

3.17 Guarding Problems
Christiane Schmidt (Linköping University, SE)

License Creative Commons BY 4.0 International license
© Christiane Schmidt

Joint work of Sarah Cannon, Ovidiu Daescu, Thomas Fai, Stephan Friedrichs, Justin Iwerks, Undine Leopold,
Hemant Malik, Bengt J. Nilsson, Valentin Polishchuk, Christiane Schmidt

The classical Art Gallery Problem (AGP) asks for the minimum number of guards that are
necessary to visually cover a polygon P , where visibility between two points is defined as the
line segment between these points being fully contained in P . In this talk, we highlight some
recent works and open problems for different variants of the AGP.

First, we consider k-transmitters, for which the definition of visibility is altered: two
points, p, q, can see each other if the line segment pq intersects P ’s boundary at most k

times. We review results on stationary point and edge k − /2-transmitters – Art Gallery
theorems and complexity results; we present several properties of k − /2-transmitters and
recent complexity results on 2-transmitter watchman routes. Finally, we highlight an open
problem on Art Gallery theorems for 2-transmitters in simple polygon: we have a lower
bound of ⌊n/5⌋ guards, but the best known upper bound essentially stems from “normal”
guards/0-transmitters: ⌊(n − 1)/3⌋.

We then consider guarding problems in special polygon classes (altering the environment
to be guarded rather than the capabilities of the guards). We show that we can find an
optimal guard set for uni-monotone polygons in linear time and that the size of a minimum
cardinality guard set equals the size of a maximum cardinality witness set for this class –
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uni-monotone polygons are perfect. We survey for which guarding problems discretizations
have been obtained. Finally, we review under which types of visibility definition and for
which polygon classes similar results on perfectness have been obtained and give the basic
idea of these results. This leads to an open question of AGP in monotone polygons: can we
show perfectness for, e.g., staircase or O-visibility. Can we discretize in this special polygon
class?

3.18 Sketching Persistence Diagrams
Donald Sheehy (North Carolina State University – Raleigh, US)

License Creative Commons BY 4.0 International license
© Donald Sheehy

Joint work of Donald R. Sheehy, Siddharth Sheth
Main reference Donald R. Sheehy, Siddharth Sheth: “Sketching Persistence Diagrams”, in Proc. of the 37th

International Symposium on Computational Geometry, SoCG 2021, June 7-11, 2021, Buffalo, NY,
USA (Virtual Conference), LIPIcs, Vol. 189, pp. 57:1–57:15, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.57

Given a persistence diagram with n points, we give an algorithm that produces a sequence
of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of
which has i distinct (weighted) points and is a 2-approximation to the closest persistence
diagram with that many distinct points. For each approximation, we precompute the optimal
matching between the ith and the (i + 1)st. Perhaps surprisingly, the entire sequence of
diagrams as well as the sequence of matchings can be represented in O(n) space. The main
approach is to use a variation of the greedy permutation of the persistence diagram to give
good Hausdorff approximations and assign weights to these subsets. We give a new algorithm
to efficiently compute this permutation, despite the high implicit dimension of points in a
persistence diagram due to the effect of the diagonal. The sketches are also structured to
permit fast (linear time) approximations to the Hausdorff distance between diagrams – a
lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches
can also be used to compute a linear-size neighborhood graph directly, obviating the need
for geometric data structures used in state-of-the-art methods for bottleneck computation.

3.19 Optimal bounds for the colorful fractional Helly theorem
Martin Tancer (Charles University – Prague, CZ)

License Creative Commons BY 4.0 International license
© Martin Tancer

Joint work of Denys Bulavka, Afshin Goodarzi, Martin Tancer
Main reference Denys Bulavka, Afshin Goodarzi, Martin Tancer: “Optimal Bounds for the Colorful Fractional Helly

Theorem”, in Proc. of the 37th International Symposium on Computational Geometry, SoCG 2021,
June 7-11, 2021, Buffalo, NY, USA (Virtual Conference), LIPIcs, Vol. 189, pp. 19:1–19:14, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19

The well known fractional Helly theorem and colorful Helly theorem can be merged into the so
called colorful fractional Helly theorem. It states: for every α ∈ (0, 1] and every non-negative
integer d, there is β = β(α, d) ∈ (0, 1] with the following property. Let F1, . . . , Fd+1 be
finite nonempty families of convex sets in Rd of sizes n1, . . . , nd+1, respectively. If at least
αn1n2 · · · nd+1 of the colorful (d + 1)-tuples have a nonempty intersection, then there is

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.57
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.57
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.57
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.57
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.57
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19
http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19


Siu-Wing Cheng, Anne Driemel, and Jeff M. Phillips 15

i ∈ [d + 1] such that Fi contains a subfamily of size at least βni with a nonempty intersection.
(A colorful (d + 1)-tuple is a (d + 1)-tuple (F1, . . . , Fd+1) such that Fi belongs to Fi for
every i.)

The colorful fractional Helly theorem was first stated and proved by Bárány, Fodor,
Montejano, Oliveros, and Pór in 2014 with β = α/(d + 1). In 2017 Kim proved the theorem
with better function β, which in particular tends to 1 when α tends to 1. Kim also conjectured
what is the optimal bound for β(α, d) and provided the upper bound example for the optimal
bound. The conjectured bound coincides with the optimal bounds for the (non-colorful)
fractional Helly theorem proved independently by Eckhoff and Kalai around 1984.

We verify Kim’s conjecture by extending Kalai’s approach to the colorful scenario.
Moreover, we obtain optimal bounds also in a more general setting when we allow several
sets of the same color.

3.20 Light Euclidean Spanners
Csaba Tóth (California State University – Los Angeles, US)

License Creative Commons BY 4.0 International license
© Csaba Tóth

Main reference Sujoy Bhore, Csaba D. Tóth: “On Euclidean Steiner (1+ϵ)-Spanners”, in Proc. of the 38th
International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19,
2021, Saarbrücken, Germany (Virtual Conference), LIPIcs, Vol. 187, pp. 13:1–13:16, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2021.13

Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner
weight to the weight of the minimum spanning tree of a finite set of points in Rd. In a recent
breakthrough, Le and Solomon (2019) established the precise dependencies on ε > 0 and
d ∈ N of the minimum lightness of a (1 + ε)-spanner, and observed that additional Steiner
points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner
(1 + ε)-spanners of lightness O(ε−1 log n) for n points in the plane. They also constructed
spanners of lightness Õ(ε−(d+1)/2) in dimensions d ≥ 3.

We established a lower bound of Ω(ε−d/2) for the lightness of Steiner (1 + ε)-spanners
in Rd, for all d ≥ 2. We also prove that this bound is the best possible for d = 2, that is,
for every finite set of points in the plane and every ε > 0, there exists a Euclidean Steiner
(1+ε)-spanner of lightness O(ε−1). We generalize the notion of shallow light trees, which may
be of independent interest, and use directional spanners and a modified window partitioning
scheme to achieve a tight weight analysis. (Joint work with Sujoy Bhore.)

3.21 Embeddability of Simplicial Complexes
Uli Wagner (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 4.0 International license
© Uli Wagner

Consider the following decision problem in computational topology, which we refer to as the
embeddability problem: Given a finite k-dimensional simplicial complex K, does K admit
a (piecewise-linear) embedding into Rd? More generally, the extendability of embeddings
problem asks: Given K, a subcomplex A ⊆ K, and an embedding f : A → Rd, can f be
extended to an embedding F : K → Rd? (The embeddability problem is the special case
A = ∅.)
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We survey what is known about the decidability and computational complexity of these
problems in higher dimensions (for fixed positive integers k ≤ d). Some of the main results
and open questions are:

For d = 3, the embeddability problem is known to be algorithmically decidable [7] as well
as NP-hard [2]; the exact complexity of the problem (including whether it lies in NP)
remains unknown.
In the so-called metastable range d ≥ 3(k+1)

2 , both embeddability and extendability
of embeddings can be decided in polynomial time (for fixed k and d). Indeed, in
this dimension range, by classical work of Haefliger and Weber [4, 8], both problems
reduce to questions about the existence of equivariant maps from the deleted product
(K × K) \ {(x, x) : x ∈ K} to Sd−1, and the latter can be decided in polynomial time by
a series of works on computational homotopy theory culminating in [1].
Outside the metastable range, it is known that the embeddability problem is NP-hard
if d ≥ 4, and algorithmically undecidable if k + 1 ≥ d ≥ 5 [6]. Moreover, extendability
of embeddings is algorithmically undecidable for almost all dimensions outside the
metastable range, namely for 8 ≤ d < ⌊ 3(k+1)

2 ⌋ [3]. In [3], it is claimed that this also
implies undecidability of the embeddability problem in the same range of dimensions, but
the proof of this implication contains a gap [5]. Fixing this gap would require constructing
suitable so-called linking gadgets. E.g., in the special case k = 5, d = 8, this would require
constructing a 5-dimensional complex L containing copies of S5 and S2 as vertex-disjoint
subcomplexes, such that in any embedding of G, the images of S5 and S2 are linked with
linking number ±1. (Currently, it is only known that there are examples of complexes L

that force an odd linking number.)
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3.22 Comparing Embedded and Immersed Graphs
Carola Wenk (Tulane University – New Orleans, US)

License Creative Commons BY 4.0 International license
© Carola Wenk

Data in the form of one-dimensional structures, embedded or immersed in an ambient
space, arise in a variety of applications, including GIS analysis, trajectory clustering, protein
alignment, plant morphology, commodity networks such as electrical grids, and geographic
networks of roads or rivers. Often one is interested in comparing such structures. But since
data collection introduces noise and errors, distance measure need to be robust to different
issues in the data.In this talk we will focus on graphs and provide a survey of distance
measures suitable for comparing embedded or immersed graphs. Oftentimes these graphs are
not isomorphic, nor is one interested in true subgraph isomorphism. However, it is desirable
to have a mapping of one graph to the other, which should fulfill certain properties such as
continuity. And the distances should ideally measure differences in geometry and topology.
We will examine several distances from mathematical, algorithmic, and applied point of
views, and pose open problems for comparing embedded or immersed graphs.

4 Open problems

4.1 Twin-width of String Graphs
Édouard Bonnet (ENS – Lyon, FR)

License Creative Commons BY 4.0 International license
© Édouard Bonnet

A tri-graph is a graph consisting of vertices, edges and red edges. Contractions on a tri-graph
of two vertices u and v recolour edges according to the following rules depending on the sets
of neighbours N(u) and N(v) of u and v: 1) edges from N(u)△N(v) to the new vertex are
always red 2) edges from N(u) ∩ N(v) to the new vertex are not red, only if both original
edges were not red. The twin-width of any graph G is then definied as the smallest integer d,
that allows a contraction sequence on G, where the maximum red degree during the sequence
is bound by d. Do Kt,t-free string graphs have bounded twin-width? Similarly, do Ht,t-free
string graphs have bounded twin-width?

4.2 Expected Volume of Stochastic Bounding Box
Sergio Cabello (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Sergio Cabello

Given n points in Rd together with probabilities for each point, we want to compute the
expected volume of the bounding box of these points. Is this problem fixed parameter
tractible with respect to d? Is it #W [1]-hard w.r.t. d? Is the dependency on d in the degree
needed?
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4.3 Average Distortion Embeddings
Aleksandar Nikolov (University of Toronto, CA)

License Creative Commons BY 4.0 International license
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Joint work of Deepanshu Kush, Aleksandar Nikolov, Haohua Tang
Main reference Deepanshu Kush, Aleksandar Nikolov, Haohua Tang: “Near Neighbor Search via Efficient Average

Distortion Embeddings”, CoRR, Vol. abs/2105.04712, 2021.
URL https://arxiv.org/abs/2105.04712

Suppose (M, dist) is a metric space, and P is a finite set of points in M . A function f : M → ℓ2
is called an embedding with average distortion D w.r.t. P , if ∥f(x)−f(y)∥2 ≤ dist(x, y) for all
x, y ∈ M , and

∑
x∈P

∑
y∈P ||f(x) − f(y)||22 ≥ D−2 ∑

x∈P

∑
y∈P dist(x, y)2. Naor [1] showed,

that for any d-dimensional normed space (X, ∥·∥), defining the metric dist(x, y) =
√

||x − y||X ,
then any P ⊂ X embeds into ℓ2 with average distortion O(

√
log d). Naor’s proof proceeds

via duality, and does not give an explicit embedding f . Can we find an explicit f given M

and P , and, in particular, can we find an f that is efficiently computable from P?

References
1 Naor, Assaf. An average John theorem. arXiv, 1905.01280, 2020

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2105.04712
https://arxiv.org/abs/2105.04712
https://arxiv.org/abs/2105.04712


Siu-Wing Cheng, Anne Driemel, and Jeff M. Phillips 19

Remote Participants

Mikkel Abrahamsen
University of Copenhagen, DK

Pankaj Kumar Agarwal
Duke University – Durham, US

Helmut Alt
FU Berlin, DE

Elena Arseneva
St. Petersburg State
University, RU

Édouard Bonnet
ENS – Lyon, FR

Karl Bringmann
Universität des Saarlandes –
Saarbrücken, DE

Mickaël Buchet
TU Graz, AT

Maike Buchin
Ruhr-Universität Bochum, DE

Sergio Cabello
University of Ljubljana, SI

Hsien-Chih Chang
Dartmouth College –
Hanover, US

Siu-Wing Cheng
HKUST – Kowloon, HK

Man-Kwun Chiu
FU Berlin, DE

Jinhee Chun
Tohoku University – Sendai, JP

Éric Colin de Verdière
University Gustav Eiffel –
Marne-la-Vallée, FR

Jacobus Conradi
Universität Bonn, DE

Arnaud de Mesmay
University Paris-Est –
Marne-la-Vallée, FR

Anne Driemel
Universität Bonn, DE

Ioannis Emiris
University of Athens & Athena
Research Center, GR

Matias Korman
Siemens EDA – Wilsonville, US

Joseph S. B. Mitchell
Stony Brook University, US

Aleksandar Nikolov
University of Toronto, CA

Eunin Oh
POSTECH – Pohang, KR

Steve Y. Oudot
INRIA Saclay –
Île-de-France, FR

Evanthia Papadopoulou
University of Lugano, CH

Zuzana Patáková
Charles University – Prague, CZ

Jeff M. Phillips
University of Utah –
Salt Lake City, US

Benjamin Raichel
University of Texas – Dallas, US

Natan Rubin
Ben Gurion University –
Beer Sheva, IL

Maria Saumell
The Czech Academy of Sciences –
Prague & Czech Technical
University in Prague, CZ

Lena Schlipf
Universität Tübingen, DE

Christiane Schmidt
Linköping University, SE

Donald Sheehy
North Carolina State University –
Raleigh, US

Kolay Sudeshna
Indian Institute of Technology –
Kharagpur, IN

Martin Tancer
Charles University – Prague, CZ

Csaba Tóth
California State University –
Los Angeles, US

Uli Wagner
IST Austria –
Klosterneuburg, AT

Carola Wenk
Tulane University –
New Orleans, US

Sue Whitesides
University of Victoria, CA

21181


	Executive Summary Siu-Wing Cheng, Anne Driemel, Jeff M. Phillips
	Table of Contents
	Overview of Talks
	Minimum Fence Enclosure and Separation Problems Mikkel Abrahamsen
	On the Union of Cubes in 3D Pankaj Kumar Agarwal
	Fine-grained Complexity of Nearest Neighbors for Fréchet Distance Karl Bringmann
	Around k-fold filtrations Mickaël Buchet
	Computing the inverse geodesic length in graphs of bounded treewidth Sergio Cabello
	Tightening Curves on Surfaces Hsien-Chih Chang
	Multicuts in planar and surface-embedded graphs Éric Colin de Verdière
	Fine-grained Complexity of the k-Shortcut Fréchet distance Jacobus Conradi
	Contractibility on 3-manifold boundaries and compressed problems on surfaces Arnaud de Mesmay
	Practical volume approximation of H, V, and Z-polytopes Ioannis Emiris
	Consistent Digital Line Segments Matias Korman
	Approximating Maximum Independent Set in the Plane Joseph S. B. Mitchell
	Efficient Near-Neighbor Search via Average Distortion Embeddings Aleksandar Nikolov
	Problems in Voronoi and Voronoi-like diagrams Evanthia Papadopoulou
	Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions Natan Rubin
	Terrain prickliness: theoretical grounds for low complexity viewsheds Maria Saumell
	Guarding Problems Christiane Schmidt
	Sketching Persistence Diagrams Donald Sheehy
	Optimal bounds for the colorful fractional Helly theorem Martin Tancer
	Light Euclidean Spanners Csaba Tóth
	Embeddability of Simplicial Complexes Uli Wagner
	Comparing Embedded and Immersed Graphs Carola Wenk

	Open problems
	Twin-width of String Graphs Édouard Bonnet
	Expected Volume of Stochastic Bounding Box Sergio Cabello
	Average Distortion Embeddings Aleksandar Nikolov

	Remote Participants

