Report from Dagstuhl Seminar 21302
Approximate Systems

Edited by

Eva Daruloval, Babak Falsafi?, Andreas Gerstlauer3, and Phillip
Stanley-Marbell*

MPI-SWS — Kaiserslautern, DE, eva@mpi-sws.org

EPFL — Lausanne, CH, babak.falsafi@epfl.ch

University of Texas at Austin, US, gerstl@ece.utexas.edu
University of Cambridge, GB, phillip.stanleymarbell@gmail.com

W N =

—— Abstract

This report summarizes the presentations and discussion sessions at the Dagstuhl Seminar 21302
“Approximate Systems” that took place during July 25 — 30, 2021. Due to COVID, the seminar
was held in a hybrid fashion, with around 1/3 of the attendees on-site and the remaining ones
online. The seminar discussed advances and open challenges in applying approximate computing
techniques across the stack and across different application domains, and we hope that this report
can provide a useful resource also for other researchers.

Seminar July 25-30, 2021 — http://www.dagstuhl.de/21302

2012 ACM Subject Classification Hardware — Analysis and design of emerging devices and
systems; Computer systems organization — Architectures; Computer systems organization —
Embedded and cyber-physical systems; Software and its engineering — Software notations
and tools

Keywords and phrases approximate computing, energy-efficient computing, pareto optimization

Digital Object Identifier 10.4230/DagRep.11.6.147

1 Executive Summary

FEva Darulova

Babak Falsafi

Andreas Gerstlauer
Phillip Stanley-Marbell

License) Creative Commons BY 4.0 International license
© Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell

Resource efficiency is becoming an increasingly important challenge, especially due to
the pervasiveness of computing systems and the diminishing returns from performance
improvements of process technology scaling. At the same time, many important applications
have nondeterministic specifications or are robust to noise in their execution. They thus do
not necessarily require fully reliable computing systems and their resource consumption can
be reduced by introducing or exposing approximations.

While trading correctness for efficiency has been part of computing systems since the
early days, it has seen renewed interest in the past decade. Different techniques have been
since developed for applying and controlling approximations and the errors they introduce
at different levels of the compute stack. Unfortunately, most of these techniques have been

Except where otherwise noted, content of this report is licensed
BY under a Creative Commons BY 4.0 International license

Approximate Systems, Dagstuhl Reports, Vol. 11, Issue 06, pp. 147-163
Editors: Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell

\\v pagstunL Dagstuhl Reports
ReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/21302
https://doi.org/10.4230/DagRep.11.6.147
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

148

21302 — Approximate Systems

applied in isolation, making simplified assumptions about the other levels. It is thus unclear
how all the different techniques interact, combine and complement or negate each other to
provide end-to-end application benefits.

The aim of this seminar was to bring together researchers from different domains working
on approximate computing, algorithms, programming languages, compilers, architecture
and circuits, in order to explore open challenges and opportunities and to define cross-area
research directions and collaborations relating to an end-to-end application of approximate
computing principles across the compute stack.

The seminar consisted of brief presentations by a subset of the participants that covered
the entire computing stack from hardware to applications, and that focused on the current
challenges. The talks were followed by discussions in breakout groups that first focused
on the different application areas of high-performance computing, embedded systems and
deep learning, followed by group discussions on particular fundamental and cross-cutting
challenges that were identified during the first breakout session. This report includes the
abstracts of the participant’s presentations as well as summaries of the breakout group
discussions.

Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell

2 Table of Contents

Executive Summary
Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell . . .

Overview of Talks

Approximate Computing to Fight Temperature Effects in NPUs
Hussam Amrouch e

On the Curse and the Beauty of Randomness for Guaranteeing Reliable Quality
with Unreliable Silicon

Andreas Burg e

Self-Adaptive FPGA-Based Image Processing Using Approximate Arithmetics
Jirgen Teich e

Opportunities and Challenges for Approximation in DNA storage
Djordje Jevdjico

Calyx: Your DSL-to-Hardware Compiler Construction Kit
Adrian Sampson

System-aware Distributed Machine Learning
Gauri Joshi e

Approximate Al on the Edge
David Atienza Alomso e

Numerical Encoding for DNN Training
Babak Falsafi e

Approximating Numerical Kernels and Beyond
Eva Darulova e e e

Context-Aware Coding for Computer Memories
Lara Dolecek e

An Optimization Playground for Precision and Number Representation Tuning
Olivier Sentieys o o 0 i i e

A Review and Characterization of Approximate Arithmetic Circuits for Approximate
Computing
Jie Hano e

How do Approximations Impact Analysis, Compiling, and Testing
Sasa Misailovico e e

An Adaptive Application Framework with Customizable Quality Metrics
Ulrich Kremer 0 0 i e e

How to Reduce Numerical Precision in Weather and Climate Simulations
Peter Dueben e e e e e e

Some Mathematical Challenges in Inexact Computing
Laura Monroe L e

147

149

21302

150

21302 — Approximate Systems

Working groups

Approximate Computing Challenges for HPC Applications

FEva Darulova o e e 158

Approximate Computing Challenges for Embedded Systems

Phillip Stanley-Marbell 158

Approximate Computing Challenges for Deep Learning

Babak Falsafi 159

Design Patterns for Approximation Across the Stack

Damien Zufferey e 159

Intermediate Representations and Tool Flows for Approximate Computing

Andreas Gerstlaver L 160

Differentiation of Error Models

Andreas Burgo e e e e e 161

Challenges for Approximate Hardware

Georgios Zervakis L e e e 162
Participantso 163

Remote Participants 163

Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell 151

3 Overview of Talks

3.1 Approximate Computing to Fight Temperature Effects in NPUs
Hussam Amrouch (Universitit Stuttgart, DE)

License @ Creative Commons BY 4.0 International license
© Hussam Amrouch
Main reference Hussam Amrouch, Georgios Zervakis, Sami Salamin, Hammam Kattan, Iraklis Anagnostopoulos,
Jorg Henkel: “NPU Thermal Management”, IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., Vol. 39(11), pp. 3842-3855, 2020.
URL https://doi.org/10.1109/TCAD.2020.3012753

Neural processing units (NPUs) are becoming an integral part in all modern computing
systems due to their substantial role in accelerating neural networks. In this talk, I will
discuss the thermal challenges that NPUs bring, demonstrating how multiply-accumulate
(MAC) arrays, which form the heart of any NPU, impose serious thermal bottlenecks to
any on-chip systems due to their excessive power densities. Some of the questions that
we will discuss are 1) the effectiveness of precision scaling and frequency scaling (FS) in
temperature reductions for NPUs and 2) how advanced on-chip cooling using superlattice
thin-film thermoelectric (TE) open doors for new tradeoffs between temperature, throughput,
cooling cost, and inference accuracy in NPU chips.

3.2 On the Curse and the Beauty of Randomness for Guaranteeing
Reliable Quality with Unreliable Silicon

Andreas Burg (EPFL — Lausanne, CH)

License) Creative Commons BY 4.0 International license
© Andreas Burg
Joint work of Andreas Burg, Reza Ghanaatian
Main reference Reza Ghanaatian, Marco Widmer, Andreas Burg: “Design for Test with Unreliable Memories by
Restoring the Beauty of Randomness”, IEEE Design Test, pp. 1-1, 2021.
URL https://doi.org/10.1109/MDAT.2021.3081687

Process variations lead to reliability issues in advanced process nodes. Unfortunately, the
associated reliability issues lead to a huge quality spread between manufactured ASICs even
for the most fault tolerant applications. This quality spread has burdened “approximate
computing” since today’s production-test strategies fail to separate dies with sufficient
quality from dies with insufficient quality. We analyse this issue, which is ignored in many
publications that only report an average quality metric, and provide a surprising and counter-
intuitive solution to the testability issue. The key idea is thereby to restore an environment
in which frozen (e.g., stuck-at) faults in the hardware no longer have a deterministic effect on
computation results. This measure leads to an ergodic fault model that restores the beauty
of randomness in a sense that it enables meaningful stochastic quality metrics and allows for
simple error mitigation strategies such as averaging which are invalid without randomization.

21302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TCAD.2020.3012753
https://doi.org/10.1109/TCAD.2020.3012753
https://doi.org/10.1109/TCAD.2020.3012753
https://doi.org/10.1109/TCAD.2020.3012753
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MDAT.2021.3081687
https://doi.org/10.1109/MDAT.2021.3081687
https://doi.org/10.1109/MDAT.2021.3081687

152

21302 — Approximate Systems

3.3 Self-Adaptive FPGA-Based Image Processing Using Approximate
Arithmetics

Jirgen Teich (Universitit Erlangen-Niirnberg, DE)

License @ Creative Commons BY 4.0 International license
© Jurgen Teich
Joint work of Jutta Pirkl, Andreas Becher, Jorge Echavarria, Jirgen Teich, Stefan Wildermann

Main reference Jutta Pirkl, Andreas Becher, Jorge Echavarria, Jiirgen Teich, Stefan Wildermann: “Self-Adaptive
FPGA-Based Image Processing Filters Using Approximate Arithmetics”, in Proc. of the 20th
International Workshop on Software and Compilers for Embedded Systems, SCOPES 2017, Sankt
Goar, Germany, June 12-13, 2017, pp. 89-92, ACM, 2017.

URL https://doi.org/10.1145/3078659.3078669

In this talk, we propose a concept of self-adaptive image processing that is able to autonom-
ously adapt 2D-convolution filter operators of different accuracy degrees by means of partial
reconfiguration on Field-Programmable-Gate-Arrays (FPGAs). Experimental evaluation
shows that the dynamic system is able to better exploit a given error tolerance than any static
approximation technique due to its responsiveness to changes in input data. Additionally, it
provides a user control knob to select the desired output quality via the metric threshold at
runtime.

3.4 Opportunities and Challenges for Approximation in DNA storage
Djordje Jevdjic (National University of Singapore, SG)

License @ Creative Commons BY 4.0 International license
© Djordje Jevdjic

DNA has emerged as a chemical medium for both data storage and computation, offering
a number of important and unique advantages and promising to close the widening gap
between the demand and supply for data storage. However, due to the high error rates and
the complex nature of errors in DNA significant amounts of redundant resources must be
invested to allow for full recovery of binary data from DNA molecules. The stochastic nature
of the chemical processes involved and the approximate nature of data recovery algorithms
presents a number of opportunities for approximations across this unique stack. This talk
will cover opportunities and challenges in building an error-efficient DNA-based data storage
system.

3.5 Calyx: Your DSL-to-Hardware Compiler Construction Kit

Adrian Sampson (Cornell University — Ithaca, US)

License) Creative Commons BY 4.0 International license
© Adrian Sampson
Main reference Rachit Nigam, Samuel Thomas, Zhijing Li, Adrian Sampson: “A compiler infrastructure for
accelerator generators”, in Proc. of the ASPLOS ’21: 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021, pp. 804817, ACM, 2021.
URL https://doi.org/10.1145/3445814.3446712

Calyx is an open-source infrastructure for building DSL-to-hardware compilers. It’s centered
around a new representation for programs that blends structure (hardware-like components
and their connections) and control (temporal ordering). The infrastructure enables optimiza-
tion and lowering passes that translate high-level DSL semantics into RTL implementations.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3078659.3078669
https://doi.org/10.1145/3078659.3078669
https://doi.org/10.1145/3078659.3078669
https://doi.org/10.1145/3078659.3078669
https://doi.org/10.1145/3078659.3078669
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1145/3445814.3446712

Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell 153

3.6 System-aware Distributed Machine Learning
Gauri Joshi (Carnegie Mellon University — Pittsburgh, US)

License @ Creative Commons BY 4.0 International license
© Gauri Joshi

Large-scale machine learning training, in particular, distributed stochastic gradient descent
(SGD), needs to be robust to inherent system variabilities such as unpredictable computation
and communication delays. These scalability hurdles are amplified in the emerging framework
of federated learning where machine learning models are training on resource-limited edge
devices. In this talk, I will discuss open problems in distributed and federated learning.

3.7 Approximate Al on the Edge
David Atienza Alonso (EPFL — Lausanne, CH)

License @@ Creative Commons BY 4.0 International license
© David Atienza Alonso

Wearable devices are poised as the next frontier of innovation in the context of Internet-of-
Things (IoT) that can benefit from approximate computing to be able to provide personalized
healthcare at minimum energy, which can improve our lives and transform the medical
industry. This new family of smart wearable medical devices provides a great opportunity
for the integration of the nex-generation of artificial intelligence (AI) based technologies in
combination with approximate computing in medical devices. However, major key challenges
remain in achieving this potential due to the inherent resource-constrained nature of wearable
systems, coupled with the uncertainty of the output of the final system when approximation
is used at different levels of the system design. In this talk, the current approaches to deliver
approximate computing in edge Al to create the next-generation of heterogeneous smart
wearables architectures are discussed. The critical architectural enabler is the combination
of multiple processors, with a coarse-grained reconfigurable Al accelerator and in-memory
computing) as a scalable way to fully deliver the concept of personalized medicine at minimal
power. Then, the key challenges to propose an iterative design and optimization flow to bring
AT (particularly convolutional neural networks — CNNs) to resource-constrained embedded
platforms through selectively applying approximation at different levels will be presented.

3.8 Numerical Encoding for DNN Training
Babak Falsafi (EPFL — Lausanne, CH)

License @@ Creative Commons BY 4.0 International license

© Babak Falsafi

Main reference Mario Drumond, Tao Lin, Martin Jaggi, Babak Falsafi: “Training DNNs with Hybrid Block Floating
Point”, in Proc. of the Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 451-461, 2018.

URL https://proceedings.neurips.cc/paper/2018 /hash/6a9aeddfc689c1d0e3b9ccc3ab651bes-

Abstract.html

The wide adoption of DNNs has given birth to unrelenting computing requirements, forcing
datacenter operators to adopt domain-specific accelerators to train them. These accelerators
typically employ densely packed full-precision floating-point arithmetic to maximize perform-
ance per area. Ongoing research efforts seek to further increase that performance density by

21302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://proceedings.neurips.cc/paper/2018/hash/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html

154

21302 — Approximate Systems

replacing floating-point with fixed- point arithmetic. However, a significant roadblock for
these attempts has been fixed point’s narrow dynamic range, which is insufficient for DNN
training convergence. We identify block floating point (BFP) as a promising alternative
representation since it exhibits wide dynamic range and enables the majority of DNN opera-
tions to be performed with fixed-point logic. Unfortunately, BFP alone introduces several
limitations that preclude its direct applicability. In this work, we introduce HBFP, a hybrid
BFP-FP approach, which performs all dot products in BFP and other operations in floating
point. HBFP delivers the best of both worlds: the high accuracy of floating point at the
superior hardware density of fixed point. For a wide variety of models, we show that HBFP
matches floating point’s accuracy while enabling hardware implementations that deliver up
to 8.5x higher throughput.

3.9 Approximating Numerical Kernels and Beyond
Eva Darulova (MPI-SWS — Kaiserslautern, DE)

License) Creative Commons BY 4.0 International license
© Eva Darulova
Joint work of Anastasia Volkova, Anastasiia Izycheva, Helmut Seidl, Heiko Becker, Magnus Myreen, Zachary
Tatlock, Debasmita Lohar, Sylvie Putot, Eric Goubault

Computing resources are fundamentally limited and sometimes an exact solution may not
even exist. Thus, when implementing real-world systems, approximations are inevitable, as
are the errors they introduce. The magnitude of errors is problem-dependent but higher
accuracy generally comes at a cost in terms of memory, energy or runtime, effectively creating
an accuracy-efficiency tradeoff. To take advantage of this tradeoff, we need to ensure that
the computed results are sufficiently accurate, otherwise we risk disastrously incorrect results
or system failures. Unfortunately, the current way of programming with approximations is
mostly manual, and consequently costly, error prone and often produces suboptimal results. I
will show how we can already approximate straight-line numerical kernels fully automatically,
while guaranteeing a user-provided error bound, and discuss our work towards supporting
programs beyond kernels that feature conditional statements and loops. Finally, I will sketch
what the outstanding challenges are.

3.10 Context-Aware Coding for Computer Memories
Lara Dolecek (University of California at Los Angeles, US)

License) Creative Commons BY 4.0 International license
© Lara Dolecek
Joint work of Lara Dolecek, Clayton Schoeny, Mark Gottscho, Puneet Gupta

Error-control coding (ECC) is routinely used to overcome errors in computer memories. In
this talk, we demonstrate how intrinsic system knowledge can be used to offer error recovery
beyond the baseline ECC guarantees. This system knowledge is used as context for error
recovery, and comes in a variety of ways, including data type, instruction structure, and
frequency of instructions, among others. We present a heuristic error recovery approach
for a known ECC method and a new code design strategy that can take advantage of the
underlying system properties. The proposed approach can have benefits in a variety of
applications that have intrinsic structure or redundancy, and we envision this idea to be
applicable beyond computer memories.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell 155

3.11 An Optimization Playground for Precision and Number
Representation Tuning

Olivier Sentieys (University & INRIA — Rennes, FR)

License @@ Creative Commons BY 4.0 International license
© Olivier Sentieys
Joint work of Van-Phu Ha, Tomofumi Yuki, Daniel Ménard, Olivier Sentieys
Main reference Van-Phu Ha, Olivier Sentieys: “Leveraging Bayesian Optimization to Speed Up Automatic Precision
Tuning”, in Proc. of the Design, Automation & Test in Europe Conference & Exhibition, DATE
2021, Grenoble, France, February 1-5, 2021, pp. 1542-1547, IEEE, 2021.
URL https://doi.org/10.23919/DATE51398.2021.9474209

Energy, delay, and area vary a lot between number representations (e.g., float, fixed-point)
and word-length (i.e., bit-width of data and computation). Automatic precision tuning is
an optimization process that determines the number of bits for each data, minimizing a
cost/energy function, constrained by (application) quality degradation (e.g., noise power,
SSIM, abs. error). This talk first presents some of the latest results in this field before to
move to the problem of jointly exploring number representation during optimization. Results
include the development of a custom float operator library and their use in applications such
as the training process of deep neural networks with ultra-low precision. This talk concludes
with related new problems that may be of interest to build approximate systems.

3.12 A Review and Characterization of Approximate Arithmetic Circuits
for Approximate Computing

Jie Han (University of Alberta — Edmonton, CA)

License @@ Creative Commons BY 4.0 International license
© Jie Han
Joint work of Honglan Jiang, Francisco J. H. Santiago, Hai Mo, Leibo Liu, Fabrizio Lombardi, Jie Han
Main reference Honglan Jiang, Francisco Javier Hernandez Santiago, Hai Mo, Leibo Liu, Jie Han: “Approximate
Arithmetic Circuits: A Survey, Characterization, and Recent Applications”, Proc. IEEE,
Vol. 108(12), pp. 2108-2135, 2020.
URL https://doi.org/10.1109/JPROC.2020.3006451
Main reference Honglan Jiang, Cong Liu, Leibo Liu, Fabrizio Lombardi, Jie Han: “A Review, Classification, and
Comparative Evaluation of Approximate Arithmetic Circuits”, ACM J. Emerg. Technol. Comput.
Syst., Vol. 13(4), pp. 60:1-60:34, 2017.
URL https://doi.org/10.1145/3094124

Approximate computing is emerging as a new paradigm for high-performance and energy-
efficient design of circuits and systems. This talk aims to provide a brief review and
characterization of recently proposed approximate arithmetic circuits under different design
constraints. Specifically, approximate adders, multipliers and dividers are characterized via
synthesis under optimizations for performance and area, respectively. The error and circuit
characteristics are then generalized for different classes of designs. The applications of these
circuits in image processing and deep neural networks indicate that such computations are
more sensitive to errors in addition than those in multiplication, so a larger approximation
can be tolerated in multipliers than in adders. The use of approximate arithmetic circuits
can improve the quality of image processing and deep learning in addition to the benefits in
performance and power consumption for these applications.

21302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.23919/DATE51398.2021.9474209
https://doi.org/10.23919/DATE51398.2021.9474209
https://doi.org/10.23919/DATE51398.2021.9474209
https://doi.org/10.23919/DATE51398.2021.9474209
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/JPROC.2020.3006451
https://doi.org/10.1109/JPROC.2020.3006451
https://doi.org/10.1109/JPROC.2020.3006451
https://doi.org/10.1109/JPROC.2020.3006451
https://doi.org/10.1145/3094124
https://doi.org/10.1145/3094124
https://doi.org/10.1145/3094124
https://doi.org/10.1145/3094124

156

21302 — Approximate Systems

3.13 How do Approximations Impact Analysis, Compiling, and Testing
Sasa Misailovic (University of Illinois — Urbana-Champaign, US)

License @ Creative Commons BY 4.0 International license
© Sasa Misailovic

Tradeoffs between accuracy, performance and energy exist in many resource-intensive applic-
ations pervasive in machine learning and robotics. Manually optimizing these tradeoffs with
flexible accuracy or precision requirements is extremely difficult. I will highlight our work on
programming systems (including languages, compilers, and runtime systems) for accuracy
aware optimization of programs.

I will discuss several challenges and lessons learned on how to 1) cope with randomness
when testing systems, 2) conquer approximation in heterogeneous systems by novel compilers,
and 3) support concurrent and distributed computations in program analysis. I will conclude
with a discussion about how we can make future approximation-aware systems more usable.

3.14 An Adaptive Application Framework with Customizable Quality
Metrics

Ulrich Kremer (Rutgers University — Piscataway, US)

License) Creative Commons BY 4.0 International license
© Ulrich Kremer
Joint work of Ulrich Kremer, Liu Liu, Sibren Isaacman
Main reference L. Liu, S. Isaacman, and U.Kremer: An Adaptive Application Framework with Customizable Quality
Metrics. ACM Transactions on Design Automation of Electronic Systems (TODAES), Special Issue
on Approximate Systems, October 2021, to be pulished.
URL https://doi.org/10.1145/3477428

Many embedded environments require applications to produce outcomes under different,
potentially changing, resource constraints. Relaxing application semantics through approx-
imations enables trading off resource usage for outcome quality. Although quality is a highly
subjective notion, previous work assumes given, fixed low-level quality metrics that often lack
a strong correlation to a user’s higher-level quality experience. Users may also change their
minds with respect to their quality expectations depending on the resource budgets they
are willing to dedicate to an execution. This motivates the need for an adaptive application
framework where users provide execution budgets and a customized quality notion. The paper
presents a novel adaptive program graph representation that enables user-level, customizable
quality based on basic quality aspects defined by application developers. Developers also
define application configuration spaces, with possible customization to eliminate undesirable
configurations. At runtime, the graph enables the dynamic selection of the configuration
with maximal customized quality within the user provided resource budget.

An adaptive application framework based on our novel graph representation has been
implemented on Android and Linux platforms, and evaluated on eight benchmark programs,
four with fully customizable quality. Using custom quality instead of the default quality,
users may improve their subjective quality experience value by up to 3.59x, with 1.76x on
average under different resource constraints. Developers are able to exploit their application
structure knowledge to define configuration spaces that are on average 68.7compared to
existing, structure oblivious approaches. The overhead of dynamic reconfiguration averages
less than 1.84% of the overall application execution time.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3477428
https://doi.org/10.1145/3477428
https://doi.org/10.1145/3477428
https://doi.org/10.1145/3477428

Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell 157

3.15 How to Reduce Numerical Precision in Weather and Climate
Simulations

Peter Dueben (ECMWEF — Reading, GB)

License @@ Creative Commons BY 4.0 International license
© Peter Dueben

This talk will give an overview on ongoing efforts to explore the reduction of numerical
precision in weather and climate models. While the European Centre for Medium-Range
Weather Forecasts (ECMWF) has recently switched from double to single precision in
operational predictions, we also investigate the use of lower precision levels, such as half
precision, for our models. The precision reduction is non-trivial as it is difficult to diagnose
a precision level that is still “good enough” when simulating a chaotic system — such as
atmosphere or ocean. On the other hand, we have good knowledge about forecast uncertainties
which can be used to optimise precision within the simulations.

3.16 Some Mathematical Challenges in Inexact Computing
Laura Monroe (Los Alamos National Laboratory, US)

License @@ Creative Commons BY 4.0 International license
© Laura Monroe

This talk is an overview of the relationship between mathematics and inexact systems, with
an emphasis on errors and error-correction. In particular, we emphasize hardware/software
codesign and the interplay between mathematics, the base physics of the system, and the
algorithms and software that brings them together.

Challenges up and down the stack are discussed, and several examples are given, including
software-defined error correction (Gottscho et al.); the interplay between Hamming and
application-based distances, with applications ranging from computational fluid dynamics to
basic integer calculations; and natural application resilience. The fault model is discussed,
with its derivation from the physical device and modes of addressing device-dependent faults.

Finally, we propose development of a catalog of design patterns, inspired by those in the
object-oriented design community [1] and the resilience community [2], as a tool describing
solutions to problems commonly seen in inexact systems and software and representing best
practices used by experienced practitioners in the field.

References

1 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Boston, Mass. : Addison-Wesley, 2016

2 Saurabh Hukerikar and Christian Engelmann. Resilience Design Patterns: A Structured Ap-
proach to Resilience at Extreme Scale. Journal of Supercomputing Frontiers and Innovations
(JSFI), volume 4, number 3, pages 4-42; October 1, 2017

21302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

158

21302 — Approximate Systems

4 Working groups

4.1 Approximate Computing Challenges for HPC Applications
Eva Darulova (MPI-SWS — Kaiserslautern, DE)

License) Creative Commons BY 4.0 International license
© Eva Darulova

High-performance computing, such as used for example in weather simulations, has tradi-
tionally not actively applied (additional) approximations beyond those necessary by the
domain. Computations were done with 64 bit floating-point arithmetic and assumed to be
correct enough; hardware is supposed to be correct, too. The picture is starting to change
as hardware is not becoming automatically faster and more efficient if one just waits, and
is also becoming more heterogeneous. Hence, in principle, approximate computing is of
interest to the HPC community. One particular case of existing deliberate approximations
are recent efforts to move computations from 64 bit floats to lower precisions. These efforts
are motivated by available low-precision hardware for machine learning. The conversion is
currently done manually and takes a very long time. Hence, tool support in form of debugging
tools would be much appreciated. Static analysis tools or fully automated tools are likely to
not be very meaningful, since an exact baseline is often not available, i.e. the approximated
code needs to match the existing implementation’s behavior. The community seems to be
slowly moving away from Fortran to Python or DSLs, making it more feasible to develop
debugging tools. In addition to finite-precision, we have identified further approximations at
different levels of the stack that may be beneficial to HPC. One are techniques from federated
machine learning that may be helpful for the often massively parallel HPCs applications (e.g.
a weather simulation may discretize the earth and distribute the simulation for each part on
1000 nodes). Further, error correction techniques may be of interest as the probability of
random bitflips increases, one hand hand due to the sheer size of the computations, and on
the other hand due to the use of approximate hardware. Accelerators have the potential to
provide speed-ups important to HPC, today mostly GPUs are used. FPGAs have been used
to run only small models, as programming them is manual and painful. In summary, there
seems to be potential to apply approximations in HPC across the stack. In order to develop
the corresponding techniques and tools, representative benchmarks or example codes are
needed.

4.2 Approximate Computing Challenges for Embedded Systems
Phillip Stanley-Marbell (University of Cambridge, GB)

License) Creative Commons BY 4.0 International license
© Phillip Stanley-Marbell

The discussion in the embedded systems theme centered on the idea that in embedded
computing systems, which by definition interface with the physical world, it is essential to
know when the result of an approximation technique has led to an erroneous data value or
erroneous control flow behavior. One way in which erroneous behavior could be detected is
by checking for violation of some invariant property, either on a single value of machine state
or across multiple items of program state (e.g., an invariant across entries in a matrix). A
general concept discussed was the idea of exploiting the fact that the signals in embedded
systems are usually physical signals which need to obey the laws of physics.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell

The discussions observed that erroneous behavior of interest will typically be input-
dependent, since erroneous behaviors that are not input-dependent could in principle be
found by static analysis techniques. Dynamic detection of erroneous behavior resulting from
approximation is, at the moment, not a well-explored topic and could be fertile ground for
future research.

Once erroneous behavior is detected, there is the natural question of how to make this
detected state available to a system to act upon it. Erroneous behavior could be detected
inside, e.g., a microprocessor or compute accelerator, in which case one natural way to notify
the system of the detection is by raising an interrupt. In hardware systems in general, the
detection could be used to set a hardware signal, while in software systems an exception
could be raised (to be handled by an appropriate exception handler).

Finally, when erroneous behavior has been detected and the system notified, it will still
be a challenge to develop new methods to adapt to the result of erroneous behavior resulting
from approximation. This was again identified in the embedded theme as a fertile ground for
future research.

4.3 Approximate Computing Challenges for Deep Learning
Babak Falsafi (EPFL — Lausanne, CH)

License @@ Creative Commons BY 4.0 International license
© Babak Falsafi

Machine learning has emerged as a killer application with wide applicability across a number
of domains. There are two trends that are at inflection point in ML: (1) the imminent end
of Moore’s Law and the need for post-Moore platforms, and (2) the continued exponential
growth in ML at 20% per year (as forecasted by a number of think-tanks including IDC)
and the need for scaling platforms. There are a number of fundamental challenges in ML
platform design. One is the lack explainability and ad hoc methods to improve algorithms.
Another is the divergence in platforms between inference and training. A third fundamental
challenge is search for models that would allow for iso-accuracy in prediction while reducing
the required computational resources. Fortunately, ML inherently lends itself well to cross-
layer optimization in platforms and co-design. One great area to explore is convergence of
inference/training through common numerical encodings that would enable algorithm /hard-
ware co-design. Explainability of optimal numerical encoding would require hand-in-hand
collaboration of computer system designers and numerical analysts. Another area would
be hardware mechanisms that would facilitate parameter and model search. A third area
of research would be how the choice of ML application would impact algorithm/hardware
co-design.

4.4 Design Patterns for Approximation Across the Stack
Damien Zufferey (MPI-SWS - Kaiserslautern, DE)

License @ Creative Commons BY 4.0 International license
© Damien Zufferey

Specific approximation techniques, e.g., numerical precision, can be applied on their own.
However, to get more benefit one can apply approximation consistently across the entire
software and hardware stack. Optimization can span the computation, communication,

159

21302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

160

21302 — Approximate Systems

memory, storage, and time. Cyber-physical systems is an application domain that can benefit
from approximations that touches all theses domains. For instance, reduced precision and
perforation can reduce the energy needed by a control loop but the trade-off is affecting
the system’s stability. Sensors are an ideal place to integrate very fast and efficient analog
processing. In the case of distributed control, reducing the amount and frequency of commu-
nication is what reducing numerical precision and control loop frequency to local controllers.
Optimizations across the stack are challenging to evaluate and tune especially when the
ground truth is not know, e.g., SLAM. To help programmers integrate approximations
into their system, we propose to write a book gathering design patterns for approximate
computing. The book will contain guidelines about when to use approximation, how to use
it, what the caveats are. Beyond performances, the book will also discuss the impact of
approximation on aspects such as robustness and security.

4.5 Intermediate Representations and Tool Flows for Approximate
Computing

Andreas Gerstlaver (University of Texas at Austin, US)

License) Creative Commons BY 4.0 International license
© Andreas Gerstlauer

With a large number of design knobs when applying approximations across the compute stack,
approximation-aware design automation solutions and design tools will be indispensable
in navigating associated design spaces. This will require combining approximations across
multiple abstraction levels into integrated cross-layer tool flows. Many approximation
techniques at higher levels of abstraction are inherently application-specific. Furthermore,
tool flows that are generic to span across application areas have proven to be too complex
and infeasible to develop. Instead, domain-specific tool flows have been successfully applied
in many key application areas, such as TensorFlow- or PyTorch-based flows in machine
learning. Such flows are built around domain-specific languages (DSLs) and domain-specific
intermediate representation (IRs), which often take the form of more functional-oriented
programming models. On top of such high-level domains-specific IRs, various source-level
optimizations, including domain-specific approximations such as neural network pruning are
then applied. Domain-specific approximations will also need to account for the inherent
dependency of approximations on application-specific inputs and input distributions. At the
same time, there are a range of implementation-dependent approximation techniques, such
precision scaling or code transformations that are target-specific but general across domains.
It is desirable to implement such target-aware optimizations in a common implementation
back-end that can be shared across different domain-specific tool flows. We envision tool
flows that combine various domain-specific front-end IRs feeding into a common back-end IR
for compilation, synthesis and implementation on different software and hardware targets
(Figure 1). Such back-end IRs will likely take a more target-specific imperative form. They
will need to support back-end approximations using appropriate domain-specific quality
models coming from the top as well as target-specific cost models coming from the bottom.
Various compiler and high-level synthesis IRs exist, but they are predominantly based on
sequential software models that are a poor fit for custom hardware targets and associated

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell

Input Distributions

Functional? ‘7 ‘7 ‘7 Proving

Quality Models

Imperative o > Precision/Code Transformations

\ HW ‘ Cost Models
D D]

Bitstream

SNR?

Figure 1 Approximation-aware cross-layer tool flows.

hardware approximations. Some efforts, such as the Calyx or HPVM projects at Cornell
and UIUC are underway to develop new hardware- and approximation-aware IRs. However,
complete cross-layer tool flows that combine domain-specific front-end with target-specific
back-end approximations are still lacking and require further research.

4.6 Differentiation of Error Models
Andreas Burg (EPFL — Lausanne, CH)

License @@ Creative Commons BY 4.0 International license
© Andreas Burg

The working group discussed the need for a careful and rigorous differentiation between
different types of errors that are considered under the approximate computing paradigm. In
fact, erroneous or approximate behaviour of a circuit or implementation can originate from
different causes or origins at different stages of the life-cycle of a design (from the design
stage, to the manufacturing, to the operation in the field). Such different origins require
fundamentally different error models that must not be confused neither when assessing the
modelling and impact of errors, nor or when considering suitable mitigation measures on
circuit, architecture or algorithm levels, at design time or during operation. On the one
hand, approximate computing paradigms often introduce errors intentionally at design time,
for example at the algorithm level or through approximate arithmetic components. Such
errors are deterministic in nature and perfectly known. Hence purely stochastic assessment

of their impact and forward error correction for mitigation are not immediately applicable.

However, the frequently used and technically inaccurate modelling as stochastic errors may
still be useful to provide “compact” quality metrics (avrg, variance, ...) across large random
data sets. Such deterministic errors (e.g., introduced at design time) may also be seen as
related to source coding, while coding efficiency is not necessarily measured in a reduction in
number of bits. Such a view may provide new insights, but need further consideration. On
the other hand, errors or parametric variations introduced for example during manufacturing
are not known at design time, but still deterministic after manufacturing. Hence, stochastic
modelling must be done with care since every realization of the design is ultimately different
in its (deterministic) behaviour (non-ergodic behaviour), which requires a yield analysis

161

21302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

162

21302 — Approximate Systems

and sophisticated test methodologies to identify dies with degraded quality. Finally, some
sources of error such as single-event upsets and external noise (e.g., on the power supply)
are both unknown and stochastic. Hence, assessment of their impact with deterministic
models is not feasible, but in turn stochastic models for impact analysis and error mitigation
measures such as error correction apply. Finally, joint source-channel coding ideas could
address deterministic approximations and random errors jointly, but further elaboration is
also here necessary.

In the second part of the discussion, the group discussed error models for DNA storage and
potential options for error control coding. The main issue with DNA storage is capturing the
effect of erasures and insertions which render conventional codes not immediately applicable.
Work-arounds exist in the literature, but research is still in its infancy.

4.7 Challenges for Approximate Hardware
Georgios Zervakis (KIT — Karlsruhe, DE)

License) Creative Commons BY 4.0 International license
© Georgios Zervakis

Approximate hardware design forms a very promising solution to boost the efficiency of
Domain Specific Accelerators. For example, Samsung already uses approximate multipliers
in some of its DSPs while the conventional today 8-bit fixed-point inference accelerators can
be viewed as an approximation of the traditionally used single floating-point representations.
Nevertheless, embracing approximate circuits for general purpose computing appears less
promising or not mature yet. To design approximate circuits, algorithmic approximations
seem to deliver better solutions. One of the main reasons is that they can be better
supported by the EDA tools. The major deficiency identified in the design of approximate
accelerators is to understand how errors, with respect to both inputs (sensing) or computation
(approximate units), propagate throughout the application. In addition, errors are input
dependent but existing error compensation/balance techniques are mainly based on statistics
and cannot always guarantee better accuracy. Mixed approximation or reconfigurable
approximation kernels are required along with approximation techniques that force error
cancellation throughout the different approximated computations. Moreover, approximate
circuit verification and large system simulation when using approximate accelerators still
remain open issues. Significant research has focused on arithmetic units and small accelerators.
However, the overall system performance or gains is unclear and a systematic methodology
to translate the gains and error or the approximate circuit to system gains and quality is
required. Finally, two propositions were made: i) examine approximate design for gain in
other metrics such as security and fabrication cost and ii) use analog computations for near
sensing application and combine approximation in the analog domain with approximation in
the digital domain.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell

Participants

= Hussam Amrouch
Universitdt Stuttgart, DE

= David Atienza Alonso
EPFL — Lausanne, CH

= Eric Atkinson
MIT — Cambridge, US

= Andreas Burg
EPFL — Lausanne, CH

= Eva Darulova

MPI-SWS — Kaiserslautern, DE
= Lara Dolecek

University of California at

Los Angeles, US

- Babak Falsafi

EPFL - Lausanne, CH

= Djordje Jevdjic

National University of
Singapore, SG

Remote Participants

= Sara Achour

Stanford University, US

= R.Iris Bahar

Brown University —
Providence, US

= Swarnendu Biswas

Indian Institute of Technology
Kanpur, IN

= Peter Dueben

ECMWF — Reading, GB

= Andreas Gerstlauer
University of Texas at Austin, US
= Ghayoor Gillani

University of Twente, NL

= Jie Han

University of Alberta —
Edmonton, CA

- Anastasiia Izycheva
TU Miinchen, DE

= Vijay Janapa Reddi
Harvard University —
Cambridge, US

= Gauri Joshi

Carnegie Mellon University —
Pittsburgh, US

= Ulrich Kremer
Rutgers University —
Piscataway, US

= Sasa Misailovic
University of Illinois —
Urbana-Champaign, US
= Laura Monroe

Los Alamos National
Laboratory, US

= Debasmita Lohar
MPI-SWS — Saarbriicken, DE

= Jirgen Teich
Universitiat Erlangen-
Nirnberg, DE

= Damien Zufferey
MPI-SWS — Kaiserslautern, DE

= Sri Parameswaran
UNSW - Sydney, AU

= Adrian Sampson
Cornell University — Ithaca, US

= Olivier Sentieys
University & INRIA —
Rennes, FR

= Phillip Stanley-Marbell
University of Cambridge, GB

= Radha Venkatagiri
Oregon State University, US

= Norbert Wehn
TU Kaiserslautern, DE

= Georgios Zervakis
KIT — Karlsruher Institut fiir
Technologie, DE

163

21302

	Executive Summary Eva Darulova, Babak Falsafi, Andreas Gerstlauer, and Phillip Stanley-Marbell
	Table of Contents
	Overview of Talks
	Approximate Computing to Fight Temperature Effects in NPUs Hussam Amrouch
	On the Curse and the Beauty of Randomness for Guaranteeing Reliable Quality with Unreliable Silicon Andreas Burg
	Self-Adaptive FPGA-Based Image Processing Using Approximate Arithmetics Jürgen Teich
	Opportunities and Challenges for Approximation in DNA storage Djordje Jevdjic
	Calyx: Your DSL-to-Hardware Compiler Construction Kit Adrian Sampson
	System-aware Distributed Machine Learning Gauri Joshi
	Approximate AI on the Edge David Atienza Alonso
	Numerical Encoding for DNN Training Babak Falsafi
	Approximating Numerical Kernels and Beyond Eva Darulova
	Context-Aware Coding for Computer Memories Lara Dolecek
	An Optimization Playground for Precision and Number Representation Tuning Olivier Sentieys
	A Review and Characterization of Approximate Arithmetic Circuits for Approximate Computing Jie Han
	How do Approximations Impact Analysis, Compiling, and Testing Sasa Misailovic
	An Adaptive Application Framework with Customizable Quality Metrics Ulrich Kremer
	How to Reduce Numerical Precision in Weather and Climate Simulations Peter Dueben
	Some Mathematical Challenges in Inexact Computing Laura Monroe

	Working groups
	Approximate Computing Challenges for HPC Applications Eva Darulova
	Approximate Computing Challenges for Embedded Systems Phillip Stanley-Marbell
	Approximate Computing Challenges for Deep Learning Babak Falsafi
	Design Patterns for Approximation Across the Stack Damien Zufferey
	Intermediate Representations and Tool Flows for Approximate Computing Andreas Gerstlauer
	Differentiation of Error Models Andreas Burg
	Challenges for Approximate Hardware Georgios Zervakis

	Participants
	Remote Participants

