Report from Dagstuhl Seminar 21201

Serverless Computing

Edited by

Cristina Abad!, Ian T. Foster?, Nikolas Herbst3, and
Alexandru Iosup?

ESPOL — Guayaquil, EC, cristina.abad@gmail.com

Argonne National Laboratory — Lemont, US, foster@anl.gov
Universitdt Wiirzburg, DE, nikolas.herbstQuni-wuerzburg.de
VU University Amsterdam, NL, alexandru.iosup@gmail.com

W N =

—— Abstract

In the backbone of our digital society, cloud computing enables an efficient, utility-like ecosystem

of developing, composing, and providing software services. Responding to a trend to make cloud
computing services more accessible, fine-grained, and affordable, serverless computing has gained
rapid adoption in practice, and garnered much interest from both industry and academia.

However successful, serverless computing manifests today the opportunities and challenges
of emerging technology: a rapidly growing field but scattered vision, plenty of new technologies
but no coherent approach to design solutions from them, many simple applications but no
impressive advanced solution, the emergence of a cloud continuum (resources from datacenters
to the edge) but no clear path to leverage it efficiently, and overall much need but also much
technical complexity.

Several related but disjoint fields, notably software and systems engineering, parallel and
distributed systems, and system and performance analysis and modeling, aim to address these
opportunities and challenges. Excellent collaboration between these fields in the next decade will
be critical in establishing serverless computing as a viable technology.

We organized this Dagstuhl seminar to bring together researchers, developers, and practitioners
across disciplines in serverless computing, to develop a vision and detailed answers to the timely
and relevant, open challenges related to the following topics:

Topic 1: design decisions for serverless systems, platforms, and ecosystems,

Topic 2: software engineering of serverless applications, but also systems, platforms, and

ecosystems

Topic 3: applications and domain requirements for serverless computing,

Topic 4: evaluation of serverless solutions,
and beyond (privacy, cyber-physical systems, etc.).

In this document, we report on the outcomes of Dagstuhl Seminar 21201 “Serverless Computing”
by integrating diverse views and synthesizing a shared vision for the next decade of serverless
computing.

Seminar May 16-21, 2021 — http://www.dagstuhl.de/21201

2012 ACM Subject Classification General and reference — Performance; Computer systems
organization — Cloud computing; Computer systems organization — Grid computing; Software
and its engineering — Distributed systems organizing principles; Software and its engineering
— Software organization and properties

Keywords and phrases Cloud computing, Cloud continuum, data-driven, design patterns,
DevOps, experimentation, model-driven, serverless computing, simulation, software architec-
ture, systems management, vision

Digital Object Identifier 10.4230/DagRep.11.4.34

Except where otherwise noted, content of this report is licensed
o

under a Creative Commons BY 4.0 International license
Serverless Computing, Dagstuhl Reports, Vol. 11, Issue 04, pp. 34-93
Editors: Cristina Abad, Ian T. Foster, Nikolas Herbst, and Alexandru Iosup

\\v pagstupL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/21201
https://doi.org/10.4230/DagRep.11.4.34
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

1 Executive Summary

Cristina Abad (ESPOL - Guayaquil, EC)

Ian T. Foster (Argonne National Laboratory — Lemont, US)
Nikolas Herbst (Universitit Wiirzburg, DE)

Alezandru Iosup (VU University Amsterdam, NL)

License @ Creative Commons BY 4.0 International license
© Cristina Abad, Ian T. Foster, Nikolas Herbst, and Alexandru Iosup

Serverless computing holds a significant promise for the modern, digital society. For the past
seven decades, our society has increasingly required ever-cheaper, ever-more convenient, and
ever-faster computing technology. In the late-1950s, leasing time on an IBM 701 cost $15,000
per month ($135,000 in 2020 dollars). Today, we can lease many times this computing power
for mere pennies but need to be careful about the actual cost of doing so. Cloud computing,
that is, the utility providing IT as a service, on-demand and pay-per-use, is a widely used
computing paradigm that offers large economies of scale and promises extreme environmental
efficiency. Born from a need to make cloud computing services more accessible, fine-grained,
and affordable, serverless computing has garnered interest from both industry and academia.
In our vision, serverless computing can meet this need, but to do this it will have to overcome
its current status of emergent technology or risk its demise.

Cloud computing is already an established technology. Today, more than three-quarters
of the US and European companies, and many private individuals, use cloud computing
services'. The serverless market is blooming? and has already exceeded $200 billion in 20203.
The cost of one hour on a cloud computer leased on-demand can be lower than a cent* and
all the major cloud providers offer inexpensive access to diverse and state-of-the-art hardware.
However cheap, cloud computing still poses daunting operational challenges to software
professionals, in particular, how to manage the selection, operation, and other aspects of
using cloud infrastructure (in short, servers). Correspondingly, it poses significant challenges
to systems designers and administrators, related to keeping the cloud infrastructure efficient
and sustainable.

An emerging class of cloud-based software architectures, serverless computing, focuses
on providing software professionals the ability to execute arbitrary functions with low or
even no overhead in server management. Serverless computing leverages recent developments
in the miniaturization of software parts through microservice-based architectures, in the
operationalization of small self-contained execution units through containers, and in their
integration in service models such as Function-as-a-Service (FaaS). Truly, serverless is
more [12]. Early research successes [6, 15, 17, 18, 22] complement numerous industrial
applications [9], from business-critical to scientific computing, from DevOps to side-tasks.
Already, IT spending on serverless computing should exceed $8 billion per year, by 2021.°

However promising, serverless computing has yet to mature and presents many hard,
open challenges. There are numerous signs and reports [11, 14] that serverless computing
poses critical challenges in software engineering, parallel and distributed systems operation,

European Commission, Uptake of Cloud in Europe, Digital Agenda for Europe report by the Publications
Office of the European Union, Luxembourg, Sep 2014. and Flexera, State of the Cloud Report, 2020.
2 Gartner Inc. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17% in 2020. Press Release.
3 Frank Gens. Worldwide and Regional Public IT Cloud Services 2019-2023 Forecast. Tech. Rep. by
IDC, Doc. #US44202119, Aug 2019.

Amazon AWS, Microsoft Azure, and Google Compute Engine offer VMs in this price range.
“Function-as-a-Service Market - Global Forecast to 2021,” marketsandmarkets.com, Feb 2017.

35

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

36

21201 - Serverless Computing

and performance engineering [10]. For example, software engineering could help overcome
challenges in the developer experience [23], including testing, tooling, functionality, and
training and education. The systems side requires, among others, new approaches for
deployment, monitoring, and general operation, and also specific advances in security, cost
predictability, and life-cycle management for cloud functions. Performance engineering raises
many hard aspects, such as performance optimization, engineering for cost-efficiency, and
various forms of fast online scheduling. These combined challenges are distinctive from
the general challenges of cloud computing, for example, because the fine-grained, often
event-driven nature of serverless computing typically requires approaches that are lightweight
and able to respond without delay.

The goal of the seminar is to combine the views of a diverse and high-quality group of
researchers spanning three disciplines: software engineering, parallel and distributed systems,
and performance engineering. The Dagstuhl Seminar will be a catalyst. Attendees discussed
the open challenges and opportunities of serverless computing for the next decade, with a
focus on at least the following crucial aspects and questions:

Envision serverless systems and applications in the next decade. How to leverage the

freedom from operational concerns? How to overcome the challenge and enjoy the benefits

of fine granularity?

How to properly engineer serverless software and systems? What are the emerging

architectural patterns for serverless systems and applications? How to test and debug

serverless systems and applications?

How to characterize, model, and analyze serverless systems and applications? How to

understand the diverse serverless workloads?

How to manage the resources used in serverless operations? How to schedule and

orchestrate in this environment? How to manage specific application classes, such as

computer vision, enterprise workflows, HPC, DevOps?

How to deploy and manage the full lifecycle of serverless applications? How to add

ML-capabilities to feedback loops? How to break through the operational silos?

How to support privacy, security, dependability, and other desirable operational properties

for serverless applications and systems?

Beyond computer systems, how to consider serverless systems and applications from a

holistic, cyberphysical perspective?

Core topics
The seminar focussed on the following key topics related to serverless computing;:

Topic 1. Design decisions for serverless systems, platforms, and ecosystems. As the
serverless model is increasingly being adopted in industry [9], the challenges of properly
designing these systems and the platforms on which they run are becoming more apparent.
These challenges include important problems [10], such as: how to reduce the serverless
overhead added by the platform to the (commonly lightweight) functions representing the
business logic of the application (e.g., see [20]), how to ensure proper performance isolation
while making efficient use of the shared infrastructure (e.g., see [1]), how to partition the
functions [5, 6], and how to properly schedule functions and route requests to these functions
(e.g., see [2]), in such a way that the service level objectives (SLO’s) are adequately met,
among other important challenges. There is also the question of running serverless workloads
alongside conventional applications, e.g., HPC, big data, machine learning. The experiences

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

of the attendees to the seminar, some of which have already started working in these domain
and others with established experience in prior technologies from which we may learn and
transfer knowledge (e.g., grid computing), will enable us to focus on determining which
of these decisions the community should be focusing on, and how to establish adequately
prioritized research agendas.

Topic 2. Software engineering of serverless applications, but also systems, platforms,
and ecosystems. To increase the domain of application for serverless computing, the
functionality it can express needs to become increasingly more complex, which contrasts
with the perceived simplicity of the model [23]. What is the trade-off between simplicity
and expressiveness? Which composition models can ensure that serverless workflows can be
maintained and developed (and updated) long term? Serverless functions should become
increasingly interoperable, and applications should become able to leverage the services
of any serverless platform [6]. How to make serverless functions vendor-agnostic and how
to run serverless applications across cloud federations? Which architectural patterns are
useful for serverless applications? How to consider and support the legacy part of serverless
applications? The development processes, from the macro-view of how teams coordinate
to deliver applications that could operate in an external ecosystem, to the micro-view of
how to develop and test a serverless function, will have to consider the new aspects raised
by serverless computing. What are effective development processes? What tools and IDE
features are needed? What versioning and testing, and what CI/CD protocols should be
used? How to evolve legacy software toward serverless-native applications? How to ensure
open-source software becomes FAIR software [13]?

Topic 3. Applications and domain requirements for serverless computing. Preliminary
studies of serverless applications at large [9] have shown that there is a wide variety of
scenarios for which industry and academia are adopting serverless approaches. From business-
critical workloads, to automating DevOps, scientific computing, and beyond, the diversity of
the applications and domains for which serverless is being applied poses significant challenges
when attempting to optimally manage the resources and infrastructure on which these
applications depend. It is important to properly understand the variety of these applications
and domain requirements, engaging both academia and industry in the discussion.

These requirements should relate to various aspects in software engineering, parallel and
distributed systems, and performance engineering. For example, a domain-based approach
could help increase scalability [3]; considering the structure of packages in composing a
deployable serverless application could improve scheduling performance [2]; and serverless
functions and architectures should be considered during performance tests [8, 28].

Topic 4. Evaluation of serverless computing systems, platforms, and ecosystems. The
performance trade-offs of serverless systems are not yet well understood [28], thus highlighting
the importance of proper evaluation and benchmarking of these systems. However, the high
level of abstraction and the opaqueness of the operational-side make evaluating these platforms
particularly challenging. As recent efforts are starting to focus on this topic [24, 28], it
is important to engage the community on an early discussion on the best approaches to
tackle this problem. How to understand and engineer the performance of serverless systems?
How to translate the findings, when serverless systems are opened to external developers
(as platforms) or take part in much larger systems of systems (and even ecosystems)? How
to account for parts of the ecosystem being closed-source and even acting as black-boxes?
How to identify and even explain the performance bottlenecks such systems, platforms, and

37

21201

38

21201 - Serverless Computing

ecosystems experience? How to use evaluation results with other performance engineering
techniques to control and improve the performance of serverless systems, platforms, and
ecosystems?

An important focus of inquiry has recently become prominent in computer systems
research: the reproducibility of evaluation results and of experiments in general [19, 21].
Not doing so can result in misleading results [26], and in results that cannot be obtained
again [25] sometimes even under identical circumstances and by their original authors [7].
This leads to a possible loss of faith in the entire field [4, 27]. “How to benchmark serverless
solutions reproducibly?” is an important question to address with diverse expertise and fresh
ideas.

Synopsis and Planned Actions

We would like to thank the Dagstuhl staff and sponsors for this unique seminar opportunity
even under the constraints of the pandemic. During the seminar, we had almost 45h of
online meetings (not counting sub-meetings): some 9-10h of online meetings each seminar
day. Three 3h sessions per day were spread around the clock to allow participation from
various timezones. Even under these constraints, we experienced enormous participation and
active discussion involvement. In brief, the seminar week was structured as follows:

After each participant presented her/himself to the plenary, we formed four working
groups according to the topics above. The discussions were kick-started by four distinguished
keynotes, in plenary, with the respective talk abstracts included in this report:

“Serverless Predictions: 2021-2030” given jointly by Pedro Garcia Lépez (Universitat

Rovira i Virgili — Tarragona, ES) and Bernard Metzler (IBM Research-Zurich, CH)

“Developer Experience for Serverless: Challenges and Opportunities” given by Robert

Chatley (Imperial College London, GB)

“Federated Function as a Service” given jointly by Kyle Chard (University of Chicago,

US) and Ian T. Foster (Argonne National Laboratory — Lemont, US)

“Characterizing Serverless Systems” given by Mohammad Shahrad (University of British

Columbia — Vancouver, CA)

Each of the four working groups held five 3h sessions with their teams, including three 1h
one-on-one meetings with the other groups. The four working groups report individually on
their outcomes and list identified research challenges. In a consolidation phase, we identified
and planned nine focused topics for future joint research among the participants.

Complemented by a Slack workspace for the seminar participants, a focused continuation
of discussions beyond the seminar week was enabled: Among others, a discussion initiated
and led by Samuel Kounev on the notion of serverless computing, started during the seminar,
continued well beyond. We include the outcome of this “panel discussion” in Section 5.1 of
this report.

The organizers and participants decided to jointly work toward at least one high-profile
magazine article reporting on the seminar outcome and research agenda.

Furthermore, during the seminar the motion was raised to establish a conference series
on serverless computing. We see good potential for a new conference on “Serverless Software
and Systems” as a cross-community event embracing, at least, the disciplines of software
engineering, system engineering, and performance engineering. Working potentially in concert
with an existing workshop series in the field, we plan to initiate this step in the coming
months. We hope that one day in the future, we can proudly look back and say that this
Dagstuhl seminar 21201 was an important trigger event.

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

References

1

10

11

12

13

14

15

Z. Al-Ali, S. Goodarzy, E. Hunter, S. Ha, R. Han, E. Keller, and E. Rozner. Making
serverless computing more serverless. In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), 2018.

G. Aumala, E. Boza, L. Ortiz-Avilés, G. Totoy, and C. Abad. Beyond load balancing:
Package-aware scheduling for serverless platforms. In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019.

Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Barbara Russo, André van Hoorn, Henning
Schulz, Daniel S. Menasché, and Vile Queupe Rufino. Scalability assessment of microservice
architecture deployment configurations: A domain-based approach leveraging operational
profiles and load tests. J. Syst. Softw., 165:110564, 2020.

Monya Baker. Is there a reproducibility crisis? Nature, 533(7604):452-454, 2016.

Edwin F. Boza, Xavier Andrade, Jorge Cedeno, Jorge R. Murillo, Harold Aragon, Cristina
L. Abad, and Andres G. Abad. On implementing autonomic systems with a serverless
computing approach: The case of self-partitioning cloud caches. Comput., 9(1):14, 2020.
Ryan Chard, Yadu N. Babuji, Zhuozhao Li, Tyler J. Skluzacek, Anna Woodard, Ben
Blaiszik, Ian T. Foster, and Kyle Chard. funcx: A federated function serving fabric for
science. In HPDC 20: The 29th International Symposium on High-Performance Parallel
and Distributed Computing, pages 65-76. ACM, 2020.

Christian S. Collberg and Todd A. Proebsting. Repeatability in computer systems research.
Commun. ACM, 59(3):62-69, 2016.

Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dusan Okanovic, and André van Hoorn.
Microservices: A performance tester’s dream or nightmare? In ICPE '20: ACM/SPEC
International Conference on Performance Engineering, 2020, pages 138-149. ACM, 2020.
Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes Grohmann,
Nikolas Herbst, Cristina L. Abad, and Alexandru Iosup. A review of serverless use cases
and their characteristics. Technical Report SPEC-RG-2020-5, SPEC RG Cloud Working
Group, May 2020.

Erwin Van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and Simon
Eismann. A SPEC RG cloud group’s vision on the performance challenges of FaaS cloud ar-
chitectures. In Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering, ICPE 2018, pages 21-24, 2018.

Erwin Van Eyk, Alexandru Iosup, Simon Seif, and Markus Thémmes. The SPEC cloud
group’s research vision on FaaS and serverless architectures. In Proceedings of the 2nd
International Workshop on Serverless Computing, WOSC@Middleware 2017, Las Vegas,
NV, USA, December 12, 2017, pages 1-4, 2017.

Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru Uta, and
Alexandru Iosup. Serverless is more: From PaaS to present cloud computing. IEEE Internet
Comput., 22(5):8-17, 2018.

Wilhelm Hasselbring, Leslie Carr, Simon Hettrick, Heather S. Packer, and Thanassis
Tiropanis. From FAIR research data toward FAIR and open research software. it Inf.
Technol., 62(1):39-47, 2020.

Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith, Vikram
Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless computing: One step forward,
two steps back. In CIDR 2019, 9th Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org, 2019.
Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Serverless computation with
openlambda. In 8th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud
2016, Denver, CO, USA, June 20-21, 2016., 2016.

39

21201

40

21201 - Serverless Computing

16

17

18

19

20

21

22

23

24

25

26

27

28

Alexandru Tosup, Catia Trubiani, Anne Koziolek, José Nelson Amaral, Andre B. Bondi, and
Andreas Brunnert. Flexibility is key in organizing a global professional conference online:
The ICPE 2020 experience in the COVID-19 era. CoRR, abs/2005.09085, 2020.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khandelwal,
Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yadwadkar, Joseph
E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson. Cloud programming
simplified: A berkeley view on serverless computing. CoRR, abs/1902.03383, 2019.

Ana Klimovic, YawenWang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and Christos
Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics. In 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018, pages 427-444. USENIX Association, 2018.

Ravi Madduri, Kyle Chard, Mike D’Arcy, Segun C. Jung, Alexis Rodriguez, Dinanath
Sulakhe, Eric Deutsch, Cory Funk, Ben Heavner, Matthew Richards, Paul Shannon, Gustavo
Glusman, Nathan Price, Carl Kesselman, and Ian Foster. Reproducible big data science: A
case study in continuous fairness. PLOS ONE, 14(4):1-22, 04 2019.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid task provisioning with serverlessop-
timized containers. In USENIX Annual Technical Conference (USENIX ATC 18), July
2018.

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski, A. Ali-eldin, C.
Abad, J. N. Amaral, P. Tuma, and A. Iosup. Methodological principles for reproducible
performance evaluation in cloud computing. IEEE Trans. Software Eng., pages 1-1, 2019.
Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow: Scalable
analytics on serverless infrastructure. In Jay R. Lorch and Minlan Yu, editors, 16th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2019, Boston, MA,
February 26-28, 2019, pages 193-206. USENIX Association, 2019.

Mike Roberts. Serverless architectures. https://martinfowler.com/articles/ serverless.html,
2016. Continuous development of the material.

Joel Scheuner and Philipp Leitner. Function-as-a-service performance evaluation: A mul-
tivocal literature review. Journal of Systems and Software, 2020.

Dag I. K. Sjgberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kampenes, Amela Karahas-
anovic, Nils-Kristian Liborg, and Anette C. Rekdal. A survey of controlled experiments in
software engineering. IEEE Trans. Software Eng., 31(9):733-753, 2005.

Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan S. Rellermeyer,
Carlos Maltzahn, Robert Ricci, and Alexandru losup. Is big data performance reproducible
in modern cloud networks? In 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, pages 513-527,
2020.

Erik van der Kouwe, Gernot Heiser, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida.
Benchmarking flaws undermine security research. IEEE Secur. Priv., 18(3):48-57, 2020.
Erwin van Eyk, Joel Scheuner, Simon Eismann, Cristina L. Abad, and Alexandru Iosup.
Beyond microbenchmarks: The SPEC-RG vision for a comprehensive serverless benchmark.
In Companion of the ACM/SPEC International Conference on Performance Engineering
(ICPE), page 26-31, 2020.

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup 41

2 Table of Contents

Executive Summary
Cristina Abad, Ian T. Foster, Nikolas Herbst, and Alexandru losup 35

Overview of Talks

Serverless Predictions: 2021-2030 (Keynote Abstract — Topic 1)
Pedro Garcia Lopez and Bernard Metzler. 44

Developer Experience for Serverless: Challenges and Opportunities (Keynote Ab-
stract — Topic 2)
Robert Chatley o e 45

Federated Function as a Service (Keynote Abstract — Topic 3)
Kyle Chard and Ian T. Foster ittt 45

Characterizing Serverless Systems (Keynote Abstract — Topic 4)
Mohammad Shahrad 48

Beyond Load Balancing: Package-Aware Scheduling for Serverless Platforms
Cristina Abad e 48

Accelerating Reads with In-Network Consistency-Aware Load Balancing
Samer Al-Kiswanyo e 49

A tool set for serverless
Ahmed Ali-Eldin Hassan o e e 49

Serverless execution of scientific workflows
Bartosz Balis e e e 50

Using Severless Computing for Streamlining the Data Analytic Process
André Bauer 50

Challenges for Serverless Databases
A. Jesse Jiryu Daviso 50

Using Serverless to Improve Online Gaming
Jesse Donkervliet and Alexandru losup 51

Understanding and optimizing serverless applications
Stmon Eismanno e e 51

Autonomous resource allocation methods for serverless systems

Erik Elmroth e e e e 52
Is Serverless an Opportunity for Edge Applications?

Nicola Ferrier o e 52
HyScale into Serverless: Vision and Challenges

Hans-Arno Jacobsen e 53
Serverless Workflows for Sustainable High-Performance Data Analytics

Nikolas Herbst o e e 54
Massivizing Computer Systems: Science, Design, and Engineering for Serverless
Computing

Alexandru Iosup and Erwin van Eyk 54

21201

42

21201 - Serverless Computing

Machine Learning to enable Autonomous Serverless Systems
Pooyan Jamshidi e

Self-Aware Platform Operations and Resource Management
Samuel Kounev L e

From design to migration and management: FaaS platforms for application porting
to optimized serverless implementation and execution
Georgios Kousiouriso e

Software Development Using Serverless Systems
Philipp Leitner e e e e e e e

Running and Scheduling Scientific Workflows on Serverless Clouds: From Functions
to Containers
Maciej Malawski e e e e e

The case for a hybrid cloud model for serverless computing
Vinod Muthusamy e e e e

Performance Evaluation in Serverless Computing
Alessandro Vittorio Papadopoulos

Federated Al on Serverless Edge Clusters Powered by Renewable Energy
Panos Patros e e

Is serverless computing the holy grail of fog computing application design paradigms?
Guillaume Pierre e

Performance Evaluation of Serverless Applications
Joel Scheuner e

FaaS orchestration
Mina Sedaghat e

LaSS: Running Latency Sensitive Serverless Computations at the Edge
Prashant Shenoy and Ahmed Ali-Eldin Hassan

Fitting Serverless Abstractions and System Designs to Next-Generation Application
Needs
Josef Spillner

Architectural Patterns for Serverless-Based applications
Davide Taibi e

Continuous testing of serverless applications
André van Hoorn L e e

Serverless Compute Primitives as a Compilation Target
Soam Vasani e e

Network Challenges in Serverless Computing
Florian Wamser e

Decision Support for Modeling and Deployment Automation of Serverless Applica-
tions
Viadimir Yussupov e

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup 43

Working groups

Design of Serverless Systems, Platforms, and Ecosystems (Topic 1)

Samer Al-Kiswany, Ahmed Ali-Eldin Hassan, André Bauer, André B. Bondi, Ryan

L. Chard, Andrew A. Chien, A. Jesse Jiryu Davis, Erik Elmroth, Alexandru losup,
Hans-Arno Jacobsen, Samuel Kounev, Vinod Muthusamy, Guillaume Pierre, Mina
Sedaghat, Prashant Shenoy, Davide Taibi, Douglas Thain, Erwin van Eyk, and
Soam Vasani e e e e e e 68

Software Engineering of Serverless Applications, but also Systems, Platforms, and
Ecosystems (Topic 2)

Simon FEismann, Robert Chatley, Nikolas Herbst, Georgios Kousiouris, Philipp
Leitner, Pedro Garcia Lopez, Bernard Metzler, Davide Taibi, Vincent van Beek,
André van Hoorn, Guido Wirtz, and Viadimir Yussupov 73

Serverless Applications and Requirements (Topic 3)
Josef Spillner, Bartosz Balis, Jesse Donkervliet, Nicola Ferrier, Ian T. Foster,
Maciej Malawski, Panos Patros, Omer F. Rana, and Florian Wamser 77

Evaluation of Serverless Systems (Topic 4)
Cristina Abad, Kyle Chard, Pooyan Jamshidi, Alessandro Vittorio Papadopoulos,
Robert P. Ricci, Joel Scheuner, Mohammad Shahrad, and Alexandru Uta. 86

Panel discussions

Toward a Definition for Serverless Computing

Samuel Kounev, Cristina Abad, Ian T. Foster, Nikolas Herbst, Alexandru Iosup,
Samer Al-Kiswany, Ahmed Ali-Eldin Hassan, Bartosz Balis, André Bauer, André B.
Bondi, Kyle Chard, Ryan L. Chard, Robert Chatley, Andrew A. Chien, A. Jesse Jiryu
Davis, Jesse Donkervliet, Simon Eismann, Erik Elmroth, Nicola Ferrier, Hans-Arno
Jacobsen, Pooyan Jamshidi, Georgios Kousiouris, Philipp Leitner, Pedro Garcia
Lopez, Martina Maggio, Maciej Malawski, Bernard Metzler, Vinod Muthusamy,
Alessandro Vittorio Papadopoulos, Panos Patros, Guillaume Pierre, Omer F. Rana,
Robert P. Ricci, Joel Scheuner, Mina Sedaghat, Mohammad Shahrad, Prashant
Shenoy, Josef Spillner, Davide Taibi, Douglas Thain, Animesh Trivedi, Alezandru
Uta, Vincent van Beek, Erwin van FEyk, André van Hoorn, Soam Vasani, Florian

Wamser, Guido Wirtz, and Vladimir Yussupov 89
Participants 92
Remote Participants L Lo 92

21201

44

21201 - Serverless Computing

3 Overview of Talks

3.1 Serverless Predictions: 2021-2030 (Keynote Abstract — Topic 1)

Pedro Garcia Lépez (Universitat Rovira i Virgili — Tarragona, ES) and Bernard Metzler
(IBM Research-Zurich, CH)

License) Creative Commons BY 4.0 International license
© Pedro Garcia Lépez and Bernard Metzler
Joint work of Pedro Garcia Lépez, Aleksander Slominski, Michael Behrendt, Bernard Metzlert
Main reference Pedro Garcia Loépez, Aleksander Slominski, Michael Behrendt, Bernard Metzler: “Serverless
Predictions: 2021-2030”, CoRR, Vol. abs/2104.03075, 2021.
URL https://arxiv.org/abs/2104.03075

Within the next 10 years, advances on resource disaggregation will enable full transparency
for most Cloud applications: to run unmodified single-machine applications over effectively
unlimited remote computing resources. In this article, we present five serverless predictions
for the next decade that will realize this vision of transparency — equivalent to Tim Wagner’s
Serverless SuperComputer or AnyScale’s Infinite Laptop proposals.

The major hypothesis is that transparency will be achieved in the next ten years thanks
to novel advances in networking, disaggregation, and middleware services. The huge con-
sequence is the unification of local and remote paradigms, which will democratize distributed
programming for a majority of users. This will realize the old and ultimate goal of hiding
the complexity of distributed systems. The projected developments to reach the ultimate
goal (Serverless End Game) include the following:

Prediction 1: Serverless Clusters (Multi-tenant Kubernetes) will overcome the current

limitations of direct communication among functions, hardware acceleration, and time

limits.

Prediction 2: Serverless Granular computing will offer 1-10 ps microsecond latencies for

remote functions thanks to lightweight virtualization and fast RPCs.

Prediction 3: Serverless memory disaggregation will offer shared mutable state and

coordination at 2-10 ps microsecond latencies over persistent memory.

Prediction 4: Serverless Edge Computing platforms leveraging 6G’s ms latencies and Al

optimizations will facilitate a Cloud Continuum for remote applications.

Prediction 5: Transparency will become the dominant software paradigm for most

applications, when computing resources become standardized utilities.

We discuss the basis of these predictions as well as technical challenges and risks. The
predictions are mapped to phases to reach the final goal.

In conclusion, we argue that full transparency will be possible soon thanks to low
latency and resource disaggregation. The Serverless End Game will unify local and remote
programming paradigms, changing completely the way we currently create distributed
applications. This is the ultimate goal of distributed systems, to become invisible using
transparent middleware, and to simplify how users access remote resources.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2104.03075
https://arxiv.org/abs/2104.03075
https://arxiv.org/abs/2104.03075

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

3.2 Developer Experience for Serverless: Challenges and Opportunities
(Keynote Abstract — Topic 2)

Robert Chatley (Imperial College London, GB)

License @@ Creative Commons BY 4.0 International license
© Robert Chatley
Joint work of Robert Chatle, Goko, Adzic, Thomas Allerton, Hang Li Li
Main reference Robert Chatley, Thomas Allerton: “Nimbus: improving the developer experience for serverless
applications”, in Proc. of the ICSE ’20: 42nd International Conference on Software Engineering,
Companion Volume, Seoul, South Korea, 27 June — 19 July, 2020, pp. 85-88, ACM, 2020.
URL https://doi.org/10.1145/3377812.3382135

In this keynote talk we present a number of industrial case studies of building serverless
systems, from the developer point of view. We examine how economic aspects — for example
billing models — affect architectural design decisions for serverless applications, and also
how available tooling inhibits or enhances developer experience when building, running and
evolving serverless systems. We look at some current challenges, and propose some possible
future directions aiming to address these.

After completing his PhD, Robert spent many years working in industry as a senior
software engineer and a consultant before returning to university life. His work now bridges
industry and academia, focussing on developing skills and knowledge in software engineers to
build technical competence and improve developer productivity. His role at Imperial combines
a strong focus on education with industry-focussed research. Robert’s main interests are
in developer experience — trying to support and improve developer productivity through
advances in tools, technologies and processes.

3.3 Federated Function as a Service (Keynote Abstract — Topic 3)

Kyle Chard (University of Chicago, US) and Ian T. Foster (Argonne National Laboratory —
Lemont, US)
License @ Creative Commons BY 4.0 International license
© Kyle Chard and Ian T. Foster
Main reference Ryan Chard, Yadu N. Babuji, Zhuozhao Li, Tyler J. Skluzacek, Anna Woodard, Ben Blaiszik, Ian T.
Foster, Kyle Chard: “funcX: A Federated Function Serving Fabric for Science”, in Proc. of the
HPDC ’20: The 29th International Symposium on High-Performance Parallel and Distributed

Computing, Stockholm, Sweden, June 23-26, 2020, pp. 65-76, ACM, 2020.
URL https://doi.org/10.1145/3369583.3392683

Introduction

The serverless paradigm has revolutionized programming by allowing programmers to develop,
run, and manage scalable applications without needing to build and operate the infrastructure
that would normally be required to host those applications [5]. In particular, the popular
function as a service (FaaS) model reduces application development to two tasks: defining
and registering (or discovering) high-level programming language functions, and invoking
those functions. The underlying FaaS platform, traditionally operated by a cloud provider,
then deals with the complexities of provisioning and managing the servers, virtual machines,
containers, and programming environments needed to run those functions.

Most current FaaS offerings adopt the powerful simplifying assumption that functions
run on a single, centralized, and homogeneous platform, whether a commercial (public) cloud
like AWS, Azure, or Google, or a dedicated (private) cluster as in the case of OpenWhisk.
In such environments, FaaS systems provide simple and intuitive APIs that democratize
access to seemingly unlimited remote elastic computing capacity. But modern computing
environments are increasingly distributed and heterogeneous.

45

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3377812.3382135
https://doi.org/10.1145/3377812.3382135
https://doi.org/10.1145/3377812.3382135
https://doi.org/10.1145/3377812.3382135
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683

46

21201 - Serverless Computing

For example, quasi-ubiquitous machine learning methods require access to specialized
hardware (e.g., Al accelerators) and introduce new workload patterns (e.g., large-memory
training and short-duration inference) and interactive and event-based computing models
(e.g., from automated laboratories and robots) that require instantaneous access to specialized
computing capabilities. Sensor network applications often require that data be processed
near to data sources to reduce bandwidth needs and/or enable rapid response.

To address these concerns, we propose a new federated FaaS model in which function
executions can be dispatched to arbitrary computing resources, chosen for example on the
basis of latency, cost, data locality, security, or other concerns. This new model preserves
and leverages powerful features of conventional FaaS (e.g., simple function registration and
invocation APIs, abstraction of infrastructure) while also allowing programmers to operate
effectively in a distributed computational continuum [2]. In effect, federated FaaS aims to
allow computation to flow to wherever makes sense for a particular purpose.

funcX: early experiences with federated Faa$S

funcX [4] is a federated FaaS platform designed to address some of the challenges outlined
above. funcX adapts the traditional cloud-hosted FaaS model by enabling users to route
function invocations to a distributed set of user-deployed funcX endpoints. Thus, users can
add their own computing system (e.g., cluster, cloud, laptop) to the funcX ecosystem by
deploying an endpoint and they may then use those endpoints to execute functions. From a
user’s perspective, funcX looks like any other FaaS system: users register functions with the
cloud-hosted funcX service, they may then invoke that function by specifying input arguments
and the target endpoint. funcX manages the complexity of execution, authenticating with
the remote endpoint, reliably executing the function (optionally inside a container), and
caching results (or exceptions) until retrieved by the user.

Over the past year we have applied funcX to a range of research applications and as the
basis for building other services (e.g., DLHub [3]). We have found that funcX can effectively
abstract the complexity of using diverse computing resources, simplify authentication and
authorization, reduce the difficulties associated with scaling resources to support workloads,
remove the challenge of porting applications between different systems and data centers, and
enable new application modes such as event-based and interactive computing.

We have also identified limitations of the federated FaaS model as realized in our work
to date. For example, many applications cannot easily be mapped to the FaaS paradigm;
funcX’s centralized data and state management restrict the application patterns that can
be implemented, and require that the ratio of data size to compute must be reasonable
to keep transfer overheads manageable; containers fail to solve portability problems in
HPC environments; and the coarse-grained allocation models of HPC systems do not lend
themselves well to function execution. These are all topics that we are addressing in current
work.

Open challenges
The federated FaaS model introduces fascinating research challenges, including the following.

Data and State. Traditionally, FaaS functions are stateless. However, many applications
require that data be passed to, from, and between functions. (Indeed, data locality is one of
the main reasons to apply a federated model.) Conventional cloud-hosted FaaS platforms

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

meet these needs via universal object storage; however, such storage is not generally accessible
in federated settings. There is a need to explore FaaS application communication patterns,
data-centric programming models for FaaS, transparent wide-are data staging, and shared
data substrates for low-latency data sharing.

Environment management. FaaS systems leverage containerized environments that enable
dependencies to be met while sandboxing execution in multi-tenant environments. Cloud
FaaS systems have developed new software container technologies with rapid startup time and
low cold start overheads [1]. The heterogeneous environments found in federated Faa$S create
more challenges, such as diverse container technologies and slow resource provisioning [7].

Scheduling. Increasingly heterogeneous computing environments create a continuum of
computing capacity: from edge computing devices through to supercomputers. Federated
FaaS makes it easy to route functions to execute anywhere, and thus exposes a fabric on
which broad scheduling policies can be explored. Such scheduling polices may consider
data locations, transfer costs, resource provisioning time, resource costs (monetary and/or
availability), hardware performance, and function needs [6].

Security, policies, regulations. Federated FaaS is distinguished from conventional FaaS by
a quite different security model. In a federated environment, each computing endpoint may
be located in a distinct administrative domain with unique authentication and authorization
systems, policies, and regulations. Centralized FaaS systems typically operate within a
single administrative domain. Federated FaaS requires methods for bridging domains and
for ensuring that policies and regulations are enforced.

Summary

Federated FaaS provides a potential solution to long-standing remote computing challenges.
In so doing, it enables a range of new application scenarios and moves us closer to a truly
integrated treatment of local and remote computing. It also exposes fascinating new research
challenges that will only grow in importance as both application demands and technologies
continue to develop.

References

1 A Agache et al., Firecracker: Lightweight virtualization for serverless applications, 17th
USENIX Symposium on Networked Systems Design and Implementation, 2020, pp. 419-434.

2 P Beckman et al.,Harnessing the computing continuum for programming our world, Fog

Computing: Theory and Practice (2020), 215-230.
3 R Chard et al., DIhub: Model and data serving for science, 35rd IEEE International Parallel
and Distributed Processing Symposium, 2019, pp. 283-292.

4 R Chard et al., FuncX: A federated function serving fabric for science, 29th International
Symposium on High-Performance Parallel and Distributed Computing, ACM, 2020, p.
65-76.

5 S Eismann et al., Serverless applications: Why, when, and how?, IEEE Software 38(2020),
no. 1, 32-39.

6 R Kumar et al., Coding the computing continuum: Fluid function execution in hetero-

geneous computing environments, IEEE International Parallel and Distributed Processing
Symposium Workshops, 2021, pp. 66-75.

7 T Shaffer et al., Lightweight function monitors for fine-grained management in large scale
Python applications, IEEE International Parallel and Distributed Processing Symposium,
2021, pp. 786-796

47

21201

48

21201 - Serverless Computing

3.4 Characterizing Serverless Systems (Keynote Abstract — Topic 4)
Mohammad Shahrad (University of British Columbia — Vancouver, CA)

License @ Creative Commons BY 4.0 International license
© Mohammad Shahrad

This keynote is dedicated to understanding the importance of characterizing serverless systems
from different perspectives. To make the case, two characterization studies will be presented:
1) a cluster-wide characterization of the entire serverless workload at Azure Functions [1],
and 2) a detailed micro-architectural study of Apache OpenWhisk [2]. The insights gained
by the first study lead to designing an adaptive scheduling policy reducing cold starts and
resource wastage, and the observations in the second study reveal inefficiencies in cloud-grade
processors in serving serverless workloads. The talk also emphasizes the importance of
reproducibility through open-sourcing traces or tools.

References

1 Mohammad Shahrad, Rodrigo Fonseca, and fﬁigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo Bianchini.
Serverless in the wild: Characterizing and optimizing the serverless workload at a large
cloud provider. USENIX Annual Technical Conference (USENIX ATC), 2020

2 Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural implications
of function-as-a-service computing. 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2019.

3.5 Beyond Load Balancing: Package-Aware Scheduling for Serverless
Platforms

Cristina Abad (ESPOL - Guayaquil, EC)

License) Creative Commons BY 4.0 International license
© Cristina Abad
Joint work of Gabriel Aumala, Edwin F. Boza, Luis Ortiz-Avilés, Gustavo Totoy, Cristina L. Abad

Main reference Gabriel Aumala, Edwin F. Boza, Luis Ortiz-Avilés, Gustavo Totoy, Cristina L. Abad: “Beyond Load
Balancing: Package-Aware Scheduling for Serverless Platforms”, in Proc. of the 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2019, Larnaca, Cyprus,
May 14-17, 2019, pp. 282-291, IEEE, 2019.

URL https://doi.org/10.1109/CCGRID.2019.00042

Fast deployment and execution of cloud functions in Function-as-a-Service (FaaS) platforms is
critical, for example, for user-facing services in microservices architectures. However, functions
that require large packages or libraries are bloated and start slowly. An optimization is to
cache packages at the worker nodes instead of bundling them with the functions. However,
existing FaaS schedulers are vanilla load balancers, agnostic to packages cached in response
to prior function executions, and cannot properly reap the benefits of package caching. We
study the case of package-aware scheduling and propose PASch, a novel Package-Aware
Scheduling algorithm that seeks package affinity during scheduling so that worker nodes
can re-use execution environments with preloaded packages. PASch leverages consistent
hashing and the power of two choices, while actively avoiding worker overload. We implement
PASch in a new scheduler for the OpenLambda framework and evaluate it using simulations
and real experiments. We evaluated PASch with varying cluster sizes and skewness of
package popularity distribution, and found that it outperforms a regular balancer by as much
as 318x (median speedup). Furthermore, for the workloads studied in this paper, PASch
can outperform consistent hashing with bounded loads — a state-of-the-art load balancing
algorithm — by 1.3x (mean speedup), and a speedup of 1.5x at the 80th percentile.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CCGRID.2019.00042
https://doi.org/10.1109/CCGRID.2019.00042
https://doi.org/10.1109/CCGRID.2019.00042
https://doi.org/10.1109/CCGRID.2019.00042
https://doi.org/10.1109/CCGRID.2019.00042

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

3.6 Accelerating Reads with In-Network Consistency-Aware Load
Balancing

Samer Al-Kiswany (University of Waterloo, CA)

License @ Creative Commons BY 4.0 International license
© Samer Al-Kiswany
Joint work of Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, Samer Al-Kiswany
Main reference Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, Samer Al-Kiswany: “FLAIR: Accelerating
Reads with Consistency-Aware Network Routing”, in Proc. of the 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), pp. 723-737, USENIX Association, 2020.

URL https://www.usenix.org/conference/nsdi20/presentation/takruri

Replication is the main reliability technique for many modern cloud services that process
billions of requests each day. Unfortunately, modern strongly-consistent replication protocols
— such as multi-Paxos, Raft, Zab, and Viewstamped replication (VR) — deliver poor read
performance. This is because these protocols are leader-based: a single leader replica (or
leader, for short) processes every read and write request, while follower replicas (followers for
short) are used for reliability only.

I present FLAIR, a novel approach for accelerating read operations in leader-based
consensus protocols. FLAIR leverages the capabilities of the new generation of programmable
switches to serve reads from follower replicas without compromising consistency. The core of
the new approach is a packet-processing pipeline that can track client requests and system
replies, identify consistent replicas, and at line speed, forward read requests to replicas that
can serve the read without sacrificing linearizability. An additional benefit of FLAIR is
that it facilitates devising novel consistency-aware load balancing techniques. Following the
new approach, the research team designed FlairKV, a key-value store atop Raft. FlairKV
implements the processing pipeline using the P4 programming language. We evaluate the
benefits of the proposed approach and compare it to previous approaches using a cluster
with a Barefoot Tofino switch. The evaluation indicates that, compared to state-of-the-art
alternatives, the proposed approach can bring significant performance gains: up to 42%
higher throughput and 35-97% lower latency for most workloads.

3.7 A tool set for serverless
Ahmed Ali-Eldin Hassan (Chalmers University of Technology — Géteborg, SE)

License @ Creative Commons BY 4.0 International license
© Ahmed Ali-Eldin Hassan
Joint work of Ahmed Ali-Eldin Hassan, Prashant Shenoy

Designing full stack serverless edge applications is a challenge. System dynamics of most edge
applications poses challenges to what application can be developed using the serverless model

to run on the edge. Specific challenges include function startup times, and state management.

In this line of research, our aim is to develop models, tools, and frameworks that can enable
programmers and system owners to harness the power of serverless computing for edge
systems. We will initially focus on the problem of startup times and state management. Our
aim is to eventually build an entire tool-base that enables for optimizes compiling applications
into serverless functions, optimizes the deployment of serverless based applications, and
optimizes the runtime on the edge.

49

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/nsdi20/presentation/takruri
https://www.usenix.org/conference/nsdi20/presentation/takruri
https://www.usenix.org/conference/nsdi20/presentation/takruri
https://www.usenix.org/conference/nsdi20/presentation/takruri
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

50

21201 - Serverless Computing

3.8 Serverless execution of scientific workflows
Bartosz Balis (AGH University of Science & Technology — Krakow, PL)

License @ Creative Commons BY 4.0 International license
© Bartosz Balis
Joint work of Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, Kamil Figiela
Main reference Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, Kamil Figiela: “Serverless execution of
scientific workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud Functions”,
Future Gener. Comput. Syst., Vol. 110, pp. 502-514, 2020.
URL https://doi.org/10.1016/j.future.2017.10.029

Scientific workflows, consisting of a large number of tasks structured as a graph, are an
important paradigm for automation in scientific computing. We discuss the applicability of
serverless infrastructures to compute- and data-intensive workflows, and options for designing
serverless workflow execution architecture. We also present cost analysis and implications
with regard to resource management for scientific applications in the serverless paradigm.
The approach is experimentally evaluated using the HyperFlow workflow management system
and real workflow applications. Our findings indicate that the simple mode of operation
makes the serverless approach attractive and easy to use, although for larger workflows
traditional [aaS infrastructure is more cost-efficient. We conclude that a hybrid approach
combining VMs with cloud functions for small tasks could be a good execution model for
scientific workflows.

3.9 Using Severless Computing for Streamlining the Data Analytic
Process

André Bauer (Universitit Wiirzburg, DE)

License) Creative Commons BY 4.0 International license
© André Bauer

The discipline of data analytics has grown significantly in recent years as a means to make
sense of the vast amount of data available. It has permeated every aspect of computer science
and engineering and is heavily involved in business decision-making. However, data analytics
projects are often done manually. To accelerate and improve such projects, there are, for
example, Federated Learning and the best practices of DataOps. Since such approaches need
a high degree of flexibility and should generate as little overhead as possible, I am interested
in how far Serverless Computing can be used to guarantee these conditions.

3.10 Challenges for Serverless Databases
A. Jesse Jiryu Davis (MongoDB — New York, US)

License) Creative Commons BY 4.0 International license
© A. Jesse Jiryu Davis
Joint work of Judah Schvimer, A. Jesse Jiryu Davis, Max Hirschhor
Main reference Judah Schvimer, A. Jesse Jiryu Davis, Max Hirschhorn: “eXtreme Modelling in Practice”, Proc.
VLDB Endow., Vol. 13(9), pp. 13461358, 2020.
URL https://doi.org/10.14778/3397230.3397233

Academic research into serverless platforms has focused primarily on FaaS, not on the backend
services such as databases that support FaaS applications. Furthermore, the literature mostly
discusses how to use serverless platforms from the application developer’s perspective, rather

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1016/j.future.2017.10.029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.14778/3397230.3397233
https://doi.org/10.14778/3397230.3397233
https://doi.org/10.14778/3397230.3397233

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

than how to implement them from the provider’s perspective. My research goal is to review
the state of the art for implementing serverless platforms, particularly serverless databases.
I am interested in methods for scaling and balancing tenants in multi-tenant serverless
databases, and moving tenants between servers efficiently and without disruption. I am also
interested in testing and validation methods for distributed systems algorithms, including
formal methods such as TLA+.

3.11 Using Serverless to Improve Online Gaming

Jesse Donkervliet (VU University Amsterdam, NL) and Alexandru Iosup (VU University
Amsterdam, NL)

License @ Creative Commons BY 4.0 International license
© Jesse Donkervliet and Alexandru Iosup
Main reference Jesse Donkervliet, Animesh Trivedi, Alexandru Iosup: “Towards Supporting Millions of Users in
Modifiable Virtual Environments by Redesigning Minecraft-Like Games as Serverless Systems”, in
Proc. of the 12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2020, July
13-14, 2020, USENIX Association, 2020.
URL https://www.usenix.org/conference/hotcloud20/presentation/donkervliet

Serverless computing offers potential for the simpler and more cost-efficient deployment of
large-scale systems. Online games are a billion dollar industry supported by large-scale
distributed systems. How can these systems benefit from serverless computing? How to
design real-time online games for serverless platforms? How to meet the QoS requirements
of these systems? How to guarantee sufficient consistency between users? How to schedule
its components cost- and energy-efficiently? I am interested in learning more about these
questions and exploring their answers.

3.12 Understanding and optimizing serverless applications
Simon Eismann (Universitit Wiirzburg, DE)

License @ Creative Commons BY 4.0 International license
© Simon Eismann
Joint work of Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann,
Nikolas Herbst, Cristina L. Abad, Alexandru Iosup
Main reference Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann,
Nikolas Herbst, Cristina L. Abad, Alexandru Iosup: “Serverless Applications: Why, When, and
How?”, IEEE Softw., Vol. 38(1), pp. 32-39, 2021.
URL https://doi.org/10.1109/MS.2020.3023302

Serverless application are a novel computing paradigmn with rapidly growing industry
adoption. However, there are still many open questions about the characteristics of serverless
applications, such as how many serverless functions does a typical serverless microservice
consist of. Additionally, there are still a number of manual configurations that developers
need to fine-tune in order to optimize their applications.

We collected 89 serverless applications from white literature, grey literature, open-source
projects, and scientific computing and analyze their characteristics to provide insight into
the current state of serverless applications. Further, we present approaches to model the
performance of serverless workflows and serverless functions with different sizes to enable the
automated optimization of serverless functions and workflows.

51

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302

52

21201 - Serverless Computing

3.13 Autonomous resource allocation methods for serverless systems
Erik Elmroth (University of Umed, SE)

License @ Creative Commons BY 4.0 International license
© Erik Elmroth

With the overall research direction being on how to build autonomous or semi-autonomous
resource management systems for IT systems, we have done a lot of work on resource
allocation topics such as scaling, orchestration, scheduling, service differentiation and all kind
of techniques trying to control performance, efficiency, reliability, etc. And we have been
doing this for systems spanning from servers and clusters to rack-scale systems, datacenters,
edge environments, and so on. Serverless systems are obviously within scope for this.

In the past few years we have also spent more and more efforts on handling the situations
that cannot be controlled, by focusing on anomaly detection, primarily trying to identify
performance issues and their root causes but also considered functional and security anomalies,
which are not always easy to distinguish.

When looking more specifically into serverless systems, we have recently initiated a project
where we on one hand try to determine in advance what resources are needed and how
they should be allocated to meet particular performance requirements. As these systems
are increasingly building on machine learning models, we are also digging deeper into the
questions of when to retrain the models, what data to use for retraining, and ultimately what
data to save for future retraining of the machine learning models used in the management
systems.

3.14 Is Serverless an Opportunity for Edge Applications?
Nicola Ferrier (Argonne National Laboratory, US)

License @ Creative Commons BY 4.0 International license
© Nicola Ferrier
URL www.sagecontinuum.org

Deploying AT at the edge creates an opportunity to develop software defined sensors, using
cameras and microphones, along with appropriate software to enable scientists to obtain
measurements specific to their application. Some processing methods may require resources
that exceed available edge resources. In addition, having multiple scientists seeking to use
the same edge device might require off-loading some computations. Serverless architecture
for these applications could support a seamless method to have methods run on the edge,
cloud, or high-performance computing centers.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.sagecontinuum.org

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

3.15 HyScale into Serverless: Vision and Challenges
Hans-Arno Jacobsen (University of Toronto, CA)

License @ Creative Commons BY 4.0 International license
© Hans-Arno Jacobsen
Joint work of Yuqiu Zhang, Hans-Arno Jacobsen

Main reference Anthony Kwan, Jonathon Wong, Hans-Arno Jacobsen, Vinod Muthusamy: “HyScale: Hybrid and
Network Scaling of Dockerized Microservices in Cloud Data Centres”, in Proc. of the 39th IEEE
International Conference on Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July
7-10, 2019, pp. 80-90, IEEE, 2019.

URL https://doi.org/10.1109/ICDCS.2019.00017

Microservices, in contrast to traditional monolithic architectures, consist of several smaller
dedicated processes working together to provide services to users and are widely adopted
in industry due to better flexibility and reliability. Container technologies, such as Docker,
provide a lightweight environment for deploying the microservices in computing clusters.
Containers are independent units that package software and its dependencies together.
Similar to virtual machines (VMs), containers are a virtualization technology that allows a
single computing resource to be shared among multiple microservices. However, different
from VMs which virtualize resources at the hardware level, containers are virtualized at
the operating system level. Containers provide weaker isolation, but are much smaller in
size, take much less time to start/stop, and bear lower overhead. This results in improving
resource utilization in terms of the number of machines required to host a given workload on
the host.

The large-scale adoption of containers for hosting microservices requires the use of
container orchestration middleware, such as Kubernetes, to efficiently manage and deploy
them. Therefore, an important issue arises, which is to schedule and place containerized
applications on available hosts. When submitting an application for deployment, the container
orchestration middleware must place it on one of the available resources, considering the
limitations of the application and aiming to maximize the use of computing resources. From
a cost-efficient perspective, the container orchestration middleware should consider factors
such as the capacity of available machines, application performance, quality of service, energy
consumption, and operation costs. Typically, a container orchestration middleware provides
a unified control interface that is responsible for the whole cluster. The control interface,
which we call an autoscaler, runs the autoscaling algorithm to automatically scale up or down
the number of allocated resources of containers based on system usage, user requirements,
and costs. Our HyScale project is dedicated to solve this issue by building a cost-efficient,
SLO-aware autoscaler for container orchestration systems (service level objective-aware).

Going into the serverless era, we envision HyScale to have even more impact and prac-
tical use. First, since serverless services are widely adopting containers as the underlying
infrastructure, HyScale should be able to seamlessly work with any container-based serverless
frameworks to provide elasticity and scalability improvements. Second, the principle of
‘scaling from zero to infinity’ intrinsic to serverless computing and the fact that serverless
function executions are mostly short-lived and small in size, finer-grained and faster-reacting
autoscaling policies are required to meet the specific needs for this new paradigm. This also
puts challenges upon HyScale design to account for the faster autoscaling decision making
needs. Moreover, the problem of cold start becomes even more inevitable in the serverless
context, where higher requirements of the cooldown period are expected. This needs more
meticulous thinking in autoscaler design as it is usually difficult to find a balance between
cost efficiency and cooldown period reduction. All in all, autoscaling in serverless is definitely
an interesting and promising research area where HyScale can be devoted to in the near
future.

53

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICDCS.2019.00017
https://doi.org/10.1109/ICDCS.2019.00017
https://doi.org/10.1109/ICDCS.2019.00017
https://doi.org/10.1109/ICDCS.2019.00017
https://doi.org/10.1109/ICDCS.2019.00017

54

21201 - Serverless Computing

3.16 Serverless Workflows for Sustainable High-Performance Data
Analytics

Nikolas Herbst (Universitat Wiirzburg, DE)

License @ Creative Commons BY 4.0 International license
© Nikolas Herbst
Main reference Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann,
Nikolas Herbst, Cristina L. Abad, Alexandru Iosup: “Serverless Applications: Why, When, and
How?”, IEEE Softw., Vol. 38(1), pp. 32-39, 2021.
URL https://doi.org/10.1109/MS.2020.3023302

With the current serverless technologies like FaaS as early enabling technology, we see huge
potential for the next generation of serverless computing. Current technical limitations can
be overcome: among the current major limitations, we see in accordance with [1] [2] (1)
missing ways for direct low-latency communication of functions, (2) efficient state transfer
of intermediate results via dis-aggregated memory, (3) in-transparency in terms of real
resource consumption and apriori cost estimates, and (4) missing intelligence in placement
and scheduling of distributed serverless workflows in the cloud to edge continuum.

We envision a resource-efficient serverless computing platform enabling the specification,
management, and automated execution of high-performance data analytic workflows for
experts as well as non-experts. A low entry-barrier (NoOps) and flexibility (fine-granular
PayPerUse including scale-to-zero) of the envisioned platform could foster interdisciplinary
research across research domains based. Besides a sustainable serverless compute infrastruc-
ture, we envision a data analytic workflow engine that can leverage serverless technology
for ease of assembly, configuration, and efficient operation with a high degree of reusability
for distributed data sources. It should support end-to-end data analysis including steps
like initial data-quality assessment for a result confidence rating, feature selection, model
federation, tuning, method chaining, model-(re-)training, and more.

References

1 Pedro Garcia Lépez, Aleksander Slominski, Michael Behrendt, Bernard Metzler: Serverless
Predictions: 2021-2030. CoRR abs/2104.03075 (2021)

2 Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith, Vikram
Sreekanti, Alexey Tumanov, Chenggang Wu: Serverless Computing: One Step Forward,
Two Steps Back. CIDR 2019

3.17 Massivizing Computer Systems: Science, Design, and Engineering
for Serverless Computing

Alexandru Iosup (VU University Amsterdam, NL) and Erwin van Eyk (VU University
Amsterdam, NL)

License) Creative Commons BY 4.0 International license
© Alexandru Iosup and Erwin van Eyk
Main reference Alexandru Iosup, Alexandru Uta, Laurens Versluis, Georgios Andreadis, Erwin Van Eyk, Tim
Hegeman, Sacheendra Talluri, Vincent van Beek, Lucian Toader: “Massivizing Computer Systems: A
Vision to Understand, Design, and Engineer Computer Ecosystems Through and Beyond Modern
Distributed Systems”, in Proc. of the 38th IEEE International Conference on Distributed Computing
Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, pp. 1224-1237, IEEE Computer Society,
2018.
URL https://doi.org/10.1109/ICDCS.2018.00122

The idea of enabling businesses, governments, scientific labs, and society at-large to use IT
infrastructure for fine-grained, daily operations, without detailed management of operational
logic, emerged in the 1950s and remains a grand challenge in computer science. After a

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICDCS.2018.00122
https://doi.org/10.1109/ICDCS.2018.00122
https://doi.org/10.1109/ICDCS.2018.00122
https://doi.org/10.1109/ICDCS.2018.00122
https://doi.org/10.1109/ICDCS.2018.00122
https://doi.org/10.1109/ICDCS.2018.00122
https://doi.org/10.1109/ICDCS.2018.00122

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

hiatus between roughly the 1970s through the 2000s, in the 2010s the cloud has picked
up the challenge. In the 2020s instance of this challenge, serverless computing, the cloud
provider manages the resources, lifecycle, and execution of user-provided functions, all
packaged together into fine-grained applications (and fine-grained monitoring, accounting,

and billing). But, beyond the low-hanging fruits of this models, and the early emergence of

Function-as-a-Service (FaaS), the challenge remains largely untouched.

In this talk, we posit that the principles, challenges, and approach of massivizing

computer systems [1] could help. Massivizing computer systems is a multi-disciplinary,

mixed-methods approach, spanning at least distributed computer systems, performance

engineering, and software engineering. We highlight in this talk several points:

1.

We do not have to start from scratch to understand why serverless is more (than PaaS
cloud) [2]: Using a historiographical approach focusing on technology, we can explain the
origins of serverless computing, and predict (envision) its evolution focusing on the most
important aspects and avoiding the common pitfalls of the past.

Building the serverless systems and applications of the future depends — much like the
containerization of transport did in its early decades — on modeling the architecture of
serverless operations. The SPEC RG reference architecture for FaaS [3] is an example of
this.

Designing new parts and composites is essential for serverless computing, because the
current technology raises many technical issues, and the interplay between non-functional
properties such as performance, elastic scalability, dependability, security, and sustainab-
ility (in particular, energy-efficiency) is complex. The task is daunting and will require
many different designers to be able to share and work together, so we need to also design
processes, in other words, to design the design of serverless systems and applications [4].
A similar argument can be made about optimization and tuning.

Understanding and analyzing serverless ecosystems is necessary — paraphrasing every
scientist and engineer ever, we cannot hope to use what we do not understand, lest it
collapses when we least expect it. Real-world experiments and benchmarking are important
activities here [5]. But real-world experimentation is too costly and time-consuming for
large-scale, long-term operations. Instead, simulation-based approaches, e.g., based on
simulators such as OpenDC [6], are important. Much like a single model cannot capture
entirely complex real-life situations, the community should provide multiple simulators
(models), and consider predictions based on ensembles of models. Reproducibility is another
important aspect of this line of work [7].

Last, but not least, we need a forum to discuss serverless-related topics, especially focusing
on the interplay between non-functionals. The SPEC RG Cloud Group provides such a
forum and is inclusive. Developing its flagship workshop, HotCloudPerf, and merging
it with others to form a serverless conference, could provide an annual selective event.
Sharing data and software artifacts, FAIRly, would benefit all and be greatly facilitated by
such a community/conference. We also envision here a Memez-like approach to preserve
diverse operational traces representative of serverless computing.

References

1

Alexandru Tosup, Alexandru Uta, Laurens Versluis, Georgios Andreadis, Erwin Van Eyk,
Tim Hegeman, Sacheendra Talluri, Vincent van Beek, Lucian Toader: Massivizing Computer
Systems: A Vision to Understand, Design, and Engineer Computer Ecosystems Through
and Beyond Modern Distributed Systems. ICDCS 2018: 1224-1237.

55

21201

56

21201 - Serverless Computing

2 Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru Uta,
Alexandru Iosup: Serverless is More: From PaaS to Present Cloud Computing. IEEE
Internet Comput. 22(5): 8-17 (2018)

3 Erwin Van Eyk, Alexandru Iosup, Johannes Grohmann, Simon Eismann, André Bauer,
Laurens Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, Cristina L. Abad: The
SPEC-RG Reference Architecture for FaaS: From Microservices and Containers to Serverless
Platforms. IEEE Internet Comput. 23(6): 7-18 (2019)

4 Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin Van Eyk, Lucian Toader,
Vincent van Beek, Giulia Frascaria, Ahmed Musaafir, Sacheendra Talluri: The AtLarge
Vision on the Design of Distributed Systems and Ecosystems. ICDCS 2019: 1765-1776

5 Erwin Van Eyk, Joel Scheuner, Simon Eismann, Cristina L. Abad, Alexandru losup: Beyond
Microbenchmarks: The SPEC-RG Vision for a Comprehensive Serverless Benchmark. ICPE
Companion 2020: 26-31

6 Fabian S. Mastenbroek, Georgios Andreadis, Soufiane Jounaid, Wenchen Lai, Jacob Burley,
Jaro Bosch, Erwin van Eyk, Laurens Versluis, Vincent van Beek, Alexandru Iosup (2021)
OpenDC 2.0: Convenient Modeling and Simulation of Emerging Technologies in Cloud
Datacenters. CCGrid 2021

7 Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer, Nikolas Herbst, Jéakim
von Kistowski, Ahmed Ali-Eldin, Cristina L. Abad, José Nelson Amaral, Petr Tuma,
Alexandru Tosup: Methodological Principles for Reproducible Performance Evaluation in
Cloud Computing. IEEE TSE.

3.18 Machine Learning to enable Autonomous Serverless Systems
Pooyan Jamshidi (University of South Carolina — Columbia, US)

License) Creative Commons BY 4.0 International license
© Pooyan Jamshidi
Joint work of Nabor Chagas Mendonga, Pooyan Jamshidi, David Garlan, Claus Pahl
Main reference Nabor Chagas Mendonga, Pooyan Jamshidi, David Garlan, Claus Pahl: “Developing Self-Adaptive
Microservice Systems: Challenges and Directions”, IEEE Softw., Vol. 38(2), pp. 70-79, 2021.
URL https://doi.org/10.1109/MS.2019.2955937

Serverless computing offers cloud functions, a new type of cloud service that offers fine
granularity and lower latency. However, building systems with this new computing platform
comes with its challenges: (1) functions are stateless and may need to download large
amounts of code/data when they boot up, (2) functions have very limited runtime before
they are killed, (3) Storage is limited, but much faster comparing with outside services, (4)
the number of available cloud workers depends on the overall load of service providers and
the load can only be predicted, (5) node failures occur when running at a large scale, (6) the
dependencies differ in functions comparing with an on-premise machine, and (7) latency to
the cloud makes roundtrips costly. (8) the cost of acquiring and running a function may vary
over time and across providers.

Although researchers have addressed some of these challenges, I am, in particular,
interested in developing a vendor-agnostic framework that application developers can build
their serverless systems with functionalities such as load balancing between cloud providers
and reconfiguring the serverless pipeline to optimize the performance and reliability of the
system. The framework can also dynamically map functions to compute nodes based on
performance, reliability, and cost trade-off. In addition, automated fault detection and repair
will enable resilient and robust serverless application development. We rely on our recent
advancement in machine learning, particularly Causal AT (Causal Structure Learning, Causal
Inference, Counterfactual Reasoning, Causal Transfer Learning), to enable the proposed
capabilities in the serverless framework.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MS.2019.2955937
https://doi.org/10.1109/MS.2019.2955937
https://doi.org/10.1109/MS.2019.2955937

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

3.19 Self-Aware Platform Operations and Resource Management
Samuel Kounev (Universitit Wiirzburg, DE)

License @ Creative Commons BY 4.0 International license
© Samuel Kounev
Joint work of Samuel Kounev, Simon Eismann, Johannes Grohmann, Erwin Van Eyk, Nikolas Herbst
Main reference Simon Eismann, Johannes Grohmann, Erwin Van Eyk, Nikolas Herbst, Samuel Kounev: “Predicting
the Costs of Serverless Workflows”, in Proc. of the ICPE ’'20: ACM/SPEC International Conference
on Performance Engineering, Edmonton, AB, Canada, April 20-24, 2020, pp. 265-276, ACM, 2020.
URL https://doi.org/10.1145/3358960.3379133

In serverless computing, the responsibility for operation aspects, including application resource
management, is offloaded to the Cloud provider. This includes, for example, managing virtual
machines and containers, managing function execution runtimes (e.g., a Python runtime
environment with respective libraries), elastic scaling, reliability /fault tolerance, monitoring,
and logging. To manage such aspects, novel mechanisms for automated and proactive resource
management are required. We focus on the development of techniques for self-aware platform
operations including online learning and reasoning capabilities for efficient and scalable
workflow execution.

3.20 From design to migration and management: Faa$S platforms for
application porting to optimized serverless implementation and
execution

Georgios Kousiouris (Harokopion University — Athens, GR)

License @ Creative Commons BY 4.0 International license
© Georgios Kousiouris
Joint work of George Kousiouris, Dimosthenis Kyriazis
Main reference George Kousiouris, Dimosthenis Kyriazis: “Functionalities, Challenges and Enablers for a
Generalized FaaS based Architecture as the Realizer of Cloud/Edge Continuum Interplay”, in Proc.
of the 11th International Conference on Cloud Computing and Services Science, CLOSER 2021,
Online Streaming, April 28-30, 2021, pp. 199-206, SCITEPRESS, 2021.
URL https://doi.org/10.5220,/0010412101990206

The availability of decentralized edge computing locations as well as their combination
with more centralized Cloud solutions enables the investigation of various trade-offs for
application component placement in order to optimize application behaviour and resource
usage. Key functionalities and operations needed by a middleware layer so that it can
serve as a generalized architectural and computing framework in the implementation of
a Cloud/Edge computing continuum are presented. As a primary middleware candidate,
FaaS frameworks are taken under consideration, given their significant benefits such as
flexibility in execution, event driven nature and enablement of incorporation of arbitrary and
legacy application components triggered by diverse actions and rules. Gaps and enablers for
three different layers (application design and implementation, semantically enriched runtime
adaptation/configuration and deployment optimization) are highlighted. The goal is to enable
abstracted application design and porting to the serverless paradigm, based on ready-made,
reusable and self-regulating pattern prototypes, semantic annotation of functions in order to
dictate deployment or runtime needs (based on goals and constraints), used by the underlying
management mechanisms, as well as runtime optimization of the candidate services selection
based on performance and configuration trade-offs. The talk highlights the main approach
and goals of the H2020 PHYSICS project (https://physics-faas.eu/).

57

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1145/3358960.3379133
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5220/0010412101990206
https://doi.org/10.5220/0010412101990206
https://doi.org/10.5220/0010412101990206
https://doi.org/10.5220/0010412101990206
https://doi.org/10.5220/0010412101990206

58

21201 - Serverless Computing

3.21 Software Development Using Serverless Systems
Philipp Leitner (Chalmers University of Technology — Goteborg, SE)

License @ Creative Commons BY 4.0 International license
© Philipp Leitner

Function-as-a-Service, and more generally serverless, is a massive area of research interest at
the moment. Most of this research deals with how to build, maintain, and scale serverless
infrastructure — a problem that few companies outside of a few large cloud providers actually
have. However, orders of magnitude more, from small start-ups to billion-dollar industries,
face the challenge of how to best make use of this new wave of cloud services to ideally serve
their customers. My interest is studying how software engineering research can best support
practitioners in this new world.

3.22 Running and Scheduling Scientific Workflows on Serverless Clouds:
From Functions to Containers

Maciej Malawski (AGH University of Science & Technology — Krakow, PL)

License) Creative Commons BY 4.0 International license
© Maciej Malawski
Main reference Krzysztof Burkat, Maciej Pawlik, Bartosz Balis, Maciej Malawski, Karan Vahi, Mats Rynge, Rafael
Ferreira da Silva, Ewa Deelman: “Serverless Containers — rising viable approach to Scientific
Workflows”, CoRR, Vol. abs/2010.11320, 2020.
URL https://arxiv.org/abs/2010.11320

Scientific workflows are an important class of applications, which consist of computing tasks
and data transfers connected into a dependency graph. Traditionally, they are executed
on HPC clusters, distributed infrastructures such as grids or clouds. Recent emergence of
serverless infrastructures drives us to explore the applicability of these platforms to scientific
workflows and associated research problems related to resource management.

Using HyperFlow, our workflow engine developed at AGH, we have evaluated the scientific
workflow execution using FaaS (AWS Lambda, Google Cloud Functions) and CaaS platforms
(AWS Fargate, Google Cloud Run). We have also performed performance evaluation of server-
less cloud infrastructures with a focus on scientific workflows. Based on these experiences,
we have recently started addressing scheduling challenges on highly-elastic infrastructures,
including cloud functions and containers. Moreover, we have also approached solving simple
scheduling problems using D-Wave quantum annealer, achieving quite promising preliminary
results for small graphs of tasks fitting entirely in the computer architecture.

Current experience with severless platforms leads to the conclusion that they provide a
viable solution for scientific applications, not only scientific workflows but also for large-scale
data processing tasks, which come, e.g., from High Energy Physics domain. Serverless
infrastructures provide excellent scalability, elasticity and high level of automation of resource
management, but as there are many decisions regarding selection of function of container
memory and CPU allocation, research on scheduling and performance optimization is still
needed.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2010.11320
https://arxiv.org/abs/2010.11320
https://arxiv.org/abs/2010.11320
https://arxiv.org/abs/2010.11320

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

3.23 The case for a hybrid cloud model for serverless computing
Vinod Muthusamy (IBM TJ Watson Research Center — Yorktown Heights, US)

License @ Creative Commons BY 4.0 International license
© Vinod Muthusamy

Distributed applications have traditionally been architected to run on a single cloud vendor,
using a combination of compute, storage, messaging, load balancing, orchestration, monitoring,
authentication, analytics, and numerous other platform capabilities offered by the cloud
vendor. Relying on a single vendor’s platform has the benefits of tight integration of these
capabilities but leads to vendor lock-in, making it difficult for application owners to migrate
to another cloud vendor, and challenging for new cloud vendors to compete without building
their own portfolio of services.

Hybrid cloud or multi-cloud architectures address the drawbacks of single-vendor cloud
platforms, building applications and tooling to allow distributed application components
to run on a mixture of private, on-premise, dedicated, and public cloud environments.
Application developers have the flexibility to easily migrate their entire applications to
another cloud vendor, or make fine-grained deployment decisions based on the performance,
cost, regulatory compliance, security policies, and other capabilities of the cloud vendor,
matched with the requirements of each application component.

Seen in this light, serverless computing is still in its infancy, with most serverless applica-
tions developed for and run on a single serverless platform. There are a class of enterprise
applications that aren’t amenable to run fully on a public cloud due to regulatory constraints,
and the vendor and platform lock-in in today’s most popular serverless platforms is holding
back these applications from being rearchitectured on serverless principles. As well, geo-
distributed applications, such as those architected for edge computing platforms, will benefit
from taking advantage of a variety of edge vendors; relying on a single vendor to offer edge
servers at all desired locations severely constrains the choice of vendors.

A hybrid serverless model brings with it a number of challenges across the stack, including
addressing the impedance mismatch when bridging across serverless platforms from multiple
providers, including the non-functional properties such as latency, scalability, availability, and
cost. For example, it is not clear what is the emergent cold-start behavior when a serverless
function running on one platform calls a function on another. There are also functional
mismatches, such as security policies, and messaging semantics that need to be reconciled.

As in conventional cloud applications, supporting serverless applications to run across
a multi-cloud or hybrid could environment will give developers more flexibility, enable a
new class of serverless applications held back by vendor lock-in constraints, support truly
geo-distributed serverless applications, and offer an opportunity for new serverless platform
vendors to compete with novel platform capabilities.

59

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

60

21201 - Serverless Computing

3.24 Performance Evaluation in Serverless Computing
Alessandro Vittorio Papadopoulos (Mdlardalen University — Visterds, SE)

License @ Creative Commons BY 4.0 International license
© Alessandro Vittorio Papadopoulos
Joint work of Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer, Nikolas Herbst, Jéakim von

Kistowski, Ahmed Ali-Eldin, Cristina Abad, José Nelson Amaral, Petr Tuma, Alexandru Iosup

Main reference Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer, Nikolas Herbst, J6akim Von
Kistowski, Ahmed Ali-eldin, Cristina Abad, José Nelson Amaral, Petr Tuma, Alexandru Iosup:
“Methodological Principles for Reproducible Performance Evaluation in Cloud Computing”, IEEE
Transactions on Software Engineering, pp. 1-1, 2019.

URL https://doi.org/10.1109/TSE.2019.2927908

In the last few years, obtaining reproducible performance in distributed systems is gaining a
lot of attention. This is due to the rapid adoption and diversification of cloud computing
technology. The emergence of serverless computing poses additional challenges to such a
problem.

Two opposite approaches can be adopted to assess the performance of these kinds of
systems. On the one hand, empirical approaches focus on the analysis of the measurable
performance of an existing system performing a series of experiments. In empirical studies,
sound experimental methodology, and in particular reliable, consistent, and meaningful
performance evaluation, is challenging but necessary [2]. On the other hand, theoretical
approaches can create reliable models of the system under study, allowing for a deeper
understanding of it [1]. Theoretical approaches typically require a design effort and may
abstract from certain parts of the system that may be difficult to model.

I am interested in discussing what type of guarantees can be provided on serverless
computing applications, and how such guarantees can be obtained through sound performance
evaluation.

References

1 V. Gulisano, A. V. Papadopoulos, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas.
Performance modeling of stream joins. In Proceedings of the 11th ACM International
Conference on Distributed and Fvent-based Systems (DEBS), pages 191-202, New York,
NY, USA, Jun. 2017. ACM.

2 A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-Eldin, C. L.
Abad, J. N. Amaral, P. Tuma, and A. Iosup. Methodological principles for reproducible
performance evaluation in cloud computing. IEEE Transactions on Software Engineering,
Jul. 2019.

3.25 Federated Al on Serverless Edge Clusters Powered by Renewable
Energy

Panos Patros (University of Waikato, NZ)

License @ Creative Commons BY 4.0 International license
© Panos Patros

Artificial Intelligence (AI) applications for agritech, such as robotic harvest and pollination,
cannot be implemented without reliable and secure access to computing power. Adding extra
hardware on robots increases design complexity, power requirements and weight. Outsourcing
to unreliable and off-shore cloud providers increases operational risk and threatens data and
economic sovereignty.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/TSE.2019.2927908
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

The proposed solution is to offer Al services locally via interconnected clusters powered
by locally generated renewable energy. Crucially, these Rural AT clusters will maintain a
reliable connection with robots, and will leverage advanced federated-learning algorithms
and a serverless architecture to store/compute sensitive data locally; thus, only connecting
to the cloud for low-risk operations.

A serverless architecture for federated edge learning will provide a seamless transition
between edge and cloud computation, while offering a much needed fine-grain allocation (and
costing) of scarce edge resources. Because of the limited resources of edge systems, platform
innovations will be required to enable these technologies, leveraging prior experience in cloud
computing [1, 2, 3, 4, 5, 6].

References

1 P. Patros, D. Dayal, K.B. Kent, M. Dawson, and T. Watson. Multitenancy benefits in
application servers. Proceedings of the 25th Annual International Conference on Computer
Science and Software Engineering, 111-118, 2015

2 P. Patros, K.B. Kent, and M. Dawson. SLO request modeling, reordering and scaling.
Proceedings of the 27th Annual International Conference on Computer Science and Software
Engineering, 180-191, 2017

3 P. Patros, K.B. Kent, and M. Dawson. Mitigating garbage collection interference on
containerized clouds. 2018 IEEE 12th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), 168-173, 2018

4 P. Patros, K.B. Kent, and M. Dawson. Why is garbage collection causing my service level
objectives to fail?. International Journal of Cloud Computing, 7, 3-Apr, 282-322, 2018,
Inderscience Publishers (IEL)

5 V. Podolskiy, Vladimir; M. Mayo; A. Koay; M. Gerndt; P. Patros. Maintaining SLOs of
cloud-native applications via self-adaptive resource sharing. 2019 IEEE 13th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), 72-81, 2019

6 V. Podolskiy, M. Patrou, P. Patros, M. Gerndt, and K.B. Kent. The weakest link: revealing
and modeling the architectural patterns of microservice applications, Proceedings of the
30th Annual International Conference on Computer Science and Software Engineering, 2020,
ACM

3.26 Is serverless computing the holy grail of fog computing application
design paradigms?

Guillaume Pierre (University & IRISA — Rennes, FR)

License @) Creative Commons BY 4.0 International license
© Guillaume Pierre
Joint work of Guillaume Pierre, Arif Ahmed, Ali Fahs, Hamidreza Arkian, Paulo Souza junior, Mulugeta Ayalew
Tamiru, Mozhdeh Farhadi
Main reference Arif Ahmed, HamidReza Arkian, Davaadorj Battulga, Ali J. Fahs, Mozhdeh Farhadi, Dimitrios
Giouroukis, Adrien Gougeon, Felipe Oliveira Gutierrez, Guillaume Pierre, Paulo R. Souza Jr.,
Mulugeta Ayalew Tamiru, Li Wu: “Fog Computing Applications: Taxonomy and Requirements”,
CoRR, Vol. abs/1907.11621, 2019.
URL http://arxiv.org/abs/1907.11621

My research mostly focuses on the design of fog computing platforms. To process massive
volumes of data being produced far from the data centers, fog computing extends cloud
platforms with additional compute/storage/communication resources in the vicinity of the

main sources of data, where these data can be (pre-)processed before reaching the cloud.

Although this extension may seem trivial, it brings major new challenges in the way we

61

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1907.11621
http://arxiv.org/abs/1907.11621
http://arxiv.org/abs/1907.11621
http://arxiv.org/abs/1907.11621
http://arxiv.org/abs/1907.11621

62

21201 - Serverless Computing

design these platforms. In particular, fog computing resources are located close to the main
sources of data but necessarily far from each other. This means that it becomes much more
difficult to share state between multiple fog nodes taking part in the same application. In
this context, serverless computing provides an interesting programming paradigm which
neatly separates stateless functions from stateful data services. In the Serverless workshop
I tried to better understand the benefits and challenges brought about by this upcoming
paradigm shift.

3.27 Performance Evaluation of Serverless Applications
Joel Scheuner (Chalmers and University of Gothenburg, SE)

License) Creative Commons BY 4.0 International license
© Joel Scheuner
Joint work of Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann,
Nikolas Herbst, Cristina L. Abad, Alexandru Iosup
Main reference Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann,
Nikolas Herbst, Cristina L. Abad, Alexandru Iosup: “Serverless Applications: Why, When, and
How?”, IEEE Softw., Vol. 38(1), pp. 32-39, 2021.
URL https://doi.org/10.1109/MS.2020.3023302

Serverless applications typically combine event-triggered functions (i.e., FaaS) with scalable
backend services (i.e., BaaS). However, such event-based integrations can lead to long delays
that are difficult to debug in a distributed system. Therefore, my research aims to capture and
explain application-level serverless performance through detailed tracing and reproducible
experimentation.

My prior work consolidates 112 FaaS performance studies [1] and characterizes 89 serverless
applications [2] both from academic and industrial sources. In the future, I am interested in
performance-aware programming models where developers can indicate their performance-cost
trade-off preferences and serverless applications optimize themselves accordingly.

References

1 J. Scheuner, P. Leitner, Function-as-a-Service Performance Evaluation: A Multivocal
Literature Review. In Journal of Systems and Software (JSS), Dec. 2020.

2 S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L. Abad,
and A. Iosup. Serverless applications: Why, when, and how? I[FEEFE Software, vol. 38,
pp. 32-39, Jan 2021.

3.28 FaaS orchestration
Mina Sedaghat (Ericsson — Stockholm, SE)

License) Creative Commons BY 4.0 International license
© Mina Sedaghat

Container orchestrators are often influenced by the application architectural models and
their requirements. Modern applications (and their architectures) are getting more complex,
often distributed geographically over a continuum of resources, and have stricter performance
demands, i.e., on latency and data transfer. The evolution of the application architectures,
from monoliths, to microservices and recently to Function as a Service (FaaS), puts new
requirements on the orchestration systems and how the container deployment models should
look like.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

The current FaaS frameworks can only efficiently support a certain class of workloads,
such as serving static content, time-based batch jobs, and ETL ¢ jobs. They currently have
a hard time supporting stateful applications with fine grain state sharing requirements. The
basic assumption in the FaaS model is that functions are stateless, and if needed, they store
their state using external storage. Therefore, stateful applications are currently constrained
by limitations on existing cloud storage services, e.g. due to limited IO throughput and
access latencies. I am, personally, interested in simplifying orchestration of Functions in a
FaaS framework, providing support for a stateful applications, answering questions around
data management, and finding solutions for a seamless orchestration of functions over a
continuum of resources.

3.29 LaSS: Running Latency Sensitive Serverless Computations at the
Edge

Prashant Shenoy (University of Massachusetts — Amherst, US) and Ahmed Ali-Eldin Hassan
(Chalmers University of Technology — Gdteborg, SE)
License @ Creative Commons BY 4.0 International license
© Prashant Shenoy and Ahmed Ali-Eldin Hassan
Joint work of Bin Wang, Ahmed Ali-Eldin, Prashant Shenoy

Main reference Bin Wang, Ahmed Ali-Eldin, Prashant J. Shenoy: “LaSS: Running Latency Sensitive Serverless
Computations at the Edge”, in Proc. of the HPDC ’21: The 30th International Symposium on
High-Performance Parallel and Distributed Computing, Virtual Event, Sweden, June 21-25, 2021,

pp. 239-251, ACM, 2021.
URL https://doi.org/10.1145/3431379.3460646

Serverless computing has emerged as a new paradigm for running short-lived computations
in the cloud. Due to its ability to handle IoT workloads, there has been considerable
interest in running serverless functions at the edge. However, the constrained nature of the
edge and the latency sensitive nature of workloads result in many challenges for serverless
platforms. In this paper, we present LaSS, a platform that uses model-driven approaches for
running latency-sensitive serverless computations on edge resources. LaSS uses principled
queuing-based methods to determine an appropri- ate allocation for each hosted function and
auto-scales the allocated resources in response to workload dynamics. LaSS uses a fair-share
allocation approach to guarantee a minimum of allocated resources to each function in the
presence of overload. In addition, it utilizes resource reclamation methods based on container
deflation and termination to reassign resources from over-provisioned functions to under-
provisioned ones. We implement a prototype of our ap- proach on an OpenWhisk serverless
edge cluster and conduct a detailed experimental evaluation. Our results show that LaSS
can accurately predict the resources needed for serverless functions in the presence of highly
dynamic workloads, and reprovision con- tainer capacity within hundreds of milliseconds
while maintaining fair share allocation guarantees.

References

1 Bin Wang, Ahmed Ali-Eldin and Prashant Shenoy LaSS: Running Latency Sensitive Server-
less Computations at the Edge. Proceedings of ACM Symposium on High Performance
Distributed Computing (HPDC) 2021.

6 Extract, Transform and Load

63

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646

64

21201 - Serverless Computing

3.30 Fitting Serverless Abstractions and System Designs to
Next-Generation Application Needs

Josef Spillner (ZHAW — Winterthur, CH)

License @ Creative Commons BY 4.0 International license
© Josef Spillner
Main reference Josef Spillner: “Resource Management for Cloud Functions with Memory Tracing, Profiling and
Autotuning”, in Proc. of the WoSC@Middleware 2020: 2020 Sixth International Workshop on
Serverless Computing, Virtual Event / Delft, The Netherlands, December 7-11, 2020, pp. 13-18,
ACM, 2020.
URL https://doi.org/10.1145/3429880.3430094

Are today’s serverless systems appropriate for emerging applications such as nation-scale
digital services or massive IoT data stream processing? To answer that question, we need to
reconsider system designs, programming abstractions and development tools.

On the system level, we investigate more light-weight isolation techniques including
zero-coldstart microthreads. Software engineers can leverage these with syntactic constructs
they already know in terms of coroutines, asynchronous processing and workers/tasklets. The
aim is to reach beyond a few thousand instances per second to tens or hundreds of thousands
of invocations, including light-weight state handling like with function-level ring buffers.
We also study insights into application execution profiling and subsequent autotuning of
memory allocation and other configuration parameters. Such techniques can help to reduce
the overallocation of memory from the application engineer’s perspective, to some extent with
current statically allocated function instances and to an even greater extent with container
isolations permitting dynamic memory updates. This is technically possible even with Docker
containers, however the necessary APIs are not exposed by commercial FaaS/CaaS providers.

On the abstraction and tooling level, we explore the use of declarative code annotations
to extract functions suitable for offloading computation. The function requirements are
then matched as part of a FaaSification process against the cross-provider deployment and
execution constraints. Furthermore, we observe static and dynamic characteristics of software
artefacts representing serverless software — such as AWS SAM — to convey to software
engineers whether there will be any problems or flaws especially when the artefacts originate
from third-party dependencies.

3.31 Architectural Patterns for Serverless-Based applications
Davide Taibi (Tampere University, FI)

License) Creative Commons BY 4.0 International license
© Davide Taibi
Main reference Davide Taibi, Nabil El Ioini, Claus Pahl, Jan Raphael Schmid Niederkofler: “Patterns for Serverless
Functions (Function-as-a-Service): A Multivocal Literature Review”, in Proc. of the 10th
International Conference on Cloud Computing and Services Science, CLOSER 2020, Prague, Czech
Republic, May 7-9, 2020, pp. 181-192, SCITEPRESS, 2020.
URL https://doi.org/10.5220,/0009578501810192

Companies are increasingly adopting Serverless, by migrating existing applications to this new
paradigm. Different practitioners proposed patterns for composing and managing serverless
functions. However, some of these patterns offer different solutions to solve the same problem,
which makes it hard to select the most suitable solution for each problem.

In this work, we aim at supporting practitioners in understanding the different archi-
tectural patterns adopted by different companies, reporting benefits and issues of their
applications.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3429880.3430094
https://doi.org/10.1145/3429880.3430094
https://doi.org/10.1145/3429880.3430094
https://doi.org/10.1145/3429880.3430094
https://doi.org/10.1145/3429880.3430094
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5220/0009578501810192
https://doi.org/10.5220/0009578501810192
https://doi.org/10.5220/0009578501810192
https://doi.org/10.5220/0009578501810192
https://doi.org/10.5220/0009578501810192

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

This work proposal was initiated by a previous literature review [1] and is aimed at
collecting experiences directly from practitioners by means of interviews and surveys, and to
validate the resulting patterns with different collaborative empirical studies.

References

1 Taibi D., El Ioini N., Pahl C., Niederkofler J.R.S. Patterns for serverless functions (function-
as-a-service): A multivocal literature review Proceedings of the 10th International Conference
on Cloud Computing and Services Science (CLOSER’20) (2020), 10.5220/0009578501810192

3.32 Continuous testing of serverless applications
André van Hoorn (Universitit Stuttgart, DE)

License @@ Creative Commons BY 4.0 International license
© André van Hoorn
Joint work of André van Hoorn, Thomas F. Dillmann

Main reference Giuliano Casale, Matej Artac, Willem-Jan van den Heuvel, André van Hoorn, Pelle Jakovits, Frank
Leymann, M. Long, V. Papanikolaou, D. Presenza, A. Russo, Satish Narayana Srirama, Damian A.
Tamburri, Michael Wurster, Lulai Zhu: “RADON: rational decomposition and orchestration for
serverless computing”, SICS Softw.-Intensive Cyber Phys. Syst., Vol. 35(1), pp. 77-87, 2020.

URL https://doi.org/10.1007/s00450-019-00413-w

Quality assurance is a key software engineering activity to deliver high-quality software. The
way software is being developed has changed dramatically over the past years, due to emerging
cloud-native architectural styles, such as microservices and serverless, in combination with
modern software engineering paradigms such as DevOps. The frequency and velocity of
changes impose challenges to quality assurance, particularly for assessing runtime quality
attributes such as performance and resilience. On the other hand, the new developments
provide opportunities for novel quality assurance approaches, e.g., due to established technolo-
gies, a high degree of automation, and operational feedback from production. We investigate
the interplay of the mentioned topics in the DevOps Performance Working Group of the
SPEC RG. Concerning the seminar topic, my particular interest is in the question of “How to
seamlessly integrate quality-of-service assurance for serverless into the DevOps ecosystem?”.

Over the last year, I was involved in the EU Horizon 2020 project RADON on “Rational
decomposition and orchestration for serverless computing”. RADON provides an end-to-
end framework to develop serverless applications, building on the OASIS Topology and
Orchestration Specification for Cloud Applications (TOSCA). To assess whether applications
developed via the RADON methodology and framework meet their quality requirements,
RADON includes the continuous testing workflow, which particularly aims to support software
developers, QoS engineers, and release managers in producing high-quality applications. The
core component implementing the continuous testing workflow is the Continuous Testing
Tool (CTT). CTT enriches the TOSCA ecosystem by end-to-end support for continuous
testing of microservice-based (including FaaS) and data pipeline applications in DevOps.
CTT supports the whole workflow — from test specification over execution and reporting to
automated updates based on production data — that is also extensible to custom needs, e.g.,
integrating other types of tests or tools. A particular innovation lies in the integrative test
generation features for obtaining tailored tests, which fits into the constraints of DevOps-
based development settings with separate teams and delivery pipelines, and the goal of fast
and frequent releases.

65

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00450-019-00413-w
https://doi.org/10.1007/s00450-019-00413-w
https://doi.org/10.1007/s00450-019-00413-w
https://doi.org/10.1007/s00450-019-00413-w
https://doi.org/10.1007/s00450-019-00413-w

66

21201 - Serverless Computing

3.33 Serverless Compute Primitives as a Compilation Target
Soam Vasani (Stripe — San Francisco, US)

License @ Creative Commons BY 4.0 International license
© Soam Vasani

FaaS is a compelling compute primitive: it has the best elasticity that cloud compute has so
far offered, and it abstracts away more infrastructure than any other compute primitive has so
far. However application developers must account for FaaS limitations on timing, networking,
artifact size, etc; these limitations have fundamental effects on application architectures.

This raises the question: can we have the elasticity and abstraction of FaaS without having
to learn new application architecture patterns? To this end I'm interested in borrowing ideas
from compilers: can we use FaaS and other serverless technologies (such as object stores
and workflow runtimes) as a compilation target? In other words, can we transform a source
program that is not serverless-specific to a set of functions, objects, and workflows? If this is
not universally possible, then is there a set of source programs for which this is both possible
as well as useful?

As a prototype, I'm exploring this question for the specific technologies of Python and
AWS serverless, transforming functions written in a subset of Python into a set of Lambdas,
Step Functions and S3 buckets.

3.34 Network Challenges in Serverless Computing
Florian Wamser (Universitit Wiirzburg, DE)

License @ Creative Commons BY 4.0 International license
© Florian Wamser
Joint work of Nguyen Huu Thanh, Nguyen Trung Kien, Ngo Van Hoa, Truong Thu Huong, Florian Wamser,

Tobias Hof}feld

Main reference Nguyen Huu Thanh, Nguyen Trung Kien, Ngo Van Hoa, Truong Thu Huong, Florian Wamser,
Tobias Hossfeld: “Energy-Aware Service Function Chain Embedding in Edge-Cloud Environments for
IoT Applications”, IEEE Internet of Things Journal, pp. 1-1, 2021.

URL https://doi.org/10.1109/JI0T.2021.3064986

The serverless computing paradigm promises a number of advantages over conventional cloud-
or server-centered computing. Serverless computing offers the developer greater scalability
and more flexibility at a lower cost. From the developer’s point of view, one does not have
to worry about the dimensioning, provision and administration of backend servers and hosts.
To provide flexibility, scalability, and developer-friendliness, a serverless platform typically
manages and maintains the underlying resources. In addition to the computing resources, the
network also plays a decisive role here, connecting the computing resources and transporting
application requests to the serverless functions.
At the University of Wiirzburg we investigate the challenges for networks in connection
with serverless computing. The most important points are:
1. Elasticity and scalability of network resources
2. Dynamic addressing and forwarding of requests to computing resources
3. Provision of network resources for functionality and adaptability

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/JIOT.2021.3064986
https://doi.org/10.1109/JIOT.2021.3064986
https://doi.org/10.1109/JIOT.2021.3064986
https://doi.org/10.1109/JIOT.2021.3064986

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup 67

3.35 Decision Support for Modeling and Deployment Automation of
Serverless Applications

Viadimir Yussupov (Universitit Stuttgart, DE)

License @@ Creative Commons BY 4.0 International license
© Vladimir Yussupov

The term “serverless” gains more and more attention in the context of cloud-native application
development. Frequently being associated exclusively with the Function-as-a-Service (FaaS)
cloud service model, the idea of what a serverless application is keeps evolving, resulting in
more issues to decide on when engineering serverless applications. I am interested in the topic
of decision support for modeling and deployment of serverless architectures comprising various
kinds of components such as FaaS platforms, function orchestrators, serverless databases and
message queues. In particular, I am investigating which decisions need to be considered (also,
decisions captured in the form of patterns), and how to use them to support practitioners
in transitioning from abstract serverless application models to refined, provider-specific
deployment models that can be enacted using deployment automation technologies of choice.
Some related publications:
Yussupov, V.; Soldani, J.; Breitenbiicher, U.; Brogi, A. and Leymann, F. (2021). From
Serverful to Serverless: A Spectrum of Patterns for Hosting Application Components.
In Proceedings of the 11th International Conference on Cloud Computing and Services
Science — CLOSER
Yussupov, V.; Soldani, J.; Breitenbiicher, U.; Brogi, A.; Leymann, F. (2021). FaaSten
your decisions: A classification framework and technology review of function-as-a-Service
platforms, In Journal of Systems and Software, Volume 175

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

68

21201 - Serverless Computing

4 Working groups

4.1 Design of Serverless Systems, Platforms, and Ecosystems (Topic 1)

Samer Al-Kiswany (University of Waterloo, CA), Ahmed Ali-Eldin Hassan (Chalmers Uni-
versity of Technology — Géteborg, SE), André Bauer (Universitat Wiirzburg, DE), André B.
Bondi (Software Performance and Scalability Consulting LL, US), Ryan L. Chard (Argonne
National Laboratory — Lemont, US), Andrew A. Chien (University of Chicago, US), A. Jesse
Jiryu Davis (MongoDB — New York, US), Erik Elmroth (University of Umed, SE), Alexandru
Tosup (VU University Amsterdam, NL), Hans-Arno Jacobsen (University of Toronto, CA),
Samuel Kounev (Universitat Wiirzburg, DE), Vinod Muthusamy (IBM TJ Watson Research
Center — Yorktown Heights, US), Guillaume Pierre (University & IRISA — Rennes, FR),
Mina Sedaghat (Ericsson — Stockholm, SE), Prashant Shenoy (University of Massachusetts —
Ambherst, US), Davide Taibi (Tampere University, FI), Douglas Thain (University of Notre
Dame, US), Erwin van Eyk (VU University Amsterdam, NL), and Soam Vasani (Stripe —
San Francisco, US)

License) Creative Commons BY 4.0 International license
© Samer Al-Kiswany, Ahmed Ali-Eldin Hassan, André Bauer, André B. Bondi, Ryan L. Chard,
Andrew A. Chien, A. Jesse Jiryu Davis, Erik Elmroth, Alexandru Iosup, Hans-Arno Jacobsen,

Samuel Kounev, Vinod Muthusamy, Guillaume Pierre, Mina Sedaghat, Prashant Shenoy, Davide
Taibi, Douglas Thain, Erwin van Eyk, and Soam Vasani

Organization

Co-chairs: Alexandru losup and Samer Al-Kiswany
Rapporteurs: Mina Sedaghat and Doug Thain

Opening Statement

This topic focuses on the design of serverless systems, platforms, and ecosystems. We
organized the discussion for this topic around sessions, aiming to first obtain a diverse set of
sub-topics, then to refine our own views about a focused set of sub-topics, then to take in
new perspectives and share our own in discussion with the groups working on other topics,
and, last, to refine our views toward a vision. Our sessions proceeded as follows:
First session: We focused on scoping, discussing possible sub-topics for the design topic
and trying to have as many ideas represented as possible.
Second session: We focused on choosing and discussing 3 sub-topics, and on finalizing the
scoping effort with ideas that arrived from the cross-pollination with other topics. We
discussed requirements, including geo-distributed operation, the impact of state and data
streams, predictable performance, energy awareness, security, and auditability through
provenance provisions; we further discussed the actual complexity when automating the
operational concerns for the user. We further discussed operational techniques for workload
and resource management at runtime, and ensuring SLAs and SLOs while still being
able to “make it easy for the user”. We discussed lessons learned from cloud computing,
especialy from PaaS (e.g., “We wanted all applications to be equally supported, with
one simple and unified interface, but every significant application has at least something
different”).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

Third session: We analyzed existing serverless definitions, benefiting from discussion
with other topics, and concluded on the key aspects of a good serverless definition. This
allowed us to focus on a programming model, a reference architecture, non-functional
requirements, patterns and anti-patterns in serverless applications in practice, and on
toolchains. We also discussed programmability, portability, and interoperation.

Fourth session: We had joint discussions with Topics 2 (software engineering) and 3
(application requirements). Main aspects discussed: What are the application domains
and domain verticals? How to think about the user? What applications are the most
important? What is the lifecycle of a serverless application? What sort of application
architecture should be adopted? What is a good definition for serverless? How to think
about managerial, policy, cloud, and resource-level metrics?

Fifth and sixth sessions: concluding on the core definition, vision, challenges, etc.

Link to other topics

There is a strong link to the other topics, both conceptually and, following the joint sessions,
practically:

Questions related to representative use cases and applications, and to requirements related
to them, are essential for the design topic and link strongly to Topic 3.

Questions related to implementing and realizing the software of serverless systems,
platforms, and ecosystems, including both the software patterns and the engineering
process, are linked strongly with Topic 2.

Questions related to testing and evaluating serverless systems, platforms, and ecosystems
are linked strongly to topic 4.

A reference architecture for serverless computing

We discussed and agreed on a reference architecture for serverless computing. The reference

architecture considers the following main layers:

1.

Compute, memory, storage, and networking infrastructure, consisting primarily of (pro-
grammable) hardware devices and of corresponding virtualized devices.

Operating services, providing foundational services such as messaging, coordination, and
authentication.

Resource managers, providing collections of (distributed) resources, physical and/or
virtual, with pre-configured operating services, under a convenient programming interface.
Runtime engines, providing capabilities for executing simple and composite functions, up
to orchestrating entire dataflows and workflows, and automating the back-end management
of transient state and persistent data.

Front-end core, providing a programming model for serverless applications, specializations
of this programming model for specific application domains, high-level programming
languages for convenient programming, and portal and command-line high-level interfaces.
Across all layers, a toolchain of compilers, monitors, profilers, and benchmarks for
serverless computing, helping optimize each aspect and making all levels observable.

Our main insight from the reference architecture is that the automated operation for

serverless applications is an ecosystem, with many different parts developed and operated by

different and autonomous organizations; this is very different from a single integrated system

and leads to different design challenges and practices.

69

21201

70

21201 - Serverless Computing

Another insight is that the designs of all the systems at different layers are highly
influenced by the programming model, but currently no single programming model exists
for serverless computing, and it is likely such a programming model will only be possible if
it is very abstract and generic. We expect high levels of specialization and that serverless
applications will use a special runtime stack as well as will often rely on back end services
offered by the cloud providers.

We acknowledge that the serverless computing paradigm is in its infancy and many of
the layers, especially the runtime engines, front-end core, and toolchains, will provide many
radically different alternatives that will take time to mature and perhaps not converge.

Vision on the design of serverless systems, platforms, and ecosystems

We envision that serverless systems, platforms, and ecosystems should aim to:
Ensure (nearly) complete automation of operational concerns and
high programmability, portability, and interoperability, for
diverse application domains and use cases, where
many parts are defined once but used many times, with
on-demand deployment, (geo-)distributed operation, and utilization-proportional cost, by
offering diverse operational techniques (Rethinking resource management and scheduling),
supporting and enforcing non-functional requirements, controlling for variability,
rethinking observability and providing serverless-related monitoring,
rethinking the static and dynamic toolchain, and
ensuring integration with a diverse, evolving technology ecosystem.

Next to many challenges, which we list in the following, there are also uncomfortable

questions, such as:

1. The question is not can we make remote execution as easy as local execution, but can we
make it easier and more beneficial?

2. Industry is ahead and facing immediate challenges, so how should academics engage so
they have impact in this field?

3. What is new, over the problems of full automation of 70 years ago (utility computing),
20 years ago (grid), 10 years ago (cloud)? (Serverless is not the entire cloud and should
not try to do everything.)

Challenges in the design of serverless systems, platforms, and ecosystems
Related to the reference architecture:

C1 Capturing the multi-level architectural features and emerging architectural patterns
of this rapidly evolving serverless computing field

C2 Predicting which architectural features and patterns will succeed, and explaining why
(and why not others)

Related to full automation of operational concerns:

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

C3 Agreeing on a serverless definition and making it operational

Can we make it easy to run applications remotely? Can we achieve full transparency, in
Coulouris’ sense, a sort of “cloud button”? Can we achieve near-zero waste, scale to zero
(cost)? (See also Section 5.1.)

C4 Understanding system-level, operational requirements

This includes understanding the stakeholders of serverless operations, the users of specific
applications, and the systems-level requirements raised by industry verticals, application
domains, and applications. Focus on both functional and non-functional requirements, and
for non-functionals consider metrics at different levels of interest, from hardware resources to
organization-wide managerial decisions. Focus on energy efficiency, but also on sustainability
awareness (e.g., how the electricity used for serverless workloads is produced and consumed,
how much greenhouse gas emissions and water consumption occurs here).

C5 Programming model from a systems perspective

What sort of application architecture should be adopted? What is the right granularity of
the function? How to trade-off between providing control and simplicity? How to express
and manage workflows (and is there a new way needed, or are workflow abstractions already
sufficient)? What can we learn from decades of programming parallel and distributed
systems?

C6 Workload and resource management for serverless, and overall routing and scheduling

How to extend and apply traditional techniques for workload and resource management?
How to consider the full compute continuum (i.e., IoT /fog/edge/cloud)? How to replicate,
cache, partition, consolidate, migrate, offload, etc. the functions and/or the data? How to
provision, allocate, elastically scale, load-balance the resources? How to schedule and route
across the whole (eco)system? How to consider resource provisioning over short periods of
time (e.g., auto-scaling) and also long-term (e.g., capacity planning)?

C7 Practical needs in serverless orchestration

How to mix serverless with other computational models, i.e., run mixtures of workloads
instead of merely serverless? How to achieve near-zero waste, even under complex deployment
scenarios (e.g., geo-distributed scenarios)? How to reduce the serverless overhead added by
the platform to the (commonly lightweight) functions representing the business logic of the
application? How to ensure proper performance isolation while making efficient use of the
shared infrastructure?

C8 Manage ecosystem instability

How to limit the impact of, e.g., performance variability, the impact of (correlated, even
cascading) component downtime, multiple versions of the same service, service continuity
under transience of various providers?

Related to the toolchain:

71

21201

72

21201 - Serverless Computing

C9 Create the serverless toolchain

How does the traditional toolchain — Compiler, Linker, Loader Static Analysis, Dynamic
Analysis, Dependency Detection, Testing, Debugging, Mocking, Tracing, Replaying — need to
change for serverless, starting with FaaS? How to use self-descriptive metadata to improve (i)
safety (type signature, semantics, version, dependencies, non-functional requirements, etc.),
and (ii) efficiency (performance, resource requirements, co-location with other functions,
etc.)? Process-wise, how to engage both toolchain and application developers, to motivate
incremental deployment and interoperation of both metadata and tools, while accepting
incomplete information?

C10 Support for patterns and anti-patterns, both functional and non-functional

What are the serverless patterns and anti-patterns, both functional and non-functional,
that systems designers can work with? For example, what are the performance patterns
and anti-patterns for serverless operations? How to support enterprise patterns, e.g., for
integration or for distributed operation? How to support specific industry verticals or
application domains, e.g., matching Topic 3: for scientific computing, for machine learning
and artificial intelligence, for online gaming, and for mobile and telco operations?

Next steps and takeaway for the community

We have discussed the topic of design for serverless computing systems, platforms, and
ecosystems. Linking to the other topics in this Dagstuhl Seminar, we have considered a
definition for serverless computing, requirements from various application domains and use
cases, software engineering concepts and processes, etc. We have provided in this section a
summary of several critical aspects for design, including a reference architecture, a vision,
and several uncomfortable questions and challenges.

The main takeaway for the community is that serverless computing poses hard, even
grand challenges, related to full automation of operational concerns under hard constraints.
The design of serverless systems, platforms, and ecosystems is an essential part of achieving
the promise of serverless computing. The challenges we have listed here shape the task ahead,
but there is more on the horizon.

As indicated by the value of the discussion we had with other topics in this seminar,
designers should make sure the collaboration between computer systems, software engineering,
performance engineering, and beyond to cross-disciplinary collaborations.

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

4.2 Software Engineering of Serverless Applications, but also Systems,
Platforms, and Ecosystems (Topic 2)

Simon Eismann (Universitit Wirzburg, DE), Robert Chatley (Imperial College London,
GB), Nikolas Herbst (Universitit Wiirzburg, DE), Georgios Kousiouris (Harokopion Univer-
sity — Athens, GR), Philipp Leitner (Chalmers University of Technology — Gdteborg, SE),
Pedro Garcia Lopez (Universitat Rovira i Virgili — Tarragona, ES), Bernard Metzler (IBM
Research-Zurich, CH), Davide Taibi (University of Tampere, FI), Vincent van Beek (Solvinity,
Amsterdam and Delft University of Technology, NL), André van Hoorn (Universitit Stuttgart,
DE), Guido Wirtz (Universitit Bamberg, DE), and Viadimir Yussupov (Universitit Stuttgart,
DE)
License @ Creative Commons BY 4.0 International license
© Simon Eismann, Robert Chatley, Nikolas Herbst, Georgios Kousiouris, Philipp Leitner, Pedro

Garcia Lépez, Bernard Metzler, Davide Taibi, Vincent van Beek, André van Hoorn, Guido Wirtz,
and Vladimir Yussupov

Opening Statement

The group discussed the topic of serverless from the perspective of software engineers in
DevOps teams that are responsible for the development and operation of software systems
running on serverless cloud platforms. The group decided to use the established stages of
the software life-cycle to guide the discussion. For each stage, the group discussed how this
stage is different from traditional software development when building serverless applications
and what the resulting challenges are.

Changes to the Software Engineering Lifecycle

This section highlights the major differences in the engineering process when building
serverless applications, compared to engineering traditional software architectures. Based
on these differences, the group collected a number of software engineering challenges for
serverless applications, which are discussed in the next section.

Planning

During the planning phase, the requirements of the application need to be collected and
based on them the fundamental decisions about the application are made. For serverless
applications, two additional decisions need to be made during the planning phase. The
first one is whether serverless is actually well suited for this task. As there are still several
limitations to serverless, it is not a suitable solution for every application, yet. The second
decision that needs to be made is the selection of a cloud provider. While this was also a
decision for traditional cloud applications, it’s impact is far larger for serverless applications.
The TaaS and container offerings of most cloud providers offer very similar features. However
there are significant differences in the serverless offerings of different providers. While they
all offer a function-as-a-service solution, there are large differences when it comes to the
managed services. As cloud providers work to increase the number of specialized managed
services, these differences will increase further.

73

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

74

21201 - Serverless Computing

Design

The key objective of the design phase is to come up with a suitable software architecture for
the planned application. In this phase, the serverless application is split into coarse-grained,
individual units (called microservices, components, or service). Within such a serverless
microservice, there is a second, explicit architecture layer that describes the separation of
code into serverless functions, incorporated external services, and the triggers that define the
control flow within the application. This architecture within a service also implicitly exists
within a traditional application in the form of software classes. However serverless makes
this architecture explicit and forces developers to think of this low-level architecture before
the implementation. This change increases the awareness of developers for the architecture
of their application, and makes architecture diagrams for this second architecture level
commonplace (in contrast to the often neglected UML diagrams).

Implementation

In the implementation phase, developers start implementing according to the requirements
and the software architecture discussed in previous phases. A serverless application contains
significantly less code than a traditional application, as much of the control flow and business
logic is handled by managed services. However, these managed services and triggers need
to be configured in the form of infrastructure-as-code (IaC) files. Therefore, developers
spend a lot of time working on IaC files when building serverless applications. This means
developers frequently need to context-switch between the actual code and the IaC file, as
the functionality of the application is spread across both. While the tooling around code
development is mature, the tooling around IaC and the integration of IaC and code is
quite immature. This currently makes the development of serverless applications quite
cumbersome.

Testing

The testing phase for serverless architectures must cover both functional and non-functional
aspects. Unit tests can be implemented with relative ease due to the smaller granularity
of functions and tested as usual for the chosen programming language. Integration tests
become more important for serverless applications as the majority of behavior to test is
located outside of the functions. However, integration testing also becomes more difficult
as serverless applications rely on integration of multiple fine-grained components hosted
using provider-managed services. Integration tests can be executed in a local environment
using service emulators and available tooling, testing remotely on the provider’s side, or
a combination of both options. In practice, the hybrid testing option is currently quite
common, since the local testing is limited w.r.t. available tooling and is not representative
enough, whereas only remote testing incurs additional costs and takes longer as applications
need to be redeployed with each update.

Deployment

During the deployment phase, all components and configurations of their interactions must be
deployed to a target environment, meaning that not only the packaged source code has to be
deployed, but also required event bindings need to be created, security policies configured, etc.
As a result, a large part of the deployment requirements is at least partially addressed during
the design and implementation phases: required component bindings are established either

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

in the source code or configuration files of the chosen deployment automation technology.
The choice of the underlying deployment technology also defines which components can be
deployed by it and in certain cases a combination of several technologies needs to be used,
e.g., infrastructure deployment and configuration management using different automation
tools.

Identified Challenges

Based on the changes to the software engineering lifecycle, the group identified a number of
software engineering challenges for serverless applications. The table below shows how the
identified challenges map to the software engineering lifecycle phases.

Table 1 Identified Challenges in the Lifecycle.

Lifecycle Phase C1 C2 C3 C4 C5 C6 Cr C8 (C9 C10

Planning X X X X
Design X X X X X
Implementation X X X X

Testing X X

Deployment

C1 Identifying whether a use case is serverless-ready

Serverless is quickly evolving and more and more use cases are becoming suitable. However,
there are still limitations to serverless, which means it is not a suitable solution for every
application, yet. There are currently no guidelines on how to identify whether serverless is
suitable for a specific use case, which hinders the adoption of serverless.

C2 Testing serverless applications

Integration testing of serverless applications includes testing the configuration of managed
services and function triggers. Local emulators for managed services and function integrations
are difficult to build and maintain as serverless platforms are quickly evolving. Running
integration tests directly on the cloud platform requires time-intensive deployments, which
slows down the feedback cycle for developers.

C3 Debugging serverless applications

Triaging the cause of bugs in serverless applications is currently quite difficult. As a feature
is often implemented by multiple functions and managed services, understanding what
happened for a single request requires the logs from the multiple functions and services
involved in the processing of the request. The non-standardized logging schemas of managed
services and immature observability tooling makes this quite cumbersome.

75

21201

76

21201 - Serverless Computing

C4 Predicting the costs of serverless applications

On the surface, the serverless billing model — pay-per-use — seems predictable. However,
estimating the cost per request for a serverless API requires developers to understand the
pricing models of all involved services. This is further complicated by the fact that many of
the costs are dependent on data volumes and execution times which are often challenging to
estimate.

C5 Determining function size

With serverless computing, applications are broken down into many serverless functions that
are connected via managed services and event triggers. Developers often need to make the
decision if a function is too large and should be split into two or more functions. There are
currently few, and often conflicting guidelines on how to determine the appropriate size of a
serverless function.

C6 Managing state in serverless functions

In their current state, serverless functions are stateless, which means that applications that
require state can not be built purely from serverless functions. Instead, stateful information
is currently stored in managed services such as databases or messaging services. Enabling
functions to have some fast, shared state would not eliminate the need for databases or
messaging services, but simplify the development of serverless applications and enable new
use cases.

C7 Finding suitable abstract languages/models

Serverless applications are currently designed as architecture diagrams and implemented in
the form of code and infrastructure as code definitions. Serverless could benefit from an
intermediate language or model that could bridge the gap between the very coarse-grained,
non-standardized architecture diagrams and the hard to understand combination of code
and infrastructure as code.

C8 Reusing serverless functions

Serverless applications are broken down into small parts (functions) which can enable the reuse
of existing functions in new contexts. However, managing functions within an organization
at scale is currently challenging. Open questions here include how to determine what
requirements and assumptions an existing function makes and whether reusing a function
should include a separate deployment or the routing of requests to the existing function
deployment.

C9 Migrating existing applications to serverless

Many existing applications could benefit from a partial or full migration towards serverless.
However, many of these applications are not migrated, as developers are unaware of how to
structure the migration, which parts to migrate first, and how to manage a serverless/serverful
hybrid application. Additionally, this poses the challenge of how to train developers that are
used to the serverful model in the skill required to build serverless applications.

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

C10 Vendor lock-in

Migrating a serverless application from one cloud provider to another cloud provider is very
time-intensive and often requires partial rearchitecting of the application. Serverless offerings
are mostly built on top of proprietary software instead of open-source solutions. This means
that there is little to no compatibility between, e.g., the blob storage offerings of two cloud
providers, which leads to the commonly reported vendor lock-in for serverless applications.

Closing Statement

The group discussed the changes to the traditional software engineering lifecycle from the
perspective of software engineers that are responsible for the development and operation of
software systems running on serverless cloud platforms. Based on these changes, the group
identified a number of challenges for the planning, design, implementation and operation of
serverless applications. While the discussion focussed mostly on these challenges, the group
is confident that they can be overcome by a combined effort from industry and academia.

4.3 Serverless Applications and Requirements (Topic 3)

Josef Spillner (ZHAW — Winterthur, CH), Bartosz Balis (AGH University of Science &
Technology — Krakow, PL), Jesse Donkervliet (VU University Amsterdam, NL), Nicola Ferrier
(Argonne National Laboratory, US), Ian T. Foster (Argonne National Laboratory — Lemont,
US), Maciej Malawski (AGH University of Science & Technology — Krakow, PL), Panos
Patros (University of Waikato, NZ), Omer F. Rana (Cardiff University, GB), and Florian
Wamser (Ungversitat Wirzburg, DE)

License) Creative Commons BY 4.0 International license
© Josef Spillner, Bartosz Balis, Jesse Donkervliet, Nicola Ferrier, Ian T. Foster, Maciej Malawski,
Panos Patros, Omer F. Rana, and Florian Wamser

Why /when should applications be serverless?

As it stands, Serverless Computing expands on state-of-the-art cloud computing by further
abstracting away software operations (ops) and larger parts of the hardware/software stack.
One could consider functions, the execution unit of serverless computing, as “lightweight”
containers, invoked with a set of inputs and expected to produce a set of outputs, when
triggered.

From a user perspective, Serverless reduces system operation effort, simplifies development,
supports highly variable and unpredictable workload patterns, enables the complete removal
from dynamic memory of applications not in use — referred to as Scale to zero — and, under
the right circumstances, can reduce software operation cost. From an operator perspective,
it reduces costs by increasing resource efficiency and crucially, it incentivizes innovation for
sustainability because the operator bears the cost of idleness.

Considering both the current state-of-the-art of serverless computing as well as its
expected evolution over the year, this report aims to identify the types of applications
that are currently well-supported by today’s serverless platforms, and then, move on to
discuss novel and upcoming applications with challenging characteristics, which would require
serverless to evolve in order to satisfy them.

44

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

78

21201 - Serverless Computing

What are the unique characteristics?

We identified the following four unique characteristics (UC) for current serverless:
UC-1 Stateless/Idempotency, which describes the pure-function behavior of invocations;
UC-2 Fixed Memory, which limits the amount of resident memory an invocation is allowed
to have;
UC-3 Short Running, enforcing a short time limit on the execution of invocations;
UC-4 Little Control, referring to the abstraction of ops, such as scheduling and autoscaling,
from the user.

The transparency trade-off

However, are software engineers and problem owners ready to relinquish all this control
of their applications? We identified a tradeoff between resource abstraction and resource
control, essentially a tug-of-war between ease of programming vs. efficiency and cost.

This could be mitigated by exposing tuning knobs, such as resource management, to use
by FaaS developers, a concept inspired by “open implementation analysis and design” [Maeda,
Murphy, Kizales, 1997]. For a more technical example, consider the developer passing hints
from the application through an interface exposed by the backend stack. This could be
incarnated by pragmas, event interface, rate-limiting contracts, etc.

All in all, is it worthwhile to exchange ease of programming, deployment, maintenance
and operation, to enable fine-grained control for developer customization? From a platform
design perspective, such a requirement endangers efficiency in application and backend.
However, it could help FaaS providers with resource allocation and scheduling decisions,
while saving cost. Thus, the question persists if serverless should be even enabling any type
of ops.

Scoping applications on their path towards serverless

The suitability of serverless computing concepts to deliver application functionality opens a
maturity-chronology spectrum associated with application enablement. This spectrum can be
roughly divided into three serverless phases: “Serverless 1.0” starting around 2014, “Serverless
1.5” representing the state of commercially available technology in 2021, “Serverless 2.0”,
bringing finer granularity and control in the coming years. Potentially more phases (3.0,
4.0, ...) will follow that are currently unclear but may nevertheless still not be sufficient for
certain types of applications.

For some early adopter applications in the “serverless 1.0” phase, the initial serverless
concepts around FaaS (A, OW/ICF, GCF, AF) in the mid-2010s were already suitable. Further
applications have been enabled recently by an expanded set of serverless computing offerings
including FaaS-alike flavours of CaaS [GCR, Fargate, IBM CodeEngine, ACS/Dapper that
permit stateful tasks/inter-instance communication/multiple CPUs; academic approaches like
funcX], relaxed limits in FaaS invocations, and low-latency BaaS that characterise “serverless
1.57.

In the near future, based on recent scientific progress, “serverless 2.0” will make it easier
to build applications that currently require unaffordable effort [e.g. ExCamera, deep learning,
NumPyWren], and will furthermore allow for new classes that are currently unreachable [e.g.

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

online gaming, federated learning, agritech on the edge]. This trend will be driven primarily
by four factors:

1.

Hardware advances such as disaggregation and continuums; including better heterogeneity,

specialised hardware (GPUs, TPUs), storage, networking (mobile radio heads)

Changes in BaaS, primarily the ubiquitous ability to run functions next to data (fusing

the concepts of Faa$S, stored procedures in DBs, UDFs in big data tools)

Autonomic middleware assisting the decomposition and placement of application code

into managed services

Improvements in the design of serverless platforms, including

a. selected control knobs for applications (possibly with some declarative language),

b. including “only” a maximum runtime instead of a fixed short runtime (see “elastic”
execution time for applications),

c. differentiated and guaranteed quality (QoS or QoE guarantees) including real-time
constraints (see also [RTserverless]), as well as

d. aligned mature toolsets to convey the platform benefits directly to software engineers
including testing, tracing and debugging, covering the entire DevOps cycle.

Application domains

The main application domains we discussed are:

Nookrowbb

Scientific Computing

Machine Learning and Artificial Intelligence
Online Gaming

Mobile Serverless and Telecommunication
Big Data Analysis

IoT, Agriculture and Cyber Physical Systems
Web Services

Below we focus on the selected four domains as representing the key challenges for current

and future serverless platforms.

Domain: Scientific computing

Why use serverless?

Modern science relies on large scale experiments, simulations and data-driven analysis
methods. Scientists analyze time series of global archives, often on the order of hundreds of
Terabytes up to Petabytes, and hundreds of thousands of data images in order to generate a
single layer of global, sometimes geospatial, information with added value. For this processing,
extreme performance and often local processing is required. Computational requirements

cover the full spectrum — from functions providing “support” for HPC environments to initial
(approximate) analysis closer to the point of data capture. Many tasks are available as
functions, can be reused and are available in R, R-Shiny Apps, Python, while we can think
of larger HPC-jobs as “fat” functions that can be also considered serverless.

79

21201

80

21201 - Serverless Computing

What can serverless provide today?

The serverless model is appealing for scientists because of the ease of programming, whereby
scientists can focus on implementing scientific procedures, easily collaborate on function
development, and reuse existing functions. Many scientific applications include fine-grained
tasks, e.g. high-throughput scientific workflows, machine learning tasks, or interactive
analytics.

Scheduling of tasks

Resource allocation associated with serverless platforms is highly dynamic and elastic, so the
scientists can gain quick on-demand access to computing resources suitable for exploratory
interactive data analysis, processing of streaming data from instruments etc. It is noteworthy
that in the context of scientific computing the cold-start problem or high start-up times
typical, e.g., for serverless containers, are less significant in comparison to job queue wait
times in HPC systems. Accelerated time-to-science is thus another potential advantage of
serverless computing applied to scientific use cases. Scientific applications are diverse in
terms of software, complex dependencies on libraries, and packages, often requiring legacy
software, so current approach to containerisation, deployable to serverless CaaS, is a perfect
solution to these problems.

Challenging application requirements

Dynamic provisioning (on-demand access) is radically different from the typical batch-queue
model used in scientific computing. Moreover, scientific computing often involves long-running
tasks with high memory usage, while cloud functions currently are not suited to run as long
as batch jobs and have fixed memory limits. Scientific applications often rely on specialized
hardware, including all types of accelerators (GPU, potentially TPU for tensor tasks) and
fast I/O (burst buffers, nvram) which are available in state-of-the-art HPC systems but not
in cloud datacenters. For large-scale tightly-coupled parallel simulations fast interconnects
and communication substrates are required (MPI), for which workarounds like using cloud
storage or other means are now developed (NumPyWren), but need better solutions in the
future. Scientific pipelines (workflows) benefit from data locality, difficult to achieve with
stateless functions.

Ultimate vision

We envision that with Serverless 2.0 some of these requirements will be soon fulfilled, but the
ultimate goal of “Serverless Supercomputer” will be possible not earlier than with the advent
of “Serverless 4.0” era, where intra-datacenter latency will match the current leadership HPC
interconnects and the distinction between a datacenter and supercomputer will disappear.

Domain: Machine learning and artificial intelligence

What are the characteristics of this domain?

Machine Learning is an emerging area in function-based processing, combining both learning
on edge devices combined with inference-based models (MobileNetV1, MobileNetV2 and
Faster R-CNN — i.e. pretrained models on cloud systems) that can be deployed on such

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

devices.” These computationally reduced versions of machine learning algorithms provide
great opportunities for deploying function-based processing. Conversely, a number of hardware
vendors (e.g. NVidia, Huawei, Intel, etc) are increasingly developing hardware accelerators
aimed at improving the performance of machine learning algorithms, these range in complexity
from support for specialist data structures (e.g. matrices and matrix/vector manipulation),
to inclusion of specialist dedicated hardware that can be used to improve processing of
data associated with machine learning algorithms (e.g. video analysis). Understanding
how serverless approaches can be used to deploy (sustainably — combining both energy and
economic efficiency) ML functions can be used to support a variety of different types of
applications. To provide an example: the size of the models, number of parameters and
computational complexity of these two MobileNet models include: MobileNetV1 (570M
Multiply-Accumulate (MACs) and 4M parameters (which can include weights connecting
layers and other model parameters such as learning rate)); MobileNetV2 (300M MACS, 3M
parameters). Understanding benchmarks that can be used to characterise performance (and
accuracy) of ML algorithms, realised as functions on edge devices is also being undertaken
within the MLCommons Consortium (bringing together academia and industry). The
benchmarks being proposed in this work could directly be used to undertake capacity
planning for serverless implementations of ML functions.

ML functions can also vary in their computational time requirements — from algorithms
that need to execute over long time frames (e.g. multiple days) to process different input data,
to others that can be used to pre-process data prior to processing (<1lmin). Additionally,
other ML pre-processing functions can be triggered by events observed in the environment
(e.g. availability of sensor data, movement of people etc). Understanding where the serverless
paradigm aligns with ML function implementation is an important consideration — as not all
of these functions may be suitable to be realised using the serverless paradigm (especially
when considering the economics of deployment). The following diagram demonstrates the
possible mechanisms for distributing ML functions using serverless approaches: (i) we can
partition the data (sharding of a data stream); (ii) partitioning a model (e.g. with the use of
federated learning, where multiple models are independently constructed, and then integrated
at a central site); (iii) aggregating the outcome of multiple functions and combining this
with additional parameter optimisation using a cloud-based backend server.

What could serverless provide today?

Today’s serverless can or, with modest system tweaks, could support ML and open up a

number of opportunities in providing:
Function-based implementation of ML algorithms at different levels of complexity, from
ML that can be deployed within a data centre to functions at the edge;
Programming support for implementing ML functions and developing software libraries
that can be used to realise functions. A variety of libraries already exist — such as TF-Lite,
use of “distillation” and quantization approaches to reduce the complexity of learned
models to deploy over resource constrained environments. Another similar approach is
the ability to migrate functions between edge and cloud resources — e.g. use of Osmotic
computing approaches that enable migration of functions as lightweight containers;
Deployment mechanisms that can be used to place ML functions across the IOT-edge-
cloud continuum. Function placement driven by performance, cost and energy constraints
can provide a useful basis for making more effective use of these within other application
areas;

7 https://dl.acm.org/doi/10.1145/3398020

81

21201

82

21201 - Serverless Computing

Serverless utilising increasingly available hardware accelerators — support for “hardware
aware” function optimisation

Specialist compilers that are able to create serverless functions that can be adapted to
hardware characteristics

Challenging application requirements

Some of the characteristics and limitations of available serverless systems remain important

open challenges, such as:
Need to support often long-running functions that may have high memory and I/0
requirements. Understanding whether a serverless approach would be most relevant in his
context, and where alternative approaches may be more suitable for such deployments.
Another challenge in this context would be understanding how to partition machine
learning algorithms or general workloads across the iot-edge-cloud continuum.
Need to support observability and manageability of functions, especially if these ML
functions are part of other applications, for instance using a learning algorithm that is
used as a component within a larger workflow. In this context, understanding the level
of “control” a user has on configuring and deploying these ML functions remains an
important overall consideration
A deployment environment, e.g. as used in funcX/Parsl to dynamically deploy ML
functions based on user demand, and aligned with the characteristics of the hardware
platform. Matchmaking between function characteristics and hardware device properties
also remains an important research challenge to increase adoption.
Secure and privacy-aware ML functions, especially when dealing with sensitive data that
may have GDPR/data privacy constraints, is also an important requirement for serverless
deployment. Using encrypted data (e.g. using fully or partially homomorphic encryption)
or utilising functions that carry particular security credentials also remains an important
requirement for some ML applications. The research challenge here lies in identifying
mechanisms for certifying ML functions based on “certificate servers” prior to their use.

Domain: Online Gaming

Gaming is a massive industry, generating a revenue of $180 billion in 2020.8 But despite its
size, developing and operating games and their surrounding ecosystems is challenging. We
envision today’s and future serverless technology addressing these challenges. In this section,
we argue why online gaming can benefit from serverless, how today’s serverless technology
can help, and in which direction serverless technology needs to develop to better support the
online gaming domain.

Benefits

The characteristics of serverless is promising for the online gaming domain. Without being
comprehensive, we discuss here three areas where serverless can help. First, online games
typically have large workload variance over time.? The popularity of games is difficult to

8 https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-
combined-thanks-to-the-pandemic-11608654990
9 https://atlarge-research.com/pdfs/2011-nae-dynamic.pdf

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

predict, but can be the difference between attracting tens or tens of millions of players.

Importantly, the number of players in an online game typically goes down over time, and
many games fail to attract a significant number of players. To manage this risk, game
developers need the ability to scale to zero. At the same time, successful games that attract

large numbers of users have significant daily, weekly, and yearly workload variation patterns.

Games and their ecosystem services require strong scalability to support this. Second,
Successful online games require continuous operational support to provide a service to players
and meet QoS and other NFR constraints. Because such support is labor intensive, it requires
risky and costly investments from development companies and individual developers. Third,
online games operate as parts of a large ecosystem, and as such require good integration (e.g.,
high availability, scalability, fault tolerance) with other services. Using serverless applications
can simplify development effort required to meet these goals.

Technology assessment

Today’s serverless platforms are a promising technology for several areas of the online
gaming ecosystem. Using the house-like metaphor from Iosup et al.,'? we envision serverless
technology to automatic content generation (e.g., generating worlds on demand), game
analytics (e.g., analyzing player behavior and detecting toxicity), the social meta game
(e.g., web apps where users share player-created content), and the virtual world (e.g., player
authentication, matchmaking).

Future directions

While these applications are promising, we identify several challenges that require serverless
to develop beyond its current capabilities. We briefly describe three such challenges here.
First, games can have stringent QoS requirements such as low jitter and latency in the range
of tens of milliseconds, which requires low (cold) start times and guarantees on tail latencies,
and good performance isolation to prevent performance variability in areas that will result
in reduced player experience. Second, using an architecture with large numbers of small
components can make keeping consistent state between players will become more difficult.
Third, the gaming ecosystem contains parts (such as game server instances) that do not use
a programming model that fits easily with the request/reply model used by today’s FaaS
platforms.

Domain: Mobile and telco serverless

Overview

The mobile networking area is currently seeing a significant increase in connected devices,
including IoT devices and smart mobile devices. Due to the operators’ business models and
the potential for additional revenue models for network and telcos, operators are forced to
act efficiently and in line with the demands. In particular, this means being efficient in the
direction of scaling and elasticity. More precisely, mobile networks are typically geographically
distributed and have to deal with a highly variable amount of device messages at the edge and
on central entities. This requires a massive scaling in both directions, spatially and in terms of

0 https://arxiv.org/pdf/1802.05465.pdf

83

21201

84

21201 - Serverless Computing

resources — all things that Serverless entails. Contrary to requirements, Mobile Serverless also
has some inherent functionality that conforms to the serverless paradigm: many network core
functions are sold today as software to avoid large, rigid hardware boxes. Cellular functions
are already available today as separate functions (virtual network functions, especially with
the use of Software-Defined Networking (SDN) environments). These functions are usually
already short-running and often even already stateless.

Benefits

The most important points that can be envisioned for Mobile Serverless are: it leverages the
efficient and scalable architecture, which provides benefits from reduced operational costs
and function isolation. Mobile core network functions are expected to be fully integrated
into or partially merged with user functions. Besides these specific points, Mobile Serverless
can generally benefit from better maintainability and updatability as mobile functions are
encapsulated in atomic tasks or functions, including better resilience with the replication of
functions for fallback purposes and chaos monkey functions.

Challenges

For the next generation of Serverless Computing the challenging application requirements
include runtime and latency guarantees for network and signaling processing functions, the
cold start problem (especially with distributed deployment), and locality, since some functions
must be performed in specific locations. Ultimately, more and more security and privacy
requirements play a role in the discussion with Serverless, as mobile networks typically offer
larger attack surfaces and have many common elements where sensitive information about
users is stored.

Anti-Hypothesis: What is “not” serverless, and why/when should
applications sometimes not be serverless?

Having the above mentioned application domains in mind, significant assumptions exist in
current vendor-based serverless models regarding function execution time, memory constraints,
“cold start” overhead, and execution costs (e.g. per unit time execution costs > VM /container
execution costs).

The question arises if these constraints are inherent to the serverless model or just
technical limitations which will be relaxed in the future?

Are they really constrained or just driven by economic models?

What is not serverless, i.e. when should we just not use serverless?

What is the anti-pattern equivalent for serverless? (Definition: “An anti-pattern is a
common response to a recurring problem that is usually ineffective and risks being highly
counterproductive.”)

From a general point of view:

1. The first obvious thing that strikes against the use of serverless for some applications is
the fact that partitioning an application into functions may take too long or can even be
counterproductive.

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

2. Sometimes applications depend on a strong requirement of I/O or other hardware
components like shared or fast memory, which is hardly possible to achieve in serverless
at the moment.

3. In addition to the last point, heterogeneity given by functions across multiple hardware
and infrastructure can also lead to severe challenges in resilience and coordination.

4. There is furthermore limited reproducibility in serverless computing, which also applies
to the performance of these functions.

5. It is also important to note that applications can require particular QoS and QoE
guarantees (e.g. gaming) that have to be supported across multiple executions of these
functions.

6. Finally, there are also restrictions from the architecture and platform side in direction to
elasticity for applications — consider for example that the “unlimited resource” assumption
does not completely hold for edge devices in case your platform spans over heterogeneous
computing devices.

From a technical point of view, typical restrictions and the ones above arise from the
fact that Serverless Computing is based on a number of paradigms, including the fact that
simple direct communication between functions is not normally possible. Often there is also
only a limited amount of synchronization possible and serverless commonly only allows few
modifications and control of the workflow and scheduling of functions, which is required by
some applications. One severe problem, regarding the performance point of view, is also
that shared memory capabilities and heavy memory optimization is not possible. Ideas like
OpenMP will not be possible since such approaches require strict locality of the memory.

Next steps — Takeaway for the wider community

We ask interested research communities (cloud and systems, software engineering, perform-
ance) to reflect on better application enablement. This encompasses concrete actions such
as:

1. Helping to complete the transition to “Serverless 2.0” by measuring and optimising the
recently introduced prototypes, both from industry and from academia, to overcome
current limits in massive scalability and startup latency.

2. Understanding the cost and economics of using Serverless functions in applications, and
developing a “cost calculator” that is able to make effective assessment of potential costs
for an application user (along similar lines to AWS Cost Calculator).

3. Performing more empirical research with companies to also learn from failures and
hesitation in addition to success cases. This will uncover current system limitations and
turn that into common knowledge, not confined to the serverless platform product owners.

4. Support for serverless functions that can co-exist and meet different types of application
requirements — such as security, performance, usability etc. Security remains an important
challenge and will become increasingly important as new platforms and applications
communities make use of Serverless.

5. Answering fundamental questions such as the “greenness” and cost efficiency of serverless
computing in a way that practical advice for application engineers can be derived.

6. Co-designing forward-looking serverless architectures that abstract from the underlying
isolation layers (container, p-VM, WASM) and are prepared to work in heterogeneous
hardware environments. The co-design should be conducted in conjunction with “bor-
derline applications” that are not just yet enabled but might be with the new design.

85

21201

86

21201 - Serverless Computing

This way, progress into the next stages of serverless computing can be documented
with timestamped examples. Examples include smart edge-based systems with dynamic
resource autodiscovery, uniform management interfaces, and awareness about end-to-end
characteristics such as networked invocation duration to account for latency variations,
interrupted connections and other QoS concerns, for instance in connected vehicles.

4.4 Evaluation of Serverless Systems (Topic 4)

Cristina Abad (ESPOL — Guayaquil, EC), Kyle Chard (University of Chicago, US), Pooyan
Jamshidi (University of South Carolina — Columbia, US), Alessandro Vittorio Papadopoulos
(Mdélardalen University — Visterds, SE), Robert P. Ricci (University of Utah — Salt Lake
City, US), Joel Scheuner (Chalmers and University of Gothenburg, SE), Mohammad Shahrad
(University of British Columbia — Vancouver, CA), and Alexandru Uta (Leiden University,
NL)

License) Creative Commons BY 4.0 International license

© Cristina Abad, Kyle Chard, Pooyan Jamshidi, Alessandro Vittorio Papadopoulos, Robert P.
Ricci, Joel Scheuner, Mohammad Shahrad, and Alexandru Uta

Opening Statement

The group discussed the topic of serverless computing from the perspective of performance
evaluation and benchmarking of the serverless platforms and applications that can be built
on those platforms.

Reproducibility in serverless

One of the overarching challenges in computer science is reproducibility [1, 2, 3]. Previ-
ous studies focusing on cloud computing [4] have already shown that results, especially
performance data [5] are difficult to reproduce across studies. We expect this behavior
to be exacerbated in serverless scenarios: On the one hand, from the client perspective,
the underlying system is opaque. On the other hand, cloud providers have a clear view of
the system design and implementation, but the client workloads are opaque to them. We
believe this is an opportunity for the two parties to work together toward achieving better
experimental reproducibility.

Directions

The performance evaluation of serverless systems can be classified into six types of evaluations,
according to their goal. We describe each, next.

Evaluation of existing platforms and reverse-engineering:

Performed when we want to know well a serverless platform performs; for example, as in [6].
This type of evaluation primarily employs micro-benchmarks to measure a very specific
resource such as CPU speed for floating-point operations. The evaluation results can be
used to choose a suitable service, optimize configurations, guide design decisions of serverless
applications, or parametrize a theoretical performance model.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

Application-level benchmarks:

Application benchmarks focus on explaining the performance behavior of a known application
under a serverless system. These benchmarks select representative applications motivated by
real-world use cases and test them under realistic workloads. An example evaluation of a
serverless application is presented in the ExCamera paper [7].

Middleware /frameworks:

Researchers and developers need a way to evaluate the performance of middlewares or
frameworks, layers that are built on top of Function-as-a-Service platforms but are not
user-focused (e.g., a workflow manager). The goal being, frequently, to preserve performance
and reliability, while decreasing cost. An example of this type of evaluation can be seen
in [8].

Workload characterization:

Like other cloud services, serverless offerings host a wide range of users running various
applications. Characterizing the serverless workload enables discovering usage patterns,
modeling resource consumption, and understanding the composition of serverless applications.
For example, Microsoft’s characterization study [9] came with open-source traces on invocation
times alongside function duration and memory usage distributions for each application.

Systems design / development / solution evaluations:

Frequently, changes are made to the inner workings of serverless platforms like OpenWhisk
or OpenFaaS. These studies seek to improve parts of the stack, like the scheduler (maybe
while stubbing/simulating other parts); for example, as in [10]. Such inner working can be at
different layers in the computer system stack including software, computer architecture, and
hardware.

Other:

In the other category, we include any study that does not fit in the prior five categories; for
example, software engineering papers decomposing monoliths, or papers that use serverless
to test/validate something else. The former includes case studies showing how (typically
monolithic) applications can be re-architected to work with a serverless design. For a concrete
study that illustrates this category, consider [11].

Performance evaluation approaches

In addition to the classification of performance evaluation of serverless systems according
to their goal, the group also discusses the different performance evaluation approaches that
researchers can take. Empirical evaluations employ an observation-based approach in which

the system is deployed in a testbed, a workload issued, and results observed and analyzed.

Theoretical evaluations start with a model and try to reason about a system through
analysis or simulations: What are the inputs and how do these inputs affect the performance?
Theoretical approaches are particularly useful for predictions, and real-time decisions (e.g.,
scheduling, offloading). Hybrid approaches that combine the two prior approaches can be
used for sensitivity analysis, to identify the top x parameters to configure or tune.

87

21201

88

21201 - Serverless Computing

Next steps and takeaway for the community

To enable better evaluations, industry should release traces that can be analyzed, modeled,
and replayed. The community would also benefit significantly if cloud providers were to

publish how their serverless systems work internally. We need platform and application
benchmarks, and we need these to be based on a solid understanding of how actual applications
use serverless frameworks. Less explored and equally important are analytical frameworks
that can be used to explore pricing policies that can be beneficial for providers and consumers.

References

1

10

11

X. Chen, S. Dallmeier-Tiessen, R. Dasler, S. Feger, P. Fokianos, J. B. Gonzalez, H. Hirvonsalo,
D. Kousidis, A. Lavasa, S. Mele et al., “Open is not enough,” Nature Physics, vol. 15, no. 2,
pp. 113-119, 2019.

B. Haibe-Kains, G. A. Adam, A. Hosny, F. Khodakarami, L. Waldron, B. Wang, C. McIntosh,
A. Goldenberg, A. Kundaje, C. S. Greene et al., “Transparency and reproducibility in
artificial intelligence,” Nature, vol. 586, no. 7829, pp. E14-E16, 2020.

E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and C. Giuffrida, “Sok: Benchmarking
flaws in systems security,” in 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). 1EEE, 2019, pp. 310-325.

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski, A. Ali-Eldin,
C. Abad, J. N. Amaral, P. Tuma, and A. Iosup, “Methodological principles for reproducible
performance evaluation in cloud computing,” IEEFE Transactions on Software Engineering,
2019.

A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. Rellermeyer, C. Maltzahn, R. Ricci,
and A. Tosup, “Is big data performance reproducible in modern cloud networks?” in 17th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 20),
2020, pp. 513-527.

L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the curtains of
serverless platforms,” in USENIX Annual Technical Conference (USENIX ATC), 2018, pp.
133-146.

S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao,
A. Sivaraman, G. Porter, and K. Winstein, “Encoding, fast and slow: Low-latency video
processing using thousands of tiny threads,” in USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017, pp. 363-376.

S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, and
K. Winstein, “From laptop to lambda: Outsourcing everyday jobs to thousands of transient
functional containers,” in USENIX Annual Technical Conference (USENIX ATC), 2019, pp.
475-488.

M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano, C. Tresness,
M. Russinovich, and R. Bianchini, “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in USENIX Annual Technical Conference
(USENIX ATC 2020), 2020, pp. 205-218.

E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “SOCK: Rapid task provisioning with serverless-optimized containers,” in USENIX
Annual Technical Conference (USENIX ATC), 2018, pp. 57-70.

A. Goli, O. Hajihassani, H. Khazaei, O. Ardakanian, M. Rashidi, and T. Dauphinee,
“Migrating from monolithic to serverless: A fintech case study,” in Companion of the
ACM/SPEC International Conference on Performance Engineering, 2020, pp. 20-25.

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

5 Panel discussions

5.1 Toward a Definition for Serverless Computing

Samuel Kounev (Universitat Wiirzburg, DE), Cristina Abad (ESPOL — Guayaquil, EC),
Ian T. Foster (Argonne National Laboratory — Lemont, US), Nikolas Herbst (Universitdt
Wiirzburg, DE), Alexandru lTosup (VU University Amsterdam, NL), Samer Al-Kiswany
(University of Waterloo, CA), Ahmed Ali-Eldin Hassan (Chalmers University of Technology —
Goteborg, SE), Bartosz Balis (AGH University of Science & Technology — Krakow, PL), André
Bauer (Universitat Wiirzburg, DE), André B. Bondi (Software Performance and Scalability
Consulting LL, US), Kyle Chard (University of Chicago, US), Ryan L. Chard (Argonne
National Laboratory — Lemont, US), Robert Chatley (Imperial College London, GB), Andrew
A. Chien (University of Chicago, US), A. Jesse Jiryu Davis (MongoDB — New York, US),
Jesse Donkervliet (VU University Amsterdam, NL), Simon Eismann (Universitat Wiirzburg,
DE), Erik Elmroth (University of Umed, SE), Nicola Ferrier (Argonne National Laboratory,
US), Hans-Arno Jacobsen (University of Toronto, CA), Pooyan Jamshidi (University of
South Carolina — Columbia, US), Georgios Kousiouris (Harokopion University — Athens, GR),
Philipp Leitner (Chalmers University of Technology — Géteborg, SE), Pedro Garcia Lipez
(Universitat Rovira i Virgili — Tarragona, ES), Martina Maggio (Universitit des Saarlandes —
Saarbricken, DE), Maciej Malawski (AGH University of Science & Technology — Krakow, PL),
Bernard Metzler (IBM Research-Zurich, CH), Vinod Muthusamy (IBM TJ Watson Research
Center — Yorktown Heights, US), Alessandro Vittorio Papadopoulos (Mdlardalen University —
Visterds, SE), Panos Patros (University of Waikato, NZ), Guillaume Pierre (University &
IRISA — Rennes, FR), Omer F. Rana (Cardiff University, GB), Robert P. Ricci (University
of Utah — Salt Lake City, US), Joel Scheuner (Chalmers and University of Gothenburg,
SE), Mina Sedaghat (Ericsson — Stockholm, SE), Mohammad Shahrad (University of British
Columbia — Vancouwver, CA), Prashant Shenoy (University of Massachusetts — Amherst, US),
Josef Spillner (ZHAW — Winterthur, CH), Davide Taibi (Tampere University, FI), Douglas
Thain (University of Notre Dame, US), Animesh Trivedi (VU University Amsterdam, NL),
Alexandru Uta (Leiden University, NL), Vincent van Beek (Solvinity, Amsterdam and Delft
University of Technology, NL), Erwin van Eyk (VU University Amsterdam, NL), André
van Hoorn (Universitit Stuttgart, DE), Soam Vasani (Stripe — San Francisco, US), Florian
Wamser (Universitat Wiirzburg, DE), Guido Wirtz (Universitit Bamberg, DE), and Viadimir
Yussupov (Universitit Stuttgart, DE)

License @ Creative Commons BY 4.0 International license
© Samuel Kounev, Cristina Abad, lan T. Foster, Nikolas Herbst, Alexandru Iosup, Samer
Al-Kiswany, Ahmed Ali-Eldin Hassan, Bartosz Balis, André Bauer, André B. Bondi, Kyle Chard,
Ryan L. Chard, Robert Chatley, Andrew A. Chien, A. Jesse Jiryu Davis, Jesse Donkervliet, Simon
Eismann, Erik Elmroth, Nicola Ferrier, Hans-Arno Jacobsen, Pooyan Jamshidi, Georgios Kousiouris,
Philipp Leitner, Pedro Garcia Lépez, Martina Maggio, Maciej Malawski, Bernard Metzler, Vinod
Muthusamy, Alessandro Vittorio Papadopoulos, Panos Patros, Guillaume Pierre, Omer F. Rana,
Robert P. Ricci, Joel Scheuner, Mina Sedaghat, Mohammad Shahrad, Prashant Shenoy, Josef
Spillner, Davide Taibi, Douglas Thain, Animesh Trivedi, Alexandru Uta, Vincent van Beek, Erwin
van Eyk, André van Hoorn, Soam Vasani, Florian Wamser, Guido Wirtz, and Vladimir Yussupov

A definition is the first principle of any field of human inquiry. As for many other complex
issues, for serverless computing the semantics have become source of commentary and debate.
So, what is the object of our inquiry, what is serverless computing?

Many of this Dagstuhl Seminar attendees engaged in early discussions around this question.
Early definitions include aspects such as: the deployment model of Function-as-a-Service
and Backend-as-a-Service being key to operate complex serverless applications [1]; granular
billing matching actual use, event-driven operation, and (almost) complete lack of operational

89

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

90

21201 - Serverless Computing

logic [1]; (almost) no concerns about operation for the user, function lifecycle management

including events as triggers, operations including performance isolation and prediction,

operations to trade-off cost and performance under guidance from the user [2]; the details of

FaaS operation that users can expect to encounter, as a reference model spanning functions

to workflows [3]; etc.

With so many aspects to consider, a definition remained elusive. During the seminar,
an intense discussion thread started resulting in an improved common understanding of the
notion of “serverless computing”, around notions such as:

1. NoOps: Hiding/abstracting complexity of execution environment (physical and virtual
machines, hypervisors, operating systems, containers, etc.) as well as system/operation
aspects, such as resource management, component/instance deployment, instance lifecycle,
elasticity /autoscaling, reliability /fault-tolerance, ...

2. Utilization-based billing: a billing model that only charges for the resources actually
used both with respect to time and space, for example, for Function-as-a-Service (FaaS)
this translates into “pay only for function execution (space dimension) in fine-granular
time units (time dimension)”.

Based on this, we formulate the following definition of serverless computing:

Definition: Serverless computing is a cloud computing paradigm offering a high-level
application programming model that allows one to develop and deploy cloud applications
without allocating and managing virtualized servers and resources or being concerned about
other operational aspects. The responsibility for operational aspects, such as fault tolerance
or the elastic scaling of computing, storage, and communication resources to match varying
application demands, is offloaded to the cloud provider. Providers apply utilization-based
billing: they charge cloud users in proportion to the resources that applications actually
consume from the cloud infrastructure, such as computing time, memory, and storage
space.

Today, Function-as-a-Service (FaaS) platforms are the most prominent example of server-
less computing offerings. Current FaaS platforms focus on the function as a unit of com-
putation assumed to be small, stateless, and event-driven (i.e., executed asynchronously
in response to certain triggers or events). The short runtime and stateless nature of FaaS
functions makes it easier for FaaS cloud providers to implement autoscaling in a generic
manner, while applying a fine-granular utilization-based cost model that bills customers
based on the actual time functions are running. Given its popularity and rapid adoption,
today FaaS is often used interchangeably with serverless computing.

We believe that the current assumptions of the FaaS model (small, stateless, and event-
driven units of computation) might eventually be relaxed, as platforms evolve to support
a wider set of applications. In addition to FaaS platforms, our broad notion of serverless
computing also explicitly includes modern Backend-as-a-Service (BaaS) offerings, which are
focused on specialized cloud application components, such as object storage, databases, or
messaging. Finally, some Software-as-a-Service (SaaS) platforms support the execution of
user-provided functions tightly coupled to the specific application domain. In summary, the
serverless ecosystem includes a growing set of technologies and evolving programming models
(e.g., FaaS, BaaS, some PaaS and SaaS), which, taken together, will provide the basis for
building (end-to-end) next-generation serverless cloud applications.

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup

Please cite as:

Samuel Kounev et al., Toward a Definition for Serverless Computing, in Serverless Computing
(Dagstuhl Seminar 21201) (Cristina Abad, Ian T. Foster, Nikolas Herbst, and Alexandru Iosup,
eds.), vol. 11(4), Chapter 5.1, p.34-93, Schloss Dagstuhl Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 2021.

or using

@Incollection{kounev_et_al:DagRep.11.4.34:ServerlessNotion,
author = {Samuel Kounev and Cristina Abad and Ian T. Foster and
Nikolas Herbst and Alexandru Iosup and Samer Al-Kiswany and
Ahmed Ali-Eldin Hassan and Bartosz Balis and Andr\’e Bauer and
Andr\’e B. Bondi and Kyle Chard and Ryan L. Chard and
Robert Chatley and Andrew A. Chien and A. Jesse Jiryu Davis and
Jesse Donkervliet and Simon Eismann and Erik Elmroth and
Nicola Ferrier and Hans-Arno Jacobsen and Pooyan Jamshidi and
Georgios Kousiouris and Philipp Leitner and Pedro Garcia Lopez and
Martina Maggio and Maciej Malawski and Bernard Metzler and
Vinod Muthusamy and Alessandro V. Papadopoulos and
Panos Patros and Guillaume Pierre and Omer F. Rana and
Robert P. Ricci and Joel Scheuner and Mina Sedaghat and
Mohammad Shahrad and Prashant Shenoy and Josef Spillner and
Davide Taibi and Douglas Thain and Animesh Trivedi and
Alexandru Uta and Vincent van Beek and Erwin van Eyk and
Andr\’e van Hoorn and Soam Vasani and Florian Wamser and
Guido Wirtz and Vladimir Yussupov},
title = {{Toward a Definition for Serverless Computingl}},
booktitle = {{Serverless Computing (Dagstuhl Seminar 21201)}},
pages = {34--93},
journal = {Dagstuhl Reports},
year = {2021},
volume = {11},
issue = {4},
editor = {Cristina Abad and Ian T. Foster and Nikolas Herbst and
Alexandru Iosupl,
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
doi = {10.4230/DagRep.11.4.34},
X

References

1 Erwin Van Eyk, Alexandru Iosup, Simon Seif, Markus Thémmes: The SPEC cloud group’s
research vision on FaaS and serverless architectures. WOSC@Middleware 2017: 1-4

2 Erwin Van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, Simon Eismann: A

SPEC RG Cloud Group’s Vision on the Performance Challenges of FaaS Cloud Architectures.

ICPE Companion 2018: 21-24

3 Erwin Van Eyk, Alexandru Iosup, Johannes Grohmann, Simon Eismann, André Bauer,
Laurens Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, Cristina L. Abad: The
SPEC-RG Reference Architecture for FaaS: From Microservices and Containers to Serverless
Platforms. IEEE Internet Comput. 23(6): 7-18 (2019)

91

21201

92

21201 — Serverless Computing

Participants

= André Bauer
Universitdt Wiirzburg, DE

= Simon Eismann
Universitdt Wiirzburg, DE

= Nikolas Herbst
Universitdt Wiirzburg, DE

Remote Participants

= Cristina Abad
ESPOL — Guayaquil, EC

= Samer Al-Kiswany
University of Waterloo, CA

= Ahmed Ali-Eldin Hassan
Chalmers University of
Technology — Géteborg, SE

= Bartosz Balis
AGH University of Science &
Technology — Krakow, PL

= André B. Bondi
Software Performance and
Scalability Consulting LL, US

= Kyle Chard
University of Chicago, US

= Ryan L. Chard
Argonne National Laboratory —
Lemont, US

= Robert Chatley
Imperial College London, GB

= Andrew A. Chien
University of Chicago, US

= A. Jesse Jiryu Davis
MongoDB — New York, US

= Jesse Donkervliet
VU University Amsterdam, NL

= FErik Elmroth
University of Umea, SE

= Nicola Ferrier
Argonne National Laboratory, US

= lan T. Foster
Argonne National Laboratory —
Lemont, US

= Alexandru Iosup
VU University Amsterdam, NL

= Hans-Arno Jacobsen
University of Toronto, CA

= Pooyan Jamshidi
University of South Carolina —
Columbia, US

= Samuel Kounev

Universitdt Wiirzburg, DE

= Georgios Kousiouris

Harokopion University —
Athens, GR

= Philipp Leitner
Chalmers University of
Technology — Goéteborg, SE

= Pedro Garcia Lopez
Universitat Rovira i Virgili —
Tarragona, ES

= Martina Maggio
Universitdt des Saarlandes —
Saarbriicken, DE

= Maciej Malawski
AGH University of Science &
Technology — Krakow, PL

= Bernard Metzler
IBM Research-Zurich, CH

= Vinod Muthusamy
IBM TJ Watson Research Center
— Yorktown Heights, US

= Alessandro Vittorio
Papadopoulos
Malardalen University —
Visteras, SE

= Panos Patros
University of Waikato, NZ

Cristina Abad, lan T. Foster, Nikolas Herbst, and Alexandru losup 93

= Guillaume Pierre
University & IRISA —
Rennes, FR

= Omer F. Rana

Cardiff University, GB

= Robert P. Ricci
University of Utah —

Salt Lake City, US

= Joel Scheuner
Chalmers and University of
Gothenburg, SE

= Mina Sedaghat
Ericsson — Stockholm, SE

= Mohammad Shahrad
University of British Columbia —
Vancouver, CA

Simon Eismann

= Prashant Shenoy
University of Massachusetts —
Ambherst, US

= Josef Spillner
ZHAW - Winterthur, CH

= Davide Taibi
University of Tampere, F1

= Douglas Thain
University of Notre Dame, US

= Animesh Trivedi
VU University Amsterdam, NL

= Alexandru Uta
Leiden University, NL

= Vincent van Beek

Solvinity, Amsterdam and Delft
University of Technology, NL

= Erwin van Eyk

VU University Amsterdam, NL
= André van Hoorn
Universitdt Stuttgart, DE

= Soam Vasani

Stripe — San Francisco, US

= Florian Wamser

Universitdt Wiirzburg, DE

= Guido Wirtz

Universitdt Bamberg, DE

= Vladimir Yussupov
Universitdt Stuttgart, DE

21201

	Executive Summary Cristina Abad, Ian T. Foster, Nikolas Herbst, and Alexandru Iosup
	Table of Contents
	Overview of Talks
	Serverless Predictions: 2021-2030 (Keynote Abstract – Topic 1) Pedro García López and Bernard Metzler
	Developer Experience for Serverless: Challenges and Opportunities (Keynote Abstract – Topic 2) Robert Chatley
	Federated Function as a Service (Keynote Abstract – Topic 3) Kyle Chard and Ian T. Foster
	Characterizing Serverless Systems (Keynote Abstract – Topic 4) Mohammad Shahrad
	Beyond Load Balancing: Package-Aware Scheduling for Serverless Platforms Cristina Abad
	Accelerating Reads with In-Network Consistency-Aware Load Balancing Samer Al-Kiswany
	A tool set for serverless Ahmed Ali-Eldin Hassan
	Serverless execution of scientific workflows Bartosz Balis
	Using Severless Computing for Streamlining the Data Analytic Process André Bauer
	Challenges for Serverless Databases A. Jesse Jiryu Davis
	Using Serverless to Improve Online Gaming Jesse Donkervliet and Alexandru Iosup
	Understanding and optimizing serverless applications Simon Eismann
	Autonomous resource allocation methods for serverless systems Erik Elmroth
	Is Serverless an Opportunity for Edge Applications? Nicola Ferrier
	HyScale into Serverless: Vision and Challenges Hans-Arno Jacobsen
	Serverless Workflows for Sustainable High-Performance Data Analytics Nikolas Herbst
	Massivizing Computer Systems: Science, Design, and Engineering for Serverless Computing Alexandru Iosup and Erwin van Eyk
	Machine Learning to enable Autonomous Serverless Systems Pooyan Jamshidi
	Self-Aware Platform Operations and Resource Management Samuel Kounev
	From design to migration and management: FaaS platforms for application porting to optimized serverless implementation and execution Georgios Kousiouris
	Software Development Using Serverless Systems Philipp Leitner
	Running and Scheduling Scientific Workflows on Serverless Clouds: From Functions to Containers Maciej Malawski
	The case for a hybrid cloud model for serverless computing Vinod Muthusamy
	Performance Evaluation in Serverless Computing Alessandro Vittorio Papadopoulos
	Federated AI on Serverless Edge Clusters Powered by Renewable Energy Panos Patros
	Is serverless computing the holy grail of fog computing application design paradigms? Guillaume Pierre
	Performance Evaluation of Serverless Applications Joel Scheuner
	FaaS orchestration Mina Sedaghat
	LaSS: Running Latency Sensitive Serverless Computations at the Edge Prashant Shenoy and Ahmed Ali-Eldin Hassan
	Fitting Serverless Abstractions and System Designs to Next-Generation Application Needs Josef Spillner
	Architectural Patterns for Serverless-Based applications Davide Taibi
	Continuous testing of serverless applications André van Hoorn
	Serverless Compute Primitives as a Compilation Target Soam Vasani
	Network Challenges in Serverless Computing Florian Wamser
	Decision Support for Modeling and Deployment Automation of Serverless Applications Vladimir Yussupov

	Working groups
	Design of Serverless Systems, Platforms, and Ecosystems (Topic 1) Samer Al-Kiswany, Ahmed Ali-Eldin Hassan, André Bauer, André B. Bondi, Ryan L. Chard, Andrew A. Chien, A. Jesse Jiryu Davis, Erik Elmroth, Alexandru Iosup, Hans-Arno Jacobsen, Samuel Kounev, Vinod Muthusamy, Guillaume Pierre, Mina Sedaghat, Prashant Shenoy, Davide Taibi, Douglas Thain, Erwin van Eyk, and Soam Vasani
	Software Engineering of Serverless Applications, but also Systems, Platforms, and Ecosystems (Topic 2) Simon Eismann, Robert Chatley, Nikolas Herbst, Georgios Kousiouris, Philipp Leitner, Pedro García López, Bernard Metzler, Davide Taibi, Vincent van Beek, André van Hoorn, Guido Wirtz, and Vladimir Yussupov
	Serverless Applications and Requirements (Topic 3) Josef Spillner, Bartosz Balis, Jesse Donkervliet, Nicola Ferrier, Ian T. Foster, Maciej Malawski, Panos Patros, Omer F. Rana, and Florian Wamser
	Evaluation of Serverless Systems (Topic 4) Cristina Abad, Kyle Chard, Pooyan Jamshidi, Alessandro Vittorio Papadopoulos, Robert P. Ricci, Joel Scheuner, Mohammad Shahrad, and Alexandru Uta

	Panel discussions
	Toward a Definition for Serverless Computing Samuel Kounev, Cristina Abad, Ian T. Foster, Nikolas Herbst, Alexandru Iosup, Samer Al-Kiswany, Ahmed Ali-Eldin Hassan, Bartosz Balis, André Bauer, André B. Bondi, Kyle Chard, Ryan L. Chard, Robert Chatley, Andrew A. Chien, A. Jesse Jiryu Davis, Jesse Donkervliet, Simon Eismann, Erik Elmroth, Nicola Ferrier, Hans-Arno Jacobsen, Pooyan Jamshidi, Georgios Kousiouris, Philipp Leitner, Pedro García López, Martina Maggio, Maciej Malawski, Bernard Metzler, Vinod Muthusamy, Alessandro Vittorio Papadopoulos, Panos Patros, Guillaume Pierre, Omer F. Rana, Robert P. Ricci, Joel Scheuner, Mina Sedaghat, Mohammad Shahrad, Prashant Shenoy, Josef Spillner, Davide Taibi, Douglas Thain, Animesh Trivedi, Alexandru Uta, Vincent van Beek, Erwin van Eyk, André van Hoorn, Soam Vasani, Florian Wamser, Guido Wirtz, and Vladimir Yussupov

	Participants
	Remote Participants

