
Report from Dagstuhl Seminar 21283

Data Structures for Modern Memory and Storage
Hierarchies
Edited by
Stratos Idreos1, Viktor Leis2, Kai-Uwe Sattler3, and Margo Seltzer4

1 Harvard University – Cambridge, US, stratos@seas.harvard.edu
2 Universität Erlangen-Nürnberg, DE, viktor.leis@fau.de
3 TU Ilmenau, DE, kus@tu-ilmenau.de
4 University of British Columbia – Vancouver, CA, mseltzer@cs.ubc.ca

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21283 “Data Structures
for Modern Memory and Storage Hierarchies”. For decades, computers consisted of a CPU, volatile
main memory, and persistent disk. Today, modern storage technologies such as flash and persistent
memory as well as the seemingly inevitable migration into virtualized cloud instances, connected
through high-speed networks, have radically changed the hardware landscape. These technologies
have major implications on how to design data structures and high-performance systems software.
The seminar discussed how to adapt data structures and software systems to this new hardware
landscape.

Seminar July 11–16, 2021 – http://www.dagstuhl.de/21283
2012 ACM Subject Classification Information systems → Data management systems
Keywords and phrases Cloud, Data Structures, Database Systems, Flash, Near-Data Processing,

Persistent Memory
Digital Object Identifier 10.4230/DagRep.11.6.38

1 Executive Summary

Viktor Leis (Universität Erlangen-Nürnberg, DE)

License Creative Commons BY 4.0 International license
© Viktor Leis

The seminar brought together researchers and practitioners from the data management and
systems/storage communities to discuss the implications of the modern hardware landscape
on high-performance systems. Due to the pandemic, the seminar was organized as a hybrid
event: Virtual participation was limited to one session per day that featured invited talks.
The in-person component consisted of free-flowing plenary discussions and several smaller,
focused working groups. Some key takeaways from the discussion are:

OS/DBMS co-design: Traditional POSIX-style OS abstractions do not work well for
data-intensive systems, leading to complex workarounds and suboptimal performance.
While some of these issues could in principle be fixed by optimizing OS implementations,
others require new APIs. For example, it is very difficult to implement crash-consistent
data structures on top of the mmap system call.
Cloud: The cloud is taking over and cloud-native data processing systems often have a
a very different architecture from traditional data management systems. For example,
many systems strive to separate storage from compute. This trend is enabled by ever
faster networks.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Data Structures for Modern Memory and Storage Hierarchies, Dagstuhl Reports, Vol. 11, Issue 06, pp. 38–53
Editors: Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/21283
https://doi.org/10.4230/DagRep.11.6.38
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer 39

Near-data processing: Separating storage from compute leads to costly data movement,
which may be mitigated by pushing down (parts of) the computation close to the data.
Major public cloud vendors already to optimize their internal services towards this goal.
The challenges is how to program such distributed and specialized hardware components.
Persistent Memory: One major question discussed at the seminar was the role of
byte-addressable persistent memory in future systems and whether what the “kill app” for
this technology is. While there are several promising applications (e.g., graph processing
or systems that require fast recovery times), it is not clear whether wide adoption will
occur. Currently, the technology is quite expensive (prices per byte are similar to DRAM)
and very hard to program in a crash-consistent way (e.g., writes must be carefully ordered
similar to lock-free-style programming).

21283

40 21283 – Data Structures for Modern Memory and Storage Hierarchies

2 Table of Contents

Executive Summary
Viktor Leis . 38

Overview of Talks
An update on the Enzian system
Gustavo Alonso . 41

Deep Memory and Storage Hierachies for Scalable and Efficicient DBMSs
Carsten Binnig . 41

Reasoning about cloud-native data-structures
Jana Giceva . 41

The data systems grammar
Stratos Idreos . 42

A Taxonomy of Database and SSDs Co-designs
Alberto Lerner . 42

NVM: Bubble Memory all over Again?
Margo Seltzer . 43

Working groups
Future databases
Carsten Binnig, Gustavo Alonso, and Alberto Lerner 43

Interface Challenges between Databases and Operating Systems
Christian Dietrich, André Brinkmann, Viktor Leis, and Thomas Neumann 44

Out-of-Memory Data Structures
Viktor Leis and Thomas Neumann . 45

A Preview of Upcoming Cache Coherency Technologies
Alberto Lerner, Gustavo Alonso, Kai-Uwe Sattler, and Jens Teubner 46

Near-data processing – State-of-the-art and open problems
Marcus Paradies . 46

Non-volatile Memory in Database Systems
Kai-Uwe Sattler, Alexander Baumstark, and Muhammad Attahir Jibril 50

Participants . 53

Remote Participants . 53

Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer 41

3 Overview of Talks

3.1 An update on the Enzian system
Gustavo Alonso (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Gustavo Alonso

Joint work of Gustavo Alonso, Timothy Roscoe
Main reference Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan Kara, Dario Korolija, David

Sidler, Zeke Wang: “Tackling Hardware/Software co-design from a database perspective”, in Proc. of
the 10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The
Netherlands, January 12-15, 2020, Online Proceedings, www.cidrdb.org, 2020.

URL http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf

This talk presents the status of Enzian, a research computer being developed at ETHZ.
Enzian has been designed to enable research in a wide range of topics related to how systems
architecture, from both the hardware and the software perspective, need to evolve in view of
developments such as accelerators and cloud computing architectures.

The talk links to several of the topics discussed during the seminar: disaggregated memory,
memory hierarchies, distributed systems architecture, etc.

3.2 Deep Memory and Storage Hierachies for Scalable and Efficicient
DBMSs

Carsten Binnig (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
© Carsten Binnig

In recent years, memory and storage hierarchies have become increasingly deeper. On a
single machine, additional memory and storage technologies such as PMem or NWMe SSDs
have been introduced, allowing DBMSs to scale beyond the data sizes that pure in-memory
systems can handle. Moreover, thanks to technologies such as remote direct memory access
(RDMA) and NVMe over Fabrics, memory and storage can even scale beyond the capcities
of a single machine without sacrificing too much of performance. In this talk, I have been
discussing new opportunities (e.g., how to lay out data in an optimal manner across layers)
and challenges (e.g., how to keep data copies consistent across layers) that arise for building
scalable and efficient DBMSs when exploiting all these different layers of memory and storage
on local and remote machines.

3.3 Reasoning about cloud-native data-structures
Jana Giceva (TU München, DE)

License Creative Commons BY 4.0 International license
© Jana Giceva

The design of data structures should no longer be driven solely by the data layout, the
algorithm’s access patterns and the properties of the underlying hardware. The premise is
that any future data structure must also consider the impact of the relevant cloud metrics, a
list that is longer than just performance and cost. This talk is a teaser into what designing

21283

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

42 21283 – Data Structures for Modern Memory and Storage Hierarchies

a cloud data structure means in the context of scale, resource disaggregation, and novel
cloud-native data system architectures. This entails reasoning in terms of cloud service
components, understanding the tradeoffs where must we ensure no-data loss as opposed to
good quality of service, as well as considering the impact of the whole system stack when
using the underlying network-attached resources.

3.4 The data systems grammar
Stratos Idreos (Harvard University – Cambridge, US)

License Creative Commons BY 4.0 International license
© Stratos Idreos

Data structures are everywhere. They define the behavior of modern data systems and
data-driven algorithms. For example, with data systems that utilize the correct data structure
design for the problem at hand, we can reduce the monthly bill of large-scale data systems
applications on the cloud by hundreds of thousands of dollars. We can accelerate data
science tasks by being able to dramatically speed up the computation of statistics over large
amounts of data. We can train drastically more neural networks within a given time budget,
improving accuracy.

However, knowing the right data structure and data system design for any given scenario
is a notoriously hard problem; there is a massive space of possible designs while there is
no single design that is perfect across all data, queries, and hardware scenarios. We will
discuss our quest for the first principles of data structures and data system design. We will
show signs that it is possible to reason about this massive design space, and we will show
early results from a prototype self-designing data system which can take drastically different
shapes to optimize for the workload, hardware, and available cloud budget using machine
learning and what we call machine knowing. These shapes include data structure and system
designs which are discovered automatically and do not exist in the literature or industry.

3.5 A Taxonomy of Database and SSDs Co-designs
Alberto Lerner (University of Fribourg, CH)

License Creative Commons BY 4.0 International license
© Alberto Lerner

Joint work of Alberto Lerner, Philippe Bonnet
Main reference Alberto Lerner, Philippe Bonnet: “Not your Grandpa’s SSD: The Era of Co-Designed Storage

Devices”, in Proc. of the SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, pp. 2852–2858, ACM, 2021.

URL https://doi.org/10.1145/3448016.3457540

This talk discussed the numerous advantages of Co-designing Databases and SSDs. Most
notably, co-designing allows a system to offload some database tasks onto storage hardware
and thus obtain better performance or resource utilization. These tasks can range from simple
behavioral changes in the device, such as scheduling IO operations from a latency-sensitive
transaction log with high priority, to moving entire computations into the device, such as
executing a portion of a query plan or transforming a log segment into a partial checkpoint. A
taxonomy of offload-capable devices was presented, which organizes the devices according to
the type of interface they offer. Two of these classes can benefit from further research: devices

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3448016.3457540
https://doi.org/10.1145/3448016.3457540
https://doi.org/10.1145/3448016.3457540
https://doi.org/10.1145/3448016.3457540

Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer 43

with computational features and database-storage co-designed devices. This talk summarizes
a join work tutorial with Philippe Bonnet presented at SIGMOD’21 about Databases and
SSDs co-design [1].

References
1 Alberto Lerner and Philippe Bonnet. Not Your Grandpa’s SSD: The Era of Co-designed

Storage Devices. SIGMOD’21, June, 2021.

3.6 NVM: Bubble Memory all over Again?
Margo Seltzer (University of British Columbia – Vancouver, CA)

License Creative Commons BY 4.0 International license
© Margo Seltzer

Non-volatile, byte-addressable memory (NVM) has been touted as the next big revolution in
persistent storage. With the the load/store access model and performance of DRAM with
the persistence of flash, what could be better as a foundation for high-performance data
management? In fact, the research community has been prolific in publications touting the
amazing systems we’ll see; yet, commercial impact has been minimal. Why?

Both the technology and hype harken back to the 1970s and the introduction of a different
non-volatile technology: Bubble Memory. Like NVM, pundits predicted that bubble memory
would be a game changer in our system stack. It wasn’t. This talk explores the lessons we
should take away from the bubble memory mania. Our after talk discussion will focus on
identifying the Killer Apps that will make NVM a true game changer in the 21st century.

4 Working groups

4.1 Future databases
Carsten Binnig (TU Darmstadt, DE), Gustavo Alonso (ETH Zürich, CH), and Alberto
Lerner (University of Fribourg, CH)

License Creative Commons BY 4.0 International license
© Carsten Binnig, Gustavo Alonso, and Alberto Lerner

This work group discussed the future architecture of database systems from the perspective
of modern hardware and cloud computing. The group outlined a novel system running
on serverless that takes advantage of all the services the cloud provides without giving up
the advantages of an actual database engine. To certain extent, what we designed is a
disaggregated data processing engine.

21283

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

44 21283 – Data Structures for Modern Memory and Storage Hierarchies

4.2 Interface Challenges between Databases and Operating Systems
Christian Dietrich (TU Hamburg-Harburg, DE), André Brinkmann (Universität Mainz, DE),
Viktor Leis (Universität Erlangen-Nürnberg, DE), and Thomas Neumann (TU München,
DE)

License Creative Commons BY 4.0 International license
© Christian Dietrich, André Brinkmann, Viktor Leis, and Thomas Neumann

Databases and operating systems (OS) have in common that they have to serve applications
that only reveal their wishes within concrete service request. While database management
systems consider users with SQL queries as “applications”, they themselves are considered as
“applications” by the operating system. Rooted in this dual role, the interaction between
the OS and databases suffers from an expectation mismatch: Although database developers
want to use general-purpose OS interfaces, they are often disappointed by the supplied
performance and the given guarantees (e.g., atomicity). On the other hand, OS developers
argue that databases should just use the (right) OS interface (correctly) and give more hints
about the intended use of the requested resources. But, since databases are in a similar
position as the OS and cannot predict the next application request, this criticism often bears
no fruit.

Instead, database developers bypass central OS infrastructure (e.g., by performing direct
block-device accesses) and re-implement parts of the OS functionality in user space. While
these private re-implementations have the benefit of being more controllable, they make the
database a problematic citizen from the OS perspective. One example of this implementation
pattern is the buffer manager in the DBMS, which has its OS equivalent in the page cache;
both are caches for the secondary storage, get filled on demand, and evict pages with or
without write-back. In contrast to the page cache, the buffer manager allows for fine-grained
control about eviction and eviction order, which is necessary for atomicity guarantees on
data updates. However, such a process-local buffer manager occupies resident memory, which
the OS, in contrast to page-cache pages, cannot easily reclaim when the memory pressure
rises.

In our working group, we discussed the mmap() OS interface, which would allow the
database to rely on the page cache as its buffer manager. However, even if leaving eviction
control aside and focusing only on read-only workloads, the current Linux implementation is
problematic: When reading random pages from a high-speed NVMe SSD, the OS fills up its
page cache and makes the data available in the processes’ virtual address space, whereby it
nearly reaches the bandwidth limits of the underlying device (around 3 GiB/s). At some
point, the page cache reaches its limit, memory becomes scares, and the OS starts to evict
data pages. For this, the OS removes the evicted pages from the virtual address space, which
requires the OS to ensure mapping consistency on all thread-executing cores. With a TLB
shootdown, which is sent as an inter-processor interrupt (IPI), the OS requests TLB flushes
on the other CPU cores. In our benchmark, these shootdowns dominate the benchmark
performance after second 25 and, after second 40, each 4K read provokes on average 4 IPIs
(see Fig. 1).

To tackle this issue, the Linux system call madvise() already provides two flags
(MADV_DONTNEED and MADV_COLD), whereby the application can hint that certain pages are
not needed in the near future, which would allow for a lazy unmapping of pages without TLB
shootdown. However, with the current implementation, it seems that shootdowns are still
performed eagerly. Also the vectorized madvise() variant process_madvise(), which would
also eliminate system-call overheads, currently performs one TLB shootdown per unmapped
page instead of batching them after the system call.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer 45

t

0

1

2

3

Re
ad

 B
an

dw
id

th
 [G

iB
/s

]

 =82.5GiB

random 4k reads, MADV_RANDOM, 100 threads (sliding average=5s)
Userspace I/O

0.0

0.5

1.0

1.5

2.0

Ev
en

ts
 [1

/s
]

1e6
TLB Shootdowns

0 20 40 60 80 100
Time [s]

0

2000

4000

6000

8000

10000

Op
er

at
io

ns
 [1

/s
]

Concurrent CPU-bound Worker

Figure 1 Random 4K Reads from Memory-Mapped Device. Benchmark was executed on a AMD
EPYC 7713 64-Core Processor with 512 GiB RAM

A more general idea to improve mmap() for database systems could be to introduce
process-local (or even mapping-local) page-cache partitions. While these would be under
control of the kernel, the user-space application should be able to finely control page eviction
and consistency/atomicity requirements. Preferably, this control could be exercised through
asynchronous low-overhead kernel interfaces (e.g., io_uring) in order to keep up with the
bandwidth of NVMe SSDs RAIDs.

4.3 Out-of-Memory Data Structures
Viktor Leis (Universität Erlangen-Nürnberg, DE) and Thomas Neumann (TU München, DE)

License Creative Commons BY 4.0 International license
© Viktor Leis and Thomas Neumann

Joint work of Alfons Kemper, Viktor Leis, Alberto Lerner, Ulrich Meyer, Thomas Neumann, Alexander van Renen,
Kai-Uwe Sattler, Jens Teubner

B-trees are still the most common out-of-memory data structure and perform well when
the data is larger than main memory. Specialized in-memory data structures (e.g., radix
trees), on the other hand, are often faster for pure in-memory workloads. In this working
group, we discussed how to close this gap by designing a data structure that combines ideas
from both data structures. The goal is to be as fast as pure in-memory data structures
on workloads where the working set fits into main memory, while transparently supporting
larger than main memory data sets as well. The key idea behind our data structure, which
we code-named Dagstuhl-Tree, is to cache individual keys in a fast in-memory data structure
(e.g., a radix tree). The on-disk representation is still similar to a traditional B-tree, but
caching and eviction occur at a key granularity. Thus, the proposed data structure can not
only speed up in-memory workloads (due to the fast in-memory data structure) but also
out-of-memory workloads (due to more fine-grained cache utilization).

21283

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

46 21283 – Data Structures for Modern Memory and Storage Hierarchies

4.4 A Preview of Upcoming Cache Coherency Technologies
Alberto Lerner (University of Fribourg, CH), Gustavo Alonso (ETH Zürich, CH), Kai-Uwe
Sattler (TU Ilmenau, DE), and Jens Teubner (TU Dortmund, DE)

License Creative Commons BY 4.0 International license
© Alberto Lerner, Gustavo Alonso, Kai-Uwe Sattler, and Jens Teubner

This working group discussed the Compute Express Link (CXL) protocol [2], an emerging
memory coherence standard that allows peripheral devices to manipulate their host’s memory
seamlessly. The protocol, backed by a large consortium of companies, is expected to soon
appear in a new generation of commercial CPUs, GPUs, NICs, accelerators, and potentially
SSDs. The group found that CXL, along with other coherence protocols such as CCIX [1]
and ETH’s Enzian machine’s [3], have the potential to open the design space for database
systems as follows. Peripheral devices can now read and update data without explicitly
moving it first, thanks to the coherent hardware support. New database systems can deploy
distributed, exo-CPU computations while still benefiting from a shared memory abstraction.
The group presented its preliminary research questions and discussed the availability of
academic and commercial platforms to support such efforts.

References
1 CCIX Consortium. Cache Coherent Interconnect for Accelerators – Base Specification

Revision 1.a Version 1.0. https://www.ccixconsortium.com, July, 2019.
2 CXL Consortium. Compute Express Link Specification 2.0. https://www.

computeexpresslink.org/download-the-specification, October, 2020.
3 Abishek Ramdas, David Cock, Timothy Roscoe, and Gustavo Alonso. The Enzian Coherent

Interconnect (ECI): opening a coherence protocol to research and applications. LATTE ’21,
April, 2021.

4.5 Near-data processing – State-of-the-art and open problems
Marcus Paradies (German Aerospace Center – Jena, DE)

License Creative Commons BY 4.0 International license
© Marcus Paradies

Introduction
The seminal idea of offloading computations close to the data to reduce unnecessary data
movement dates back more than three decades. Although the general concept of near-
data processing has been around for quite a while already, it only recently got enough
momentum to foster an increasing research demand from academia and a more widespread
development of near-data processing solutions from the industry. The growing interest in
near-data processing is mainly driven by two factors: (1) ever-growing data volumes & an
increasing demand for advanced analytics, and (2) increasing heterogeneity & specialization
of hardware components (processing, memory & storage, and network) to data-intensive
workloads. Growing data volumes pose tremendous challenges to data systems and demand
more complex and scalable system architectures, including complex network topologies
and deep I/O hierarchies, potentially spanning local storage, remote storage, and cloud
storage resources [3]. Therefore, near-data processing can be found today across all hardware
components of distributed data systems, in particular network and memory & storage
infrastructures. In summary, near-data processing provides the following advantages:

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.ccixconsortium.com
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer 47

Reduction of data movement. Deep I/O hierarchies in distributed execution environ-
ments increase data movement since data has to be moved potentially across multiple
storage tiers and the network before it is processed. This can lead to potential band-
width bottlenecks on the network and storage stacks. Besides contributing to a waste
of bandwidth resources, data movement also consumes a considerable amount of energy.
Near-data processing reduces the amount of data that needs to be transferred and thus
saves bandwidth resources and potentially reduces the overall energy consumption of the
system infrastructure.
Reduction of access latency. Offloading computations can also reduce data access
latency by avoiding unnecessary data transfers across the network and storage stack.
Reduction of load on the host CPU. Near-data processing enables freeing up scarce
host CPU cycles by offloading parts of the computation into the network or the storage
stacks. Hardware specialization in the network or in storage might even lead to faster
computations compared to running the same operation on general-purpose CPUs.
Increase of data privacy & security. The reduction of data movement increases data
privacy and security since only data that is relevant for the processing is moved out of
the storage system and across the network.

Types of Near-Data Processing
Near-data processing comes in different flavors and is typically considered in the context of
offloading computations into memory (e.g., Processing-in-Memory (PIM) or Near-Memory
Processing), storage (e.g., Computational Storage), or the network (e.g., In-Network Processing
(INP)). Along the entire data path, all components, such as disks, network cards, switches,
and memory modules become active, i.e., can perform certain operations on the data they
handle.

Processing-in-Memory (PIM) and Near-Memory Processing

PIM addresses the memory wall problem, i.e., the growing discrepancy between microprocessor
performance and DRAM memory speed [8]. By placing a lightweight processing unit in/near
memory, PIM helps to alleviate the memory bandwidth limitations of traditional von-
Neumann architectures. Recent developments, such as Samsung’s HBM-PIM and AxDIMM
and UPMEM’s PIM solution based on a DRAM processing unit (DPU), demonstrate
the increasing interest and momentum from industry to commercialize and embrace PIM-
based hardware components for memory-bound applications [9]. While PIM is a promising
technology which is gaining more traction lately, challenges for a widespread adoption arise
from a limited set of supported operations and the lack of tools and programmability features.

Computational Storage

Computational storage devices (CSD) allow offloading computations into or near the storage
device. While in-storage processing has been advertised since the early 90’s, only recently
commercial CSD products (e.g., Samsung SmartSSD, NGDSystems Newport, and Scaleflux)
based on SSDs became available [5, 4]. More broadly, computational storage refers to a
family of different technologies, which provide computational resources close to the storage
devices. Computational resources might reside within the storage device itself (e.g., some

21283

48 21283 – Data Structures for Modern Memory and Storage Hierarchies

embedded ARM cores) or are connected via a peripheral interconnect (e.g., a CSD based on re-
configurable hardware (FPGA)). Despite the availability of CSD hardware, there is currently
no standard interface mechanism available, which uniformly describes the interaction between
the host software and the CSD device. Standardization efforts in the NVMe working group
Computational Storage discuss extensions of the NVMe protocol for offloading computations
(e.g., orchestrated through eBPF).

In-Network Processing

Modern programmable networks create the opportunity for in-network processing, i.e.,
offloading computations from end hosts into network devices such as programmable switches
and smart NICs [1, 7]. Programmable switches, such as Barefoot Networks’ Tofino, have a
flexible parser and a customizable match-action engine. To process packets at high speed,
this architecture has a multi-stage pipeline where packets flow at line rate. Each stage has a
fixed amount of time to process every packet, allowing for lookups in memory, manipulating
packet metadata and stateful registers, and performing boolean and arithmetic operations [1].
While programmable switches offer impressive performance, they only provide a limited
memory size, a limited set of supported actions (e.g., simple arithmetic, data manipulation,
and hashing operations), and few operations per packet to guarantee execution at line rate.

Abstractions and Primitives
Near-data processing can be employed for specific usage scenarios, i.e., to offload a well-
defined, fixed operation (e.g., SQL filtering & aggregation, regex searches, compression &
encryption, etc.) or user-defined operations (e.g., UDF-like operations or kernels). Depending
on the offered programming model (e.g., match-action, data-flow, etc.) and offloading mech-
anism (e.g.,OS/container/VM, bitstream, or eBPF), the expressiveness and composability
of operations can vary dramatically. For example, initial PIM solutions only offered simple
arithmetic operations to be offloaded, while recent computational storage products allow
the execution of arbitrary user code in a containerized manner directly inside the SSD.
It remains an open problem, how future programming models for near-data processing
will look like. Even promising offloading mechanisms, such as using eBPF in the context
of computational storage, struggle to allow general (and potentially complex) offloads of
operations into storage devices. In cloud deployments, near-data processing opportunities
are usually not directly exposed, but shall be used through well-defined service interfaces
(e.g., AWS S3 SELECT), which poses the question of how much control future data systems
(DBMSs and data-intensive systems like Spark, Flink, etc.) will have over such abstracted
service interfaces. As of today, the most common usage of near-data processing is to offload
pre-selected tasks (i.e., operator-level) into memory, storage, or the network. Few examples
allow offloading arbitrarily complex operations (i.e., query-level / pipeline-level) or even run
the entire DBMS inside the storage device [2].

Open Research Problems
Given the recent excitement about programmable hardware components (memory, storage,
and network), there is a large number of open research (and technical) questions that will
have to be addressed. The following provides an (incomplete) list of open problems:

Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer 49

Programming models and offloading mechanisms: Programming models are
currently mostly kernel-based in some supported programming language (e.g., p4 or
eBPF). It is unclear how multiple near-data processing compute units (e.g., programmable
switches and programmable SSDs) can be programmed under a unified programming
model. The offloading mechanisms are device-specific and usually coupled to a specific
protocol (e.g., NVMe in the context of computational storage).
Capabilities of near-data processing compute units: Seminal works on near-
data processing already prove the suitability of computation offloading for bandwidth-
bound operations, where offloading an operation would lead to a significant reduction
in data volume to be transferred. Nevertheless, new hardware devices (e.g., FPGAs,
low-energy CPUs, ASICs) for near-data processing with drastically different performance
characteristics will have to be evaluated for relevant data-intensive use cases. Besides
purely non-functional requirements, also limitations that stem from the programming
model have to be taken into account (e.g., p4 and eBPF pose certain restrictions on the
types of operations that can be offloaded).
Offloading granularity: It is an open question, at which granularity offloading tasks
should be pushed into near-data processing compute units (e.g., sub-operator [6], operator,
pipeline, query, or entire DBMS or data system).
Scheduling and Offload placement: Given complex and deep I/O hierarchies with
potentially multiple offloading opportunities, offload scheduling and placement become
challenging research problems. Imagine a complex three-tier storage hierarchy with
programmable SSDs & HDDs and as cold data archive a cloud-based storage service with
UDF-like operator offloading. An interesting aspect is the (potentially negative) impact
of near-data processing on the usefulness of caches and buffer managers.
Security & Performance isolation: Near-data processing compute units are usually
less powerful than full-fledged server CPUs (in particular for low-energy processors in
storage devices). Since such resources will be shared by potentially many applications,
performance isolation is of utmost importance. Further, unauthorized data access outside
of the own local execution context must be prevented (imagine the potential danger of
ransomware attacks that could be enabled through computation offloading into storage
devices).
Cost models: Cost models can provide a means to steer the scheduling and offloading
placement depending on a generic cost metric, which allows pushing the operation to be
offloaded to the optimal near-data processing compute unit. Developing such cost models
is an open research problem.
Dealing with heterogeneous hardware and execution environments: Data
systems (e.g., DBMSs) run in different execution environments (e.g. on-premise or in
the cloud), which determines also the opportunities for detecting offloading capabilities
in a potentially complex system landscape. In a cloud setting, the entire storage stack
(and therefore explicit control over offloading decisions) might be hidden behind an
abstract service API. Generic offloading mechanisms and programming models have to
be developed in order to allow data systems to leverage potentially diverse near-data
processing opportunities in different execution environments.

References
1 Sapio, Amedeo and Abdelaziz, Ibrahim and Aldilaijan, Abdulla and Canini, Marco and

Kalnis, Panos. In-Network Computation is a Dumb Idea Whose Time Has Come. Proceedings
of the 16th ACM Workshop on Hot Topics in Networks, 2017

21283

50 21283 – Data Structures for Modern Memory and Storage Hierarchies

2 Jong Hyeok Park and Soyee Choi and Gihwan Oh and Sang Won Lee. SaS: SSD as SQL
Database System, Proc. VLDB Endow., 2021

3 Marcus Paradies. CryoDrill: Near-Data Processing in Deep and Cold Storage Hierarchies,
2019, 9th Biennial Conference on Innovative Data Systems Research, 2019.

4 Antonio Barbalace and Jaeyoung Do. Computational Storage: Where Are We Today?. 11th
Conference on Innovative Data Systems Research, 2021.

5 Gu, Boncheol and Yoon, Andre S. and Bae, Duck-Ho and Jo, Insoon and Lee, Jinyoung and
Yoon, Jonghyun and Kang, Jeong-Uk and Kwon, Moonsang and Yoon, Chanho and Cho,
Sangyeun and Jeong, Jaeheon and Chang, Duckhyun. Biscuit: A Framework for Near-Data
Processing of Big Data Workloads, ISCA, 2016.

6 Maximilian Bandle and Jana Giceva. Database Technology for the Masses: Sub-Operators
as First-Class Entities, Proc. VLDB Endow., 2021

7 Blöcher, Marcel and Ziegler, Tobias and Binnig, Carsten and Eugster, Patrick, Boosting
Scalable Data Analytics with Modern Programmable Networks, Proceedings of the 14th
International Workshop on Data Management on New Hardware. 2018

8 Onur Mutlu and Saugata Ghose and Juan Gomez-Luna and Rachata Ausavarungnirun, A
Modern Primer on Processing in Memory, CoRR, 2020

9 Juan Gomez-Luna and Izzat El Hajj and Ivan Fernandez and Christina Giannoula and
Geraldo F. Oliveira and Onur Mutlu. Benchmarking a New Paradigm: An Experimental
Analysis of a Real Processing-in-Memory Architecture, CoRR, 2021

4.6 Non-volatile Memory in Database Systems
Kai-Uwe Sattler (TU Ilmenau, DE), Alexander Baumstark (TU Ilmenau, DE), and
Muhammad Attahir Jibril (TU Ilmenau, DE)

License Creative Commons BY 4.0 International license
© Kai-Uwe Sattler, Alexander Baumstark, and Muhammad Attahir Jibril

Non-volatile memory (NVM) started as a concept aiming at combining the properties of
DRAM (low latency, byte-addressability) with those of storage (persistence, capacity, price).
The idea of NVM goes back to the sixties when bubble memory was discussed. Since then,
several memory technologies have been proposed, among them Re-RAM, STT-RAM, and
PCM – see [1, 2] for surveys. However, only Intel together with Micron have shipped NVM
products sitting in existing DRAM slots: Intel Optane DCPMM based on the 3D XPoint
technology. Among the the major advantages of its Byte-addressability over SSDs are that it

allows to use identical data structures both for persistent and transient data and, therefore,
eliminates the need to transfer data between persistent storage and memory.

For this purpose, NVM permits direct access (in terms of cache lines) to data via standard
CPU instructions such as STORE and LOAD.

Intel Optane DCPMM supports two operating modes: the memory mode as a large, but
volatile memory pool where DRAM can act as a cache layer on top of NVM, and the app
direct mode where NVM is used as persistent memory. Operating systems like Linux and
Windows on the most recent Intel platforms integrate Optane DCPMM via Direct Access
(DAX) interface, i.e., persistent memory is memory-mapped into the address space and, thus,
allows to load/store from/to memory directly.

Special cache line flushing instructions are used to guarantee that store operations are
persistent because the path to the persistence domain, where a store to persistent memory
becomes durable, consists of volatile layers like the CPU caches. CLFLUSHOPT is an optimized

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer 51

form of CLFLUSH. CLWB (cache line write back) is similar to CLFLUSHOPT but does not evict
the cache line after flushing. These are followed by memory barrier instructions like SFENCE
to enforce ordering and ensure the cache lines reach the persistence domain.

Recently, Intel has announced and shipped the second generation 200 series with increased
bandwidth and Enhanced Asynchronous DRAM Refresh (eADR) support. eADR extends
ADR to include CPU caches in the persistence domain, alongside the persistent memory and
the memory controller’s write pending queues. This further makes NVM programming easier
and eliminates cache line flushes, thereby enhancing performance.

On top of this, additional APIs and development kits such as Intel’s PMDK1 simplify
the software development [3].

Over the last few years, researchers have analyzed and benchmarked Intel’s NVM Optane
technology. The main findings are [4, 5]:
1. Asymmetry between load and store latency.
2. Asymmetry between load and store bandwidth.
3. Sequential IO faster than random IO.
4. Access granularity based on an internal 256-byte buffer.
5. Load bandwidth scale with thread count while store bandwidth does not.
6. Higher latency and lower bandwidth compared to DRAM.

In the database context, main research fields and use cases are:
instant recovery and logging, e.g. write-behind logging [6], log-free recovery [7] and query
recovery [8, 9].
NVM-optimized data structures including hash tables [10], radix trees [11, 12] and B+-tree
variants [13].
I/O primitives [14], parallel programming models [15], efficient algorithms [16] etc.

However, NVM is not (yet) the promised game changer for several reasons:
Access latency is still higher than that of DRAM.
Despite the availability of PMDK, NVM programming is still challenging.
Finally, the still high costs per GB have hindered the wide adoption.

Overall, NVM has promising prospects as yet another tier of modern memory and storage
hierarchies, as it opens up unprecedented opportunities for database systems on future
hardware.

References
1 Margo I. Seltzer, Virendra J. Marathe, and Steve Byan. An NVM carol: Visions of NVM

past, present, and future. In 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018, pages 15–23. IEEE Computer Society, 2018.

2 Haikun Liu, Di Chen, Hai Jin, Xiaofei Liao, Binsheng He, Kan Hu, and Yu Zhang. A survey
of non-volatile main memory technologies: State-of-the-arts, practices, and future directions.
J. Comput. Sci. Technol., 36(1):4–32, 2021.

3 Steve Scargall. Programming Persistent Memory. Apress, Berkeley, CA, 2020.
4 Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Understanding the idiosyncrasies of

real persistent memory. Proc. VLDB Endow., 14(4):626–639, 2020.
5 Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,

Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven
Swanson. Basic performance measurements of the intel optane dc persistent memory module,
2019.

1 https://pmem.io

21283

https://pmem.io

52 21283 – Data Structures for Modern Memory and Storage Hierarchies

6 Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-behind logging. Proc. VLDB
Endow., 10(4):337–348, 2016.

7 Gang Liu, Leying Chen, and Shimin Chen. Zen: a high-throughput log-free OLTP engine
for non-volatile main memory. Proc. VLDB Endow., 14(5):835–848, 2021.

8 Soklong Lim, Tyler Coy, Zaixin Lu, Bin Ren, and Xuechen Zhang. Nvgraph: Enforcing
crash consistency of evolving network analytics in NVMM systems. IEEE Trans. Parallel
Distributed Syst., 31(6):1255–1269, 2020.

9 Alexander Baumstark, Philipp Götze, Muhammad Attahir Jibril, and Kai-Uwe Sattler.
Instant graph query recovery on persistent memory. In Danica Porobic and Spyros Blanas,
editors, Proceedings of the 17th International Workshop on Data Management on New
Hardware, DaMoN 2021, 21 June 2021, Virtual Event, China, pages 10:1–10:4. ACM, 2021.

10 Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen. Persistent memory
hash indexes: An experimental evaluation. Proc. VLDB Endow., 14(5):785–798, 2021.

11 Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh. WORT:
write optimal radix tree for persistent memory storage systems. In Geoff Kuenning and
Carl A. Waldspurger, editors, 15th USENIX Conference on File and Storage Technologies,
FAST 2017, Santa Clara, CA, USA, February 27 – March 2, 2017, pages 257–270. USENIX
Association, 2017.

12 Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo Kang, and
Yongwei Wu. ROART: range-query optimized persistent ART. In Marcos K. Aguilera and
Gala Yadgar, editors, 19th USENIX Conference on File and Storage Technologies, FAST
2021, February 23-25, 2021, pages 1–16. USENIX Association, 2021.

13 Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Willhalm.
Evaluating persistent memory range indexes. Proc. VLDB Endow., 13(4):574–587, 2019.

14 Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons Kemper.
Persistent memory I/O primitives. In Thomas Neumann and Ken Salem, editors, Proceedings
of the 15th International Workshop on Data Management on New Hardware, DaMoN 2019,
Amsterdam, The Netherlands, 1 July 2019, pages 12:1–12:7. ACM, 2019.

15 Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. The
parallel persistent memory model. In Christian Scheideler and Jeremy T. Fineman, editors,
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures,
SPAA 2018, Vienna, Austria, July 16-18, 2018, pages 247–258. ACM, 2018.

16 Pedro Ramalhete, Andreia Correia, and Pascal Felber. Efficient algorithms for persistent
transactional memory. In Jaejin Lee and Erez Petrank, editors, PPoPP ’21: 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, Virtual Event,
Republic of Korea, February 27- March 3, 2021, pages 1–15. ACM, 2021.

Stratos Idreos, Viktor Leis, Kai-Uwe Sattler, and Margo Seltzer 53

Participants
Gustavo Alonso

ETH Zürich, CH
Alexander Baumstark

TU Ilmenau, DE
Carsten Binnig

TU Darmstadt, DE
André Brinkmann

Universität Mainz, DE
participant Christian Dietrich
TU Hamburg-Harburg, DE

Muhammad Attahir Jibril
TU Ilmenau, DE

Alfons Kemper
TU München, DE

Viktor Leis
Universität Erlangen-Nürnberg,
DE

Alberto Lerner
University of Fribourg, CH

Ulrich Carsten Meyer
Goethe-Universität – Frankfurt
am Main, DE

Thomas Neumann
TU München, DE

Ismail Oukid
Snowflake – Berlin, DE

Marcus Paradies
German Aerospace Center –
Jena, DE

Kai-Uwe Sattler
TU Ilmenau, DE

Jens Teubner
TU Dortmund, DE

Alexander van Renen
Universität Erlangen-
Nürnberg, DE

Remote Participants
Marcos K. Aguilera

VMware – Palo Alto, US
Raja Appuswamy

EURECOM – Biot, FR
Manos Athanassoulis

Boston University, US
Alexander Böhm

SAP SE – Walldorf, DE
Peter A. Boncz

CWI – Amsterdam, NL
Mark Callaghan

Rockset – Bend, US
Khuzaima Daudjee

University of Waterloo, CA

Jana Giceva
TU München, DE

Goetz Graefe
Google – Madison, US

Gabriel Haas
Universität Erlangen-
Nürnberg, DE

Stratos Idreos
Harvard University –
Cambridge, US

Wolfgang Lehner
TU Dresden, DE

Danica Porobic
Oracle Labs –
Redwood Shores, US

Ken Salem
University of Waterloo, CA

Wolfgang Schröder-Preikschat
Universität Erlangen-
Nürnberg, DE

Margo Seltzer
University of British Columbia –
Vancouver, CA

Tianzheng Wang
Simon Fraser University –
Burnaby, CA

William Wang
ARM Ltd. – Cambridge, GB

21283

	Executive Summary Viktor Leis
	Table of Contents
	Overview of Talks
	An update on the Enzian system Gustavo Alonso
	Deep Memory and Storage Hierachies for Scalable and Efficicient DBMSs Carsten Binnig
	Reasoning about cloud-native data-structures Jana Giceva
	The data systems grammar Stratos Idreos
	A Taxonomy of Database and SSDs Co-designs Alberto Lerner
	NVM: Bubble Memory all over Again? Margo Seltzer

	Working groups
	Future databases Carsten Binnig, Gustavo Alonso, and Alberto Lerner
	Interface Challenges between Databases and Operating Systems Christian Dietrich, André Brinkmann, Viktor Leis, and Thomas Neumann
	Out-of-Memory Data Structures Viktor Leis and Thomas Neumann
	A Preview of Upcoming Cache Coherency Technologies Alberto Lerner, Gustavo Alonso, Kai-Uwe Sattler, and Jens Teubner
	Near-data processing – State-of-the-art and open problems Marcus Paradies
	Non-volatile Memory in Database Systems Kai-Uwe Sattler, Alexander Baumstark, and Muhammad Attahir Jibril

	Participants
	Remote Participants

