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Abstract
Graph and network models are essential for data science applications in computer science, social
sciences, and life sciences. They help to detect patterns in data on dyadic relations between pairs
of genes, humans, or documents, and have improved our understanding of complex networks
across disciplines. While the advantages of graph models of relational data are undisputed, we
often have access to data with multiple types of higher-order relations not captured by simple
graphs. Such data arise in social systems with non-dyadic or group-based interactions, multi-
modal transportation networks with multiple connection types, or time series containing specific
sequences of nodes traversed on paths. The complex relational structure of such data questions the
validity of graph-based data mining and modelling, and jeopardises interdisciplinary applications
of network analysis and machine learning.

To address this challenge, researchers in topological data analysis, network science, machine
learning, and physics recently started to generalise network analysis to higher-order graph models
that capture more than dyadic relations. These higher-order models differ from standard network
analysis in assumptions, applications, and mathematical formalisms. As a result, the emerging
field lacks a shared terminology, common challenges, benchmark data and metrics to facilitate
fair comparisons. By bringing together researchers from different disciplines, Dagstuhl Seminar
21352 “Higher-Order Graph Models: From Theoretical Foundations to Machine Learning” aimed
at the development of a common language and a shared understanding of key challenges in the
field that foster progress in data analytics and machine learning for data with complex relational
structure. This report documents the program and the outcomes of this seminar.
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1 Executive Summary
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The network science and graph mining community has created a rich portfolio of data ana-
lysis and visualisation techniques that have become a cornerstone for knowledge extraction
from relational data on complex systems. Most of those techniques build on simple graph
abstractions, where nodes represent a system’s elements, and links represent dyadic interac-
tions, relations, or dependencies between those elements. This mathematical formalism has
proven useful for reasoning, e.g., about the centrality of nodes, the evolution and control of
dynamical processes, and the community or cluster structure in complex systems, given that
we have access to relational data [17]. However, the graph abstractions used in those methods
typically do not account for higher-order relations between nodes that are present in
many real complex systems. Important examples for such data include:

relational data that is inherently non-dyadic, such as (unordered) sets of authors co-
authoring scientific articles, protein triplets in a cell that simultaneously interact with
each other, or actors in social systems engaging in group collaborations,
time-stamped data on social networks with chronologically ordered sequences of (dyadic)
interactions, where specific sequences of nodes interact via causal paths
sequential data on networked systems, such as user click streams, mobility trajectories,
financial transaction sequences, citation paths, or directed acyclic graphs that give rise to
a chronologically or topologically ordered sequences of nodes traversed by processes
data on networked systems with multiple types or layers of links that cannot be reduced
to a simple graph model

Over the past years, researchers have shown that the presence of such higher-order
interactions can fundamentally alter our understanding of complex systems. They can
change our notion of the importance of nodes captured by centrality measures, affect the
detection of cluster and community structures in graphs, and influence dynamical processes
like diffusion or epidemic spreading, as well as associated control strategies in non-trivial
ways [24, 28, 33, 4, 5, 10, 35]. To further develop graph-based representations of data
and broaden their potential application in pattern recognition, data analysis, and machine
learning, over the past few years researchers have developed a rich portfolio of higher-order
network models and representations that capture more than just dyadic dependencies
in complex systems. The organisers of this seminar have recently summarised current
research and open challenges in this area in three independent overview and perspective
articles [1, 30, 15]. An incomplete list of approaches explored over the past few years include:

hypergraphs, where each hyperedge can connect an arbitrary number of nodes [11]
simplicial network models, where simplices represent d-dimensional group interactions
[12, 10]
d-dimensional De Bruijn graphs, where edges capture ordered sets of d dyadic interac-
tions [28, 16]
memory networks, where memory nodes capture Non-Markovian properties in time series
data [24]
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Figure 1 Illustration of standard graph model (left) and four modelling approaches capturing
different types of higher-order interactions proposed in topological data analysis, network science,
and computer science. Figure adapted from [15].

higher-, variable-, and multi-order Markov models for temporal networks [33, 20, 4]
multi-layer and multiplex networks with multiple types of links between nodes [13]
applications of categorical sequence mining techniques to model patterns in sequences of
node sets [7]

In Figure 1, we illustrate some of the higher-order graph models listed above. All
these modelling approaches address the same fundamental limitation of graph models when
studying complex systems: we cannot understand a system’s structure and dynamics
by decomposing direct and indirect interactions between elements into a set of
dyadic relations with a single type. However, the similarities and differences between
these different approaches are still not fully understood.

At a critical time for the community, this Dagstuhl seminar intended to improve our
understanding of the strengths, weaknesses, commonalities, and differences of these different
approaches along with their resulting computational and epistemological challenges. The
seminar aimed to create a common foundation for developing graph mining and machine
learning techniques that use recent advances in the study of higher-order graph models by
gathering key researchers from different communities, including machine learning, information
retrieval and data mining, complex systems theory, theoretical physics, network science,
computational social science, and mathematics. The participants included senior and junior
researchers focusing on four related and intersecting topics: (i) Topological and Graph-
Theoretic Foundations, (ii) Higher-Order Models for Dynamical Processes, (iii) Higher-Order
Pattern Recognition and Machine Learning, (iv) Computational Aspects in Higher-Order
Graph Analysis and Graph Mining.

The organisers used the four topics to structure the seminar program and derive the
participants’ initial assignment to possible working groups. After an initial round of brief
opening statements, participants introduced themselves and stated their specific interests for
the seminar during five-minute lightning talks. During a match-making session taking place in
the afternoon of day one, all interests expressed by the participants were consolidated into a
set of working groups, addressing the following six areas: (i) Visualisation and Interpretability
of Higher-Order Graph Models, (ii) Learning and Model Selection, (iii) Unification of Different
Higher-Order Modelling Frameworks, (iv) Benchmark Data and Evaluation Practices, (v)
Applications of Higher-Order Graph Models, and (vi) Societal Impact, Robustness, and
Fairness. In the remaining time of the seminar, participants worked on those issues in the
groups. This report includes summaries of the opening statements, the results of the working
groups, and a summary of a panel discussion taking place on the evening of day two.
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3 Overview of Talks

3.1 Inference of Time-ordered Multi-Body Interactions
Unai Alvarez-Rodriguez (Universität Zürich, CH)

License Creative Commons BY 4.0 International license
© Unai Alvarez-Rodriguez

Higher-order models are typically specialised in a single class of interaction. Multi-time,
multi-system and multi-type modelling approaches have not yet been combined, and therefore
there is no framework capable of describing processes that simultaneously manifest different
classes of interactions. I argue a unification of higher-order models is necessary to bypass
this limitation and to improve our understanding of complex systems. Along these lines, I
present preliminary results for extracting time-ordered multi-body interactions from time
series of systems composed by multiple interacting elements.

3.2 Cascade Processes in Machine Learning
Rebekka Burkholz (Harvard School of Public Health – Boston, US)

License Creative Commons BY 4.0 International license
© Rebekka Burkholz

Joint work of Alkis Gotovos, Rebekka Burkholz, John Quackenbush, Stefanie Jegelka
Main reference Alkis Gotovos, Rebekka Burkholz, John Quackenbush, Stefanie Jegelka: “Scaling up

Continuous-Time Markov Chains Helps Resolve Underspecification”, CoRR, Vol. abs/2107.02911,
2021.

URL https://arxiv.org/abs/2107.02911

I have proposed to develop a unifying framework to represent higher order network information
by parametrising a process that evolves on a network as graph neural network. This could
be combined with the design of suitable covariate information that represents the higher
order model information and would enable the inference of networks and processes based
on data. Yet, in many situations, this unification approach is expected to suffer from
overparametrisation leaving the question whether there are better and more parameter
efficient representations of higher order structure for a given task. As motivating problem, I
have presented recent work about learning the order in which mutations accumulate during
cancer progression.

3.3 The Why, How, and When of Representations for Complex Systems
Tina Eliassi-Rad (Northeastern University – Boston, US)

License Creative Commons BY 4.0 International license
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Joint work of Leo Torres, Ann S. Blevins, and Danielle Bassett
Main reference Leo Torres, Ann Sizemore Blevins, Danielle S. Bassett, Tina Eliassi-Rad. The Why, How, and When

of Representations for Complex Systems. SIAM Review (SIREV), 63(3): 435-485, 2021.
URL https://epubs.siam.org/doi/pdf/10.1137/20M1355896

Complex systems, which at the most fundamental level consist of entities and their interactions,
describe phenomena in a wide variety of fields, from neuroscience to computer science
to economics. The wide variety of applications has led to two key challenges: (1) the
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development of many domain-specific strategies for analysing complex systems, and (2) the
compartmentalization of representation and analysis within a domain due to inconsistencies
in the language for complex systems. In our work, we propose a domain-agnostic language
to develop a more coherent vocabulary. We use this language to evaluate each step of the
analysis of complex systems. We start with the system under study and its observations
in terms of the collected data, and then go through different mathematical frameworks for
encoding the observed data (i.e., graphs, simplicial complexes, and hypergraphs) and relevant
computational methods for each framework. At each step, we consider different types of
dependencies. These are properties of the system that describe how the existence of an
interaction between a group of entities in a system can affect the possibility of the existence
of another relationship. We discuss how dependencies can arise and how they can change
the interpretation of results or the entire analysis pipeline. We conclude with two real-world
examples.

3.4 Spreading and Centrality on Hypergraphs
Desmond J. Higham (University of Edinburgh, GB)

License Creative Commons BY 4.0 International license
© Desmond J. Higham

Joint work of Desmond J. Higham, Henry-Louis de Kergorlay, Francesco Tudisco
Main reference Desmond J. Higham and Henry-Louis de Kergorlay, Epidemics on hypergraphs: Spectral thresholds

for extinction, Proceedings of the Royal Society, Series A, 2021
URL https://doi.org/10.1098/rspa.2021.0232

We typically interact in groups, not just in pairs. The use of hyperedges naturally allows us to
model with a nonlinear rate of transmission, in terms of both the group size and the number
of infected group members, as is the case, for example, when social distancing is encouraged.
I am therefore interested in individual-level, stochastic disease models on a hypergraph [1, 2].
I am also interested in centrality measures that take account of group interactions, which
leads to nonlinear eigenvalue problems, and nonlinear extensions of Perron-Frobenius theory
and the power method [3].

References
1 Desmond J. Higham and Henry-Louis de Kergorlay, Epidemics on hypergraphs: Spectral

thresholds for extinction, Proceedings of the Royal Society, Series A, 2021
2 Desmond J. Higham and Henry-Louis de Kergorlay, Mean field analysis of hypergraph

contagion models, arXiv: 2108.05451, 2021
3 F. Tudisco and Desmond J. Higham, Node and edge eigenvector centrality for hypergraphs,

Communications Physics, 2021.

21352

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1098/rspa.2021.0232
https://doi.org/10.1098/rspa.2021.0232
https://doi.org/10.1098/rspa.2021.0232


148 21352 – Higher-Order Graph Models

3.5 Interacting Discovery Processes on Complex Networks
Gabriele DiBona (Queen Mary University of London, GB)

License Creative Commons BY 4.0 International license
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Main reference Iacopo Iacopini, Gabriele Di Bona, Enrico Ubaldi, Vittorio Loreto, Vito Latora: “Interacting
Discovery Processes on Complex Networks”, Phys. Rev. Lett., Vol. 125, p. 248301, American
Physical Society, 2020.

URL http://dx.doi.org/10.1103/PhysRevLett.125.248301

In my talk, I focused on the influence of social interactions on collective processes, such as
the exploration and the discovery of new content in different contexts. The challenge is now
to include group interactions using higher-order methods, with a data-driven approach. This
can have implications in phenomena as diverse as user interaction in online social networks,
collective decisions in teams, team success and optimal structures, nonlinear random walks,
brain analysis in social activities, brain creativity, and diffusion of innovation. A first step in
this direction has been done in our recent paper [1].
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3.6 Dynamical Processes on Higher-Order Networks: Beyond Dyadic
Projections

Luca Gallo (University of Catania, IT)

License Creative Commons BY 4.0 International license
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Starting from the current literature about dynamical processes on higher-order networks,
I formulate two theoretical questions. (i) Dynamical processes on hypergraphs and on
simplicial complexes are usually studied in parallel [3, 2]. Can we produce a general theory of
dynamical systems on higher-order networks? In particular, is it possible to point out if and
how the absence or the presence of the inclusion requirement impacts the dynamics? (ii) To
make the problem analytically feasible, previous efforts in the study of dynamical processes
on higher-order structures have relied on the definition of suitable dyadic projections [1, 2, 3],
i.e. equivalent weighted networks. However, this method can lose information about the
higher-order structure, possibly preventing a complete study of the dynamics [4]. Can we
produce an analytical framework that goes beyond projected networks?
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4 Anastasiya Salova and Raissa M. D’Souza, Analyzing states beyond full synchronization on
hypergraphs requires methods beyond projected networks. arXiv preprint arXiv:2107.13712.
(2021)

3.7 New Data for Higher-Order Network Research
David F. Gleich (Purdue University – West Lafayette, US)
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released emails”, CoRR, Vol. abs/2108.01239, 2021.
URL https://arxiv.org/abs/2108.01239

We discussed some challenges we had in visualising a new higher-order dataset derived as a
hypergraph representation of Anthony Fauci’s emails regarding the COVID-19 pandemic
[2]. Analytic studies of these data show how higher-order features were more stable than
their graph counterparts [1]; but in the abstract presentation we highlighted how the lack of
hypergraph visualisation tools limited our investigation of the data. This dataset is a more
modern counterpart to the famous Karate Club dataset as well as the Enron email dataset.
In our working paper, we provide a fully parsed version suitable to derive a number of graph,
hypergraph, and other higher-order datasets.
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3.8 Combining Higher-Order Graph Models with Expert Knowledge
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Higher-order correlations facilitate unprecedented insights into system processes. However, to
interpret and validate the results, we need both a thorough theoretical understanding of the
underlying methods and expert subject matter knowledge. We conjecture that the overlap
between groups with expertise regarding both aspects is low. Consequently, we ask how we
can increase the visibility and applicability of higher-order methods in other scientific fields.
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3.9 Benchmarking and Robustness of Higher-Order Graph Models
Stephan Günnemann (Technical University of Munich, DE)
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Machine learning methods taking higher-order network structure into account have the
potential to obtain richer and potentially more accurate results by modeling the underlying
complex graph data better. To evaluate the real success of such higher-order graph-based
ML models, however, fair evaluation and benchmarking principles are required – a non-trivial
task even for standard graphs and graph learning models [1]. Indeed, beyond providing
suitable benchmark datasets of higher-order graph models, such evaluation practices have to
identify common tasks and appropriate baselines specifically tacking the higher-order nature
into account and comparing them to standard graph approaches. Moreover, evaluations
should not be limited to metrics such as accuracy but specifically the robustness of the
models need be considered. While, e.g., standard graph neural networks have been shown to
be non-robust [2], it is an open challenge whether higher-order graph structures can make
the methods and analysis more reliable and, thus, leading to more robust ML models.
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3.10 (Knowledge | Hyper) Graphs in Social Media and Text
Andreas Hotho (Julius-Maximilians-Universität Würzburg, DE)
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In my talk, I focused on three topics related to the seminar. First, hypergraphs are the
underlying structure of FolkSonomies, which are behind tagging systems emerged in the Web
2.0 wave. At that time, we started our system BibSonomy which is still online[1, 7]. All
the user generated data are freely available for research. Further, I pointed to a couple of
results on hypergraphs, e.g. our analysis of the graph structure [2], the behaviour analysis
together with Markus Strohmaier [5] and the emergent semantics in the systems [6]. We also
developed new ranking and recommendation algorithm. The second topic is on the edge of
graphs and natural languages processing (NLP). I show two showcases, the analysis of plots
on German novels and dime novels and the emergent languages and communication patterns
in the chat messages of the twitch.tv platform [3]. Third, knowledge graphs well known in
the semantic web community and widely adopted in many other areas are another graph
structure of interest. By integrating KGs with languages models like BERT or GPT, the
graph structure is becoming even more interesting for the higher order graph community [4].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Tina Eliassi-Rad, Vito Latora, Martin Rosvall, and Ingo Scholtes 151

References
1 Dominik Benz, Andreas Hotho, Robert Jäschke, Beate Krause, Folke Mitzlaff, Christoph

Schmitz, and Gerd Stumme. The social bookmark and publication management system
bibsonomy. The VLDB Journal, 19(6):849–875, December 2010.

2 Ciro Cattuto, Christoph Schmitz, Andrea Baldassarri, Vito D. P. Servedio, Vittorio Loreto,
Andreas Hotho, Miranda Grahl, and Gerd Stumme. Network properties of folksonomies.
AI Communications, 20(4):245 – 262, 2007.

3 Konstantin Kobs, Albin Zehe, Armin Bernstetter, Julian Chibane, Jan Pfister, Julian
Tritscher, and Andreas Hotho. Emote-controlled: Obtaining implicit viewer feedback
through emote based sentiment analysis on comments of popular twitch.tv channels. ACM
Transactions on Social Computing, 3(2):1–34, May 2020.

4 Janna Omeliyanenko, Albin Zehe, Lena Hettinger, and Andreas Hotho. Lm4kg: Improving
common sense knowledge graphs with language models. In Jeff Z. Pan, Valentina Tamma,
Claudia d’Amato, Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana
Kagal, editors, The Semantic Web – ISWC 2020, pages 456–473, Cham, 2020. Springer
International Publishing.

5 P. Singer, D. Helic, A. Hotho, and M. Strohmaier. Hyptrails: A bayesian approach for
comparing hypotheses about human trails. In 24th International World Wide Web Conference
(WWW2015), Firenze, Italy, May 18 – May 22 2015. ACM, ACM.

6 Ciro Cattuto, Dominik Benz, Andreas Hotho, and Gerd Stumme. Semantic grounding of
tag relatedness in social bookmarking systems. In The Semantic Web – ISWC 2008, volume
5318 of Lecture Notes in Computer Science, pages 615–631. Springer Berlin / Heidelberg,
2008.

7 Daniel Zoller, Stephan Doerfel, Robert Jäschke, Gerd Stumme, and Andreas Hotho. Posted,
visited, exported: Altmetrics in the social tagging system bibsonomy. Journal of Informetrics,
10(3):732 – 749, 2016.

3.11 Inequalities and Higher-Order Interactions
Fariba Karimi (Complexity Science Hub – Wien, AT)
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In my talk I propose to consider the types of inequalities that are hidden in higher order
interactions that we would miss if we don’t consider them. For example, the presence of
multiple groups of various size and mixing patterns between groups may cause certain types
of hypergraphs representations and result in specific group dynamics. I am interested in
developing network models that would consider higher order interactions and use that to
understand the emergence of inequalities in society and algorithms.

3.12 Higher-Order Processes in Complex Systems
Vito Latora (Queen Mary University of London, GB)

License Creative Commons BY 4.0 International license
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Dynamical processes on systems with higher-order interactions and/or systems with higher-
order temporal dependencies can help to understand the neural and social components of
creativity. In this talk I will show some examples of models of collective exploration [1], of
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social interactions [2] and social contagion [3] that can be generalised to take into account
higher-order interactions and higher-order temporal dependencies [4]. I will also point to
some examples of possible experiments to test the effects of higher-order interactions on the
dynamics of social systems.
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3.13 Simplicial Network Analysis Based on Electrical Networks
Kang-Ju Lee (Seoul National University, KR)
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I introduce network invariants based on simplicial electrical networks. Effective resistance
also known as resistance distance measures how well currents generated by an edge between
two vertices as a battery are resisted. Under d-dimensional Kirchhoff’s current and voltage
laws, we introduce simplicial effective resistance among d+1 vertices [1]. We make use of our
measure to propose a simplicial analogue of current-flow closeness centrality or information
centrality. We define the simplicial Kirchhoff index as a robustness measure for simplicial
networks [2]. We also propose a high-dimensional generalisation of the concept of the number
of connected components.

One of the advantages of using simplicial complexes is that we can utilise tools from
algebraic topology. Generalising studies in network theory for 1-cycles or flows to simplicial
networks will take advantage of it. Finding data set concerning high-dimensional cycles or
flows will support these studies.
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3.14 Machine Learning for Networks
Lisi Qarkaxhija (Koper, SI)
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I am a recent Master’s graduate in the field of Data Science were my main priority was
machine learning on networks. Before that, I completed a bachelor’s degree in Mathematics.
In my lightning talk, I introduced myself as a soon-to-be doctorate researcher in the field
of Machine Learning for Complex Networks. As such, I established my interest in research
concerning higher-order graphs and took the opportunity to familiarise myself with the topic
and to form new connections.

3.15 Dynamical Processes on Higher-Order Models: Future Research
Leonie Neuhäuser (RWTH Aachen, DE)
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Society, 2020.

URL http://dx.doi.org/10.1103/PhysRevE.101.032310

In my talk, I outline two ways of extending higher-order model research, motivated by my
previous work on the interplay of dynamics and multi-body topology [1, 2]. Firstly, we have
to consider the practicability of higher-order models. The overall system is often determined
by an interplay of many model aspects (topology, temporal ordering, type of dynamics)
and we need to detect which of these interactions aspects are qualitatively impacting the
specific research question of interest. For this, it is important to consider both domain
expert knowledge and model expert knowledge. Another interesting question is the interplay
of different higher-order dimensions. Current methods are mainly focusing on one specific
higher-order aspect, but different aspects may interact. We have investigated the interplay of
temporal and multi-way interactions in [3] and found effects, that differ from their projections.
This call for more research on the combination of different higher-order model facets.
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3.16 How, when, and which Higher-Order Models can we use?
Vincenzo Perri (Universität Zürich, CH)
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The use of machine learning tools provides a fruitful way for the analysis of network
systems. Unlike standard network models, the application of these tools to higher-order
models is neither unified nor straightforward. This difficulty comes from the existence of
multiple ways to extend these tasks on higher-order networks and a lack of understanding
of the commonalities between the different types of higher-order models. In light of this,
I am interested in examining the commonalities between higher-order methods and their
possibilities for applications.

3.17 The Role of Higher-Order Interactions in Complex Systems
Giovanni Petri (ISI Foundation – Torino, IT), Federico Battiston (Central European Univer-
sity – Vienna, AT), Ginestra Bianconi (Queen Mary University of London, GB), Vito Latora
(Queen Mary University of London, GB), and Yamir Moreno (University of Zaragoza, ES)
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Main reference Federico Battiston, Enrico Amico, Alain Barrat, et al: “The physics of higher-order interactions in
complex systems”. Nat. Phys. 17, 1093–1098 (2021)

URL https://www.nature.com/articles/s41567-021-01371-4

Complex networks have become the main paradigm for modelling the dynamics of interacting
systems. However, networks are intrinsically limited to describing pairwise interactions,
whereas real-world systems are often characterised by higher-order interactions involving
groups of three or more units. Higher-order (polyadic) structures are therefore a better tool
to map the real organisation of many social, biological and man-made systems. Here I outline
key challenges for the physics of higher-order systems.

See [1, 2, 3].
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3.18 Data-efficient Model Selection of Higher-order Networks
Luka Petrovic (Universität Zürich, CH)
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Vol. abs/2007.02861, 2020.
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In my previous work I have focused on statistical inference of higher-order network models
for paths. They generally have large parameter spaces, and therefore require large amounts
of data for training. We leveraged the fact that many networked systems have topological
constraints and devised a Bayesian method to improve data-efficiency of model selection for
higher-order network models for paths [1]. We believe that this methodology can improve
statistical inference for a broader class of higher-order network models.
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3.19 Efficient Variable-Order Markov Models of Network Flows
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Researchers develop maps that reveal essential patterns in network flows to better understand
the flows of ideas or information through social and biological systems. In practice, network
flow models have implied memoryless first-order Markov chains. Recently, researchers have
introduced higher-order Markov chain models with memory to capture patterns in multi-step
pathways, including revealing actual, overlapping community structures. However, higher-
order Markov chain models suffer from the curse of dimensionality: their vast parameter
spaces require exponentially increasing data to avoid overfitting and therefore make mapping
inefficient already for moderate-sized systems. Model selection based on Markov chain state
lumping into variable-order Markov chains and cross-validation alleviates this problem but
wastes plentiful data. We need more efficient methods for reliably describing higher-order
network flows. Two central questions arise: Which algorithm best explores the space of
variable-order Markov chain models? How do we incorporate Bayesian methods to select the
model that best describes the higher-order network flows?
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3.20 What are Higher-Order Models?
Michael Schaub (RWTH Aachen, DE)
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Main reference Christian Bick, Elizabeth Gross, Heather A. Harrington, Michael T. Schaub: “What are higher-order
networks?”, CoRR, Vol. abs/2104.11329, 2021.
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In this talk I outlined several different ways in which we may consider higher-order models
emerging from considerations of modelling low dimensional geometric structure (modelling
nonlinear spaces); higher-order models for modelling non-dyadic relational data (interactions
between groups vs interactions between pairs of nodes); and higher-order models for complex
data supported on (fixed) domains such as hypergraphs, complexes etc.
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3.21 Higher-Order Models and Cultural Data Analytics
Maximilian Schich (Tallinn University, EE)
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In my talk I first gave a brief intro to the research mission of the CUDAN ERA Chair
for Cultural Data Analytics at Tallinn University in Estonia (cf. https://cudan.tlu.ee).
Second, I have provided some insight into the common roots and shared potential of networks
with multiple node and link types, of higher-order topology, and a systematic science of art
and culture.

3.22 Opening Talk: The Three Ages of Network Science – A Historical
Perspective on Higher-Order Graph Models

Ingo Scholtes (Julius-Maximilians-Universität Würzburg, DE & Universität Zürich, CH)

License Creative Commons BY 4.0 International license
© Ingo Scholtes

Main reference Renaud Lambiotte, Martin Rosvall, Ingo Scholtes: “From Networks to Optimal Higher-Order Models
of Complex Systems”, Nature Physics, Vol. 15, p. 313-320, March 25, 2019

URL https://doi.org/10.1038/s41567-019-0459-y

Starting from a historical perspective on what I propose to consider “three ages” of network
science, in the opening talk I gave an overview of different modelling frameworks that address
different types of higher-order information and dependencies in complex networks. Addressing
the challenge of dyadic interactions with multiple types, a first category of higher-order
models includes signed graphs, multiplex networks and multi-layer networks. The second
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category of models includes simplicial complexes, hypergraphs, and motif-based network
models, which can be used to address the challenge of modelling data with polyadic, i.e.
non-dyadic, relationships. A third category of models uses higher-order Markov chains,
memory networks, or high-dimensional De Bruijn graphs to model higher-order dependencies
in time-ordered and sequential data. Following this categorisation, I presented three cross-
cutting challenges that require a collaboration between researchers who address these different
modelling frameworks. The first challenge addresses the practicality of higher-order models for
data science practitioners, e.g., considering computational complexity, data efficiency, model
dimensionality, and the need for intuitive and efficient visualisations of high-dimensional
models. A second challenge is due to the curse of dimensionality that is common in higher-
order models, which introduces the challenge of generalisability and model selection. A third
challenge is the development of a unified perspective that combines different higher-order
modelling frameworks to address complex data sets like, e.g. time-ordered or multi-type
polyadic relationships.
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3.23 Motifs for Processes on Networks
Alice Schwarze (University of Washington – Seattle, US)
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Joint work of Alice Schwarze, Mason Porter
Main reference Alice C. Schwarze, Mason A. Porter: “Motifs for processes on networks”, CoRR, Vol. abs/2007.07447,

2020.
URL https://arxiv.org/abs/2007.07447

The study of motifs in networks can help researchers uncover links between the structure
and function of networks in biology, sociology, economics, and many other areas. Empirical
studies of networks have identified feedback loops, feed-forward loops, and several other small
structures as “motifs” that occur frequently in real-world networks and may contribute by
various mechanisms to important functions in these systems. However, these mechanisms are
unknown for many of these motifs. We propose to distinguish between “structure motifs” (i.e.,
graphlets) in networks and “process motifs” (which we define as structured sets of walks) on
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networks and consider process motifs as building blocks of processes on networks. Using the
steady-state covariances and steady-state correlations in a multivariate Ornstein–Uhlenbeck
process on a network as examples, we demonstrate that the distinction between structure
motifs and process motifs makes it possible to gain quantitative insights into mechanisms
that contribute to important functions of dynamical systems on networks.

3.24 Higher-Order Models of Group Formation
Frank Schweitzer (ETH Zürich, CH)
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Main reference Frank Schweitzer, Georges Andres: “Social nucleation: Group formation as a phase transition”,

CoRR, Vol. abs/2107.06696, 2021.
URL https://arxiv.org/abs/2107.06696

I talk about the dynamics of group formation, for a good reason: Group structures can be
represented as polyadic interactions and are thus accessible by higher-order network models.
But group formation is inherently driven by social mechanisms: homophily, cost/benefit
evaluation, restricted access to resources, competition, to name a few. The question is:
how are these social mechanisms preserved in a higher-order representation? In my short
presentation, I provide a model that works for first-order networks, combining agent-based
modelling with rules for network formation. Would similar results be achievable with higher-
order models? How should these models look like? Would we gain anything beyond what
the first-order network model already provides?

3.25 Higher-Order Models and Responsible Machine Learning
Markus Strohmaier (RWTH Aachen, DE)

License Creative Commons BY 4.0 International license
© Markus Strohmaier

In my talk I am exploring issues and challenges related to Responsible Machine Learning
on Social Networks. I will argue that traditional methods for evaluating machine learning
models need to be expanded to include and consider social challenges such as polarisation,
inequality, exclusion or discrimination that are potentially arising from the deployment
of machine learning techniques in social settings. I conclude with an outlook of potential
avenues for further research.
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3.26 Network Evolution and Spacetime Networks as Higher-Order
Graphs

Chester Tan (National University of Singapore, SG)

License Creative Commons BY 4.0 International license
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In this lightning talk, I propose the following two questions: (1) Can higher order random
network evolution models (e.g. higher order preferential attachment) be represented and
analysed as higher order path sequence networks and vice versa. (2) How can higher order
networks be represented meaningfully and analyzed usefully in spacetime?

3.27 Generative Models for Higher-Order Interactions
Anatol Wegner (University College London, GB)
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The talk briefly introduced generative models for higher order interactions that include
interactions that can take the form of any simply connected motifs. These models include a
wide variety of higher order structures that go beyond cliques while remaining analytically
tractable. I discussed the use of these models in inference based methods that can be used
to obtain higher order representations of networks and raised potential applications of such
generative models in graph based machine learning.

4 Working groups

4.1 Unification of Higher-Order Models
Unai Alvarez-Rodriguez (Universität Zürich, CH), Ginestra Bianconi (Queen Mary University
of London, GB), Natasa Przulj (Barcelona Supercomputing Center, ES), Maximilian Schich
(Tallinn University, EE), Alice Schwarze (University of Washington – Seattle, US), Leo
Torres (Northeastern University – Boston, US), and Anatol Wegner (University College
London, GB)
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Despite unification being a newcomer to the higher-order jargon, its popularity skyrocketed
in Dagstuhl, to the point of being shortlisted as a key discussion topic for the higher-order
interactions field. Indeed, it was the preferred option for eight researchers in the working group
allocation round, making it the most voted with twice the support of its most successful
competitor. These values indicate a substantial acceptance of the unification discourse
introduced during the first part of the seminar, where unification was presented as a quest
towards a Utopian model merging multi-type, multi-time and multi-body interactions in a
single formalism. The minimal desirable purpose of unification would be to develop a shared
perspective that clarifies the relation, mutual difference and gap of alternative paradigms,
including hypergraphs, simplicial complexes, multi-layer networks and temporal higher-order
networks.
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The working group on unification was gathered with the goal of highlighting what we
stand to gain from the unification of different higher-order models. Our initial exchange was
a virtual round table where we took turns to share our views on unification. In this process
we identified two opposite aspects to refine in further explorations. The first one is the purely
theoretical challenge of merging different types of higher-order approaches for the sake of
addressing rich classes of dynamics. The second one is finding practical applications where a
unified formalism is preferred over already existing ones. In summary, unification should aim
not just for mathematical elegance and instead prove to be useful also for practitioners.

For the remaining days the team organised an asynchronous brain storming (deviating
from more-typical synchronous Dagstuhl-style discussion, due to the hybrid nature of the
event) to incorporate on-line as well as on-site participants with different time zones. Every
member of the group then started a search for potential benefits of unification. This search
lead to the following findings:

One of the profitable byproducts of unification is model compatibility. A unified model
containing current frameworks as particular cases would provide a common language for
higher-order phenomena which may enable combining results obtained independently in
different domains of research on higher-order networks.

Another idea that we discussed was the use of unification as a principle for workflow
automation. For researchers interested in applying network science to case studies, one
of the first important steps is to decide which is the type of higher-order model that best
describes a data set. Choosing a wrong model may lead to misleading conclusions about
the behaviour of systems. The standard procedure to tackle this problem is employing
model selection techniques. A challenge in doing so is that many currently available models
are incompatible with each other, because they do not allow mixtures between different
features (multi-type,multi-time and multi-body). A unified model would overcome this rigid
structure as it would include degrees of freedoms of different features. Furthermore, such
model flexibility would also remove the otherwise necessary step of network-type selection
and therefore simplify the work of applied researchers.

Knowledge graphs were another topic of the debate. Within the joint discussion, group
members Ginestra Bianconi and Maximilian Schich have pointed out the relevance of know-
ledge graphs, from the perspective of applied mathematics/physics and socio-cultural domain
expertise respectively. Within the unification working group, knowledge graphs, and by
extension less generalised database models, such as relational databases, have been con-
sidered regarding their relevance towards unification of higher-order network research. From
a mathematical perspective, knowledge graphs are relevant as their configuration and growth
is likely out of sync with existing maximum entropy models of network growth (e.g. adding
bespoke link motifs instead of n-simplices). From the perspective of domain experts, ranging
from biology to socio-cultural disciplines, developing a deeper understanding of higher-order
structure and dynamics of knowledge graphs is a desiderate that seems more or less obvious
since about two decades. From this a joint challenge emerges that can now be tackled based
on the recent advances of higher-order network science. Consequently a second notion of
“unification” emerged in the discussion, where different approaches of higher-order network
science can be tested against each other, while looking at knowledge graphs that permeate a
broad spectrum of disciplines.

All in all, we were able to ground the original proposal by showcasing specific methodologies
that would be improved by a unified model. Our working group concluded that there is a
robust motivation for a unification of higher-order models, and that we can anticipate an
increase in the research community’s efforts towards unification in years to come.
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4.2 Social Impact of Higher-Order Models
Leonie Neuhäuser (RWTH Aachen, DE), Fariba Karimi (Complexity Science Hub – Wien,
AT), and Markus Strohmaier (RWTH Aachen, DE)
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In the working group “Social impact of higher-order models”, we discussed which unique
challenges and opportunities arise when deploying higher-order approaches to modelling
social systems.

First, we identify the potential of higher-order models to better capture the rich subtleties
and nuances present in social systems that might be neglected or ignored when modelling
social systems with lower order approaches. This might help address issues that can arise
from lower order modelling approaches such as conveying or exaggerating biases existing in
the data due to oversimplification. We give examples of different scenarios for each of the
three main higher-order model streams: multi-way, multi-layer and temporal interactions.

Second, we also identify a potential of higher-order models to introduce new problems
themselves that might have negative consequences on social systems, such as disadvantaging
certain parts of a social system (groups, communities) or warping and changing the rep-
resentation of social systems in undesirable ways. We identify two main challenges: data
availability and model interpretation. With regard to the first point, additional degrees of
freedom for a model creates additional possibility for bias and misrepresentation e.g. due to
data availability.

Data resolution affects how well we can infer certain dimensions of a higher-order model
in practice and how much the models generalises for certain groups. Additionally, there
might be some dimensions that we particularly do not want to include in a model because
they introduce bias. Secondly, the interpretation of the results of a higher-order model can be
complicated by the higher-order model aspects, which have to be well motivated and backed
up with theory. When constructing a model, we want to capture all aspects of a system
which are relevant for a specific research question of interest. Additional model dimensions
can possibly lead to more insights, but also to more misinterpretation of their meaning is not
clear in a specific context.

In summary, higher-order models of social systems have the potential to help overcome
limitations of existing lower order approaches, but also introduce new challenges which
need to be addressed to avoid introducing unintentional harms that result from information
captured by higher order approaches.

4.3 Applications of Higher-Order Models
Vincenzo Perri (Universität Zürich, CH), Gabriele DiBona (Queen Mary University of
London, GB), Luca Gallo (University of Catania, IT), Christoph Gote (ETH Zürich, CH),
Jürgen Hackl (University of Liverpool, GB), Desmond J. Higham (University of Edinburgh,
GB), and Frank Schweitzer (ETH Zürich, CH)
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This report summarises the discussion that has taken place during the breakout sessions
of the working group focused on the topic of “applications of higher-order networks”. The
discussions covered a broad range of topics, which we report in what follows.
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A practitioner’s guide
In our examination we abstract from the details of an application to specific systems.
We decided to draft a practitioner’s guide such that practitioners, based on their domain
knowledge, are equipped to determine if and when higher-order networks should be used
and which question they can answer. We identify five questions to address before applying
higher-order methods and outline possible answers.

Do I need higher-order models?

To use higher-order networks, we first need to understand if the question has higher-order
characteristics. Higher-order patterns do not pertain to the network structure (i.e., which
pairwise interactions occur) but emerge from more complicated relationships. We identify
three dimensions that result in higher-order patterns:
1. sequential (causal) dependencies
2. group interactions
3. multiple node or edge types

The use of higher-order networks is beneficial only if the problem displays at least one of
these characteristics.

Do my data allow the use of higher-order models?

Even if the problem has higher-order characteristics, the data at our disposal might not allow
for the use of higher-order methods. The complexity of higher-order interactions leads to
models with a higher number of parameters compared to standard methods. Such complexity
raises constraints relative to data quantity, as more parameters have to be estimated, and
quality, as inconsistencies in the data might lead to cascading effects. Model selection needs
to be used to select the optimal model given the available amount of data. Possible cascading
effects are still an open issue. We will re-encounter them in the last question.

How do I get the model?

Answering positively to the previous two questions establishes the conditions for a fruitful
application of higher-order networks.

Now, the practitioner has to choose the more suitable higher-order formalism from the
available ones. The choice might not be straightforward, and it will depend on both the
question and the available data. Helping a practitioner answer this question requires the
community to provide tools (tutorials, software, etc.) that allow practitioners to understand
the use-cases of different higher-order formalisms and eventually compare or mix them.

How to analyse higher-order models

Analysing higher-order networks might not be as straightforward as for standard networks.
The first key step is the choice of the data structure to use, which may affect both the
flexibility and efficiency of a computational algorithm. Then, performing the analysis requires
understanding the meaning of the interactions between the elements of the higher-order
network. Additionally, we need to decide whether to use the higher-order information to
predict higher-order or standard structures. Finally, one should also consider the problem
of data quality underlined above (question 2). While steps forward have been made in
considering the impact of incomplete or noisy data on standard networks, this topic has
received little attention for higher-order networks.
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How to interpret the results

The interpretation of higher-order methods’ results is often not as straightforward as that of
standard network methods. One challenge is to express patterns identified in the higher-order
representation in terms of standard nodes. Depending on how we project from higher to
lower order, we will retain more or different types of information. Additionally, the question
of interpretation can not be separated from the other topics discussed above. Issues like data
quality and quantity have to be considered when interpreting the results in order to be able
to separate the model’s sensitivity to changes in the data from the system’s stability.

Conclusion
In our discussions, we identified the most challenging problems to be the ones regarding the
interpretation of the results of a higher-order model in terms of a real-world problem. We
suggest thinking of the minimal model that can explain the phenomenon, also considering
simple networks. Even if this process has been undertaken when choosing the model, we
should continue to question the choice of the model when interpreting the results.

4.4 Learning and Model Selection in Higher-Order Networks
Martin Rosvall (University of Umeå, SE), Rebekka Burkholz (Harvard School of Public Health
– Boston, US), Timothy LaRock (Northeastern University – Boston, US), Vito Latora (Queen
Mary University of London, GB), Kang-Ju Lee (Seoul National University, KR), Giovanni
Petri (ISI Foundation – Torino, IT), Luka Petrovic (Universität Zürich, CH), Michael
Schaub (RWTH Aachen, DE), Alice Schwarze (University of Washington – Seattle, US), and
Michele Starnini (ISI Foundation, IT)
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In the working group Learning and model selection in higher-order networks, we discussed
the different roles models can have and how the specific task must decide the model choice.
Our discussions focused on two model perspectives.

The first perspective concerned the scope of what we aim to learn. Are we interested
in relational data – the structure of a network? Or are we interested in covariate data
constrained by relational data – signals, metadata, and dynamical data? Or both?

Relational data describe interactions between at least two entities, the topology of a
possibly higher-order network system. In a standard, dyadic, static setup, edges describe the
system’s topology, which we aim to model. For example, we observe a network sample and
infer a probability distribution over graphs using a stochastic block model as a statistical
model of the network.

In higher-order models, the types of relational data we recognise are significantly larger.
Instead of considering only a single type of dyadic static relation between two nodes, we
consider typed interactions (signed, multiplex, multi-layer), temporal interactions with a
path-dependency, polyadic interactions, or any combination of them.
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In covariate data, each data point is associated with a node, an edge, or a higher-
order simplex. One can obtain covariate data from measurements at a given time or a
sequence of time points. One can also obtain covariate data as a function of time from
theoretical dynamical systems or computational simulations. Such state variables can capture
a dynamical process that takes place on the interacting system. Examples include time series
of electric signals at the different cortical areas of the brain measured through EEG brain
imaging, infected individuals in the spreading of a disease across a population, or traffic flows
in street networks.

The other perspective concerned the objective of learning. Are we interested in prediction
or classification from incomplete data, or do we seek to discern important mechanisms of the
system under study, or both? These objectives come with different trade-offs.

For predicting future interactions or classifying nodes based on incomplete data, we must
balance model and data complexity to find a model that accurately describes the available
data. When detecting the optimal order of a multi-order network model for pathway data,
for example, we need to balance the increase in the likelihood of a more complex model
with the increase in the complexity of the model. The richer the data we can collect, the
more flexible models we can try to fit. With access to polyadic data, we may successfully fit
a statistical hypergraph model. In contrast, we may need more data to infer the polyadic
relations from dyadic relations. Similarly, rich covariate data may allow for a more detailed
model.

To identify a system’s important mechanisms, we should decide what assumptions to use
for modelling relational and covariate data. We discussed a scenario in which we study the
spread of an epidemic by observing time-stamped interactions between people, potentially
augmented with information about the state of the nodes. We could consider these data in
at least two ways. First, we may think about them as coming from an epidemic process that
spreads on a temporal topology: the process runs continuously on top of each node, but the
relations between people are only active for some time. Second, we may interpret our data as
events generated by a point process on a latent but largely static interaction topology. In this
example, our mechanism of interest and the respective model’s ability to describe the data,
should guide us in choosing a model. We may prefer a simple model with system-specific
assumptions over a flexible model with a potentially better fit to the data than the simple
model because a high model complexity obscures the mechanisms that we seek to identify.

We concluded that generalising statistical principles developed for networks to higher-order
network models seems promising for trade-offs of model flexibility. By contrast, trade-offs of
higher-order models that we develop to gain mechanistic insights are under-explored and
require new computational and mathematical methods.
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4.5 Benchmark Data and Evaluation Practices
Ingo Scholtes (Julius-Maximilians-Universität Würzburg, DE & Universität Zürich, CH),
Stephan Günnemann (Technical University of Munich, DE), Andreas Hotho (Julius-Maximilians-
Universität Würzburg, DE), and Jelena Smiljanic (University of Umeå, SE)
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An important open issue that has been raised by several participants during their introductory
statements is a lack of commonly used benchmark data and generally accepted practices
to evaluate higher-order graph models. Mirroring the diversity of the higher-order graph
community, this is a multi-faceted problem. The working group has identified three related
challenges which are presented below. We used them to derive four opportunities for the
higher-order graph community to improve their evaluation practices and – in turn – increase
their impact on applications of network and data science.

4.5.1 Challenges for the Evaluation of Higher-Order Graph Models

Comparing Higher- vs. First-Order Models

An important first challenge is due to the common need to show what we gain by using
higher-order graph models, as opposed to methods that are based on first-order graphs.
To this end, researchers typically evaluate their models based on a variety of data mining,
prediction, and modelling tasks. The choice of those tasks, as well as the choice of data set in
which those tasks are addressed, is often informed by specific assumptions of the higher-order
models that are being evaluated. This introduces potential issues for the external validity,
i.e. it is not clear to what extent the obtained results generalise to other settings or data
with higher-order characteristics that do not match the assumptions of a given modelling
framework.

Comparison of Different Higher-Order Models

While the challenge above applies to each “paradigm” of higher-order graph models individu-
ally, a second challenge arises due to the growing number of different modelling paradigms
that address the same higher-order characteristic of data or systems, e.g., the use of hyper-
graphs vs. simplicial complexes to model systems with polyadic interactions. To facilitate a
fair comparison between such different modelling approaches, the community should establish
standard benchmark data sets that exhibit higher-order characteristics, along with a set of
clearly defined tasks and evaluation metrics that do not favour one or the other modelling
paradigm. This would not only help practitioners to decide which modelling paradigm to
choose for a specific system. It is also likely to improve our understanding of the advantages
and disadvantages of different paradigms and the sometimes implicit assumptions they are
based on.

Comparison of Models for Different Higher-Order Characteristics

As highlighted in the panel discussion, there is no single, correct type of higher-order graph
model that could be used to model all networked systems. Instead, we are commonly
confronted with systems that exhibit multiple higher-order characteristics at once such as,
e.g., networks with temporally ordered, multi-typed, and polyadic interactions. A third
important challenge for the community is thus to understand what we lose or gain by
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using models that capture only one of those characteristics. Given a modelling task in a
system with temporally ordered polyadic interactions, is it preferable to use a hypergraph
model that ignores the temporal ordering of interactions, or is it preferable to use a model
that captures causal path while ignoring the fact that interactions are non-dyadic? To
answer such questions, the community needs benchmark data and problems that support a
comparison of higher-order graph models that address different higher-order characteristics
in complex systems. We further need model-independent prediction or modelling tasks like,
e.g., the prediction of interactions, node- or graph-level classification tasks, or forecasting the
evolution of dynamical processes, that could be used to compare the performance of different
higher-order graph models.

4.5.2 Opportunities to Improve Evaluation Practices

Based on the challenges outlined above, the working group has identified three opportunities
for the higher-order graph modelling community, which we outline below.

Opportunity 1: Higher-Order Graph Benchmarks

A first opportunity is to establish benchmarks that can be addressed by different types of
higher-order graph models, and which should be based on the following ingredients:

data sets on networked systems with a given higher-order pattern (polyadic, multi-typed,
temporal interactions, etc.)
measure for model performance based on a given prediction or modelling task
a baseline against which we compare model performance. Depending on the problem,
this baseline can either be state-of-the-art techniques or, if we want to reason about the
benefit of higher-order models, lower- or first-order versions of a given model.

We note that the following online repositories for network data contain data sets that
may have the necessary characteristics for such benchmark data:

SNAP https://snap.stanford.edu/data/ (temporal, multi-layer, polyadic)
netzschleuder https://networks.skewed.de/ (temporal, multi-layer, polyadic)
Konect http://konect.cc (temporal, multi-layer)
Sociopatterns http://www.sociopatterns.org (polyadic, temporal)

Referring to the first challenge, a common goal in the study of higher-order graph models
is to assess the advantage over techniques based on first-order graphs. The question which
first-order graph model should be chosen to facilitate a fair comparison is non-trivial and has
– in some cases – been addressed in an unsatisfactory fashion. As an example, consider a
comparison of a model with weighted higher-order interactions with an unweighted first-order
graph model. The results of such an experiment do not tell us a lot about the impact of
higher-order interactions, since it mixes the effect of a projection to first-order interactions
with the effect of reducing a weighted to an unweighted graph model.

How can we define baselines that enable a fair comparison? One possible approach
is to apply higher-order graph models to a version of a data set, where the higher-order
dependencies have been selectively removed. E.g. for memory networks or De Bruijn graph
models of paths in temporally ordered interactions, we can use data where time stamps have
been randomly reshuffled, which removes any temporal correlations in the ordering while
preserving information on the temporal distribution and the frequency of interactions. Similar
randomisation approaches that maintain first-order characteristics but destroy higher-order
patterns may be possible for data on polyadic interactions or multi-typed relations.

https://snap.stanford.edu/data/
https://networks.skewed.de/
http://konect.cc
http://www.sociopatterns.org
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Opportunity 2: Using Higher-order Models to improve on Standard Graph Mining
Problems

We can evaluate higher-order graph models in standard graph mining problems. This allows
us to compare higher-order models against state-of-the-art algorithms as well as to different
higher-order graph modelling frameworks with each other. Examples that can be potentially
addressed based on different types of modelling paradigms include:

Node ranking, where the ranking is based on different higher-order generalisations of
centrality measures
Node classification, where classes are assigned to nodes in a way that incorporates
higher-order patterns
Link prediction, where dyadic interactions are predicted based on models incorporating
higher-order characteristics of the data (e.g. time or multiple types)
Graph clustering, where clusterings in higher-order graph spaces are projected to clusters
in a first-order graph
Vector-space embedding, where vector representations of nodes or links are derived from
a higher-order generalisation of similarity/dissimilarity rankings.

Recently, an extensive evaluation platform for graph mining problems has been proposed
in [1]. It would be a worthwhile effort to consider whether a similar set of problems and
evaluation practices, as well as convenient solutions for standardised data splitting, sampling
and shuffling, could be combined with some of the data sets above to establish a higher-order
graph benchmark that is accepted by the community.

Opportunity 3: Defining Novel Benchmark Problems involving Higher-Order
Patterns

Apart from evaluating higher-order graph models in terms of standard graph mining and
learning tasks, an interesting prospect for the definition of novel evaluation practices is that
some of those problems can be naturally and meaningfully translated to the higher-order
primitives used by different modelling frameworks. Examples include:

multi-layer link prediction, where we predict links given a layer, a layer given a link, or
both the layer and the link
hyperedge or k-simplex prediction, which can be easily defined for co-occurrence or
co-authorship data
hyperedge clustering, which can be used to identify, e.g. groups of similar collaboration
patterns
path ranking, where rather than identifying nodes we identify node sequences or sets that
are most important, e.g, for spreading patterns or information propagation
path clustering, where we identify sets of paths observed in a time series data set that
are more similar to each other than to other paths
path prediction or classification, which can be useful for applications in click stream data,
information propagation, as well as end-to-end vs. next-element prediction in sequential
data

Opportunity 4: Model Dimensionality and Data Sparsity

One of the key challenges that we face in the study of higher-order models is that we often
increase the dimensionality of the model, i.e. we add degrees of freedom that – on the one
hand – enable us to more accurately model systems but – on the other hand – potentially
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HYPERGRAPH CUTS WITH GENERAL SPLITTING FUNCTIONS 5
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Fig. 1. For four-node hyperedges, cardinality-based splitting functions assign a penalty of w1

if one node is separated from the other three, and a penalty of w2 if the hyperedge has a 2-2 split.
Here we show the minimum s-t cut solution on a small hypergraph when w1 = 1 is fixed and w2

takes on three di↵erent values. Grey indicates uncut hyperedges, blue indicates 2-2 splits, and green
indicates 1-3 splits. Solutions for w2 2 {0.5, 1.5} are unique; for w2 = 2.5 we illustrate a solution
with a minimum number of source-side nodes. Among other results, we prove that for 4-uniform
hypergraphs, this problem is NP-hard for case (a) (w2 < w1, Theorem 5.1), is tractable for case (b)
(w2 2 [w1, 2w1], Theorem 4.6), and has unknown complexity in case (c) (w2 > 2w1, Figure 13a).
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Fig. 2. Our new techniques enable us to find minimum s-t cuts of a real-world hypergraph under
generalized notions of hypergraph cuts. The hypergraph here is constructed from questions posted
in an online math forum (https://math.stackexchange.com/ ). Each node is a tag for a math term
(e.g., “logic”, “combinatorics”), and hyperedges represent 2 to 5 tags from a single post. (a) All
hyperedges in the dataset that have four nodes and contain the tag “hypergraphs.” Many overlap
and all but one also contain the “graph-theory” tag. (b) For cardinality-based splitting functions,
separating one node by itself costs w1 = 1 and splits with two nodes together have penalty w2. There
are substantial changes in the Jaccard similarity between the solution for the problem under the
standard all-or-nothing splitting function (w2 = w1 = 1) and the solution for the problem when
w2 > 1. Section 4.5 has more details on these experiments.

based splitting functions, the hypergraph s-t cut problem is reducible to a graph s-t
cut problem if and only if the splitting functions are submodular.

NP-hard regimes for hypergraph s-t cuts. Next we identify a large class of
cardinality-based s-t cut problems outside the submodular region for which the s-t cut
problem is NP-hard to solve. This is somewhat surprising, given that the hypergraph
s-t cut problem has been viewed as an “easy” problem since the work of Lawler [67],
but again, Lawler only considered the all-or-nothing splitting function. At the same
time, we give a simple example of a cardinality-based splitting function outside the
submodular region for which the problem is still tractable, even if not graph reducible.
This rules out the possibility that tractability is exactly determined by submodularity
of splitting functions and leads to a number of interesting open questions on the limits

Figure 2 A figure from Veldt et al. [31] that illustrates how a hypergraph can be split into two
pieces as a characteristic parameter changes in a simple scenario. Crucial to this drawing is showing
which hyperedges are separated in the partition, which is simple in the convex-set drawing of a
hypergraph used in the figure. It would be challenging to illustrate this figure with a node-and-edge
drawing – even of the bipartite network representation of a hypergraph. This motivates our questions
of how to visualise these hypergraphs.

increase computational complexity and pose challenges for the generalisability, robustness,
and data efficiency of our models. However, this challenge also introduces opportunities for a
definition of evaluation practices that go beyond mere model accuracy. Exemplary aspects
that should be incorporated in the evaluation of higher-order graph models include:

model robustness: How robust is a higher-order model against the introduction of noise
and how does the inclusion of higher-order primitives specifically change the robustness
compared to first-order graphs?
model size: How much memory does a model consume, how many degrees of freedom
does it have and how does the model size depend on key system parameters like the
number of nodes or the density of (higher-order) interactions?
data efficiency: How much data do we need to reliably model higher-order patterns in
a given data set?
scalability: How much time do we need to learn a model or to make predictions and how
does the computational complexity depend on the size of the data (in terms of number of
observations) or the size of the system?
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Visualisation is essential to understanding and interpreting data – it facilitates recognising
norms and outliers in non-human readable data by representing data in more accessible forms
such as graphs. Recognising its importance and infancy in its use with higher-order networks,

https://arxiv.org/abs/2005.00687
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Tina Eliassi-Rad, Vito Latora, Martin Rosvall, and Ingo Scholtes 169

we decided to form a working group to discuss exactly the Visualisation and Interpretability
of Higher-Order Networks. In this working group we discussed the current state of the art
and its limitations, and deduced some notable key opportunities for development.

4.6.1 Current literature

We first sought a common understanding of the state of the art by discussing known data
visualisation tools and identifying if they support higher-order visualisations, and the type(s)
of higher-order visualisations they facilitate.

Relevant Tools from Workshop Participants

Acknowledging while looking to leverage our biases, we first highlighted the following most
relevant tools developed by participants in this Dagstuhl: pathpy [26] is a Python package
which provides an automated framework to deduce the most likely Markov order for sequential
data, and visualise such data as its most probable higher-order De Bruijn Graph. Infomap
Network Navigator [12] is an interactive web application that generates a zoomable map
for networks clustered with InfoMap. While it supports higher-order networks, it doesn’t
draw the raw network but instead the hierarchical modular network structure using existing
tools for force directed layouts, augmented with new constraints, to support the higher
order visualisation of state networks. LocalGraphClustering [15] is a Python (and Julia)
package designed to identify local structures in networks and visualise how their local groups
compress into low-rank representations, primarily to highlight differences in the way various
algorithms see or experience network structures.

Desktop GUI Applications

We then discussed well-known Desktop GUI applications for visualising network data such
as Gephi [2] and Cytoscape [28]. Neither requires any programming, and both support
importing a network and associated metadata from various file types. Gephi is an open source
cross-platform application that is able to visualise and analyse large networks, while Cytoscape
is an open source software platform for visualising complex networks and integrating these
with any type of attribute data, focusing on bioinformatics data. Notably, neither have
dedicated support for higher-order network representations.

General Graph Toolboxes

While these relatively well-known GUI applications did not support visualising higher-order
data, we noted that there are many software libraries designed to draw networks, or support
programs that work with networks and produce visualisations, though they all require some
programming familiarity: MuxViz [10] is an R package for the analysis and visualisation of
interconnected multi-layer networks. NetworkX [17] is a Python package for the creation,
manipulation, and study of the structure, dynamics, and functions of complex networks.
It has many functions to help draw networks and a number of functions to compute force
directed-like layouts. D3.js [7] is a JavaScript library that transforms data to interactive
visualisations in the browser. It includes force-directed graph layout algorithms. iGraph [9] is
a network analysis and visualisation software written in C++ with bindings to R and Python.
This includes tools to compute network layouts (coordinates) for each node from a variety
of methods. These scale to large graphs with millions of nodes in reasonable time-frames
(hours). GraphViz [13] is a free and open source graph visualisation program in DOT
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language scripts. Like iGraph, it supports a variety of layout algorithms. Graph-tool [22]
is a Python package which is used to produce useful visualisations, statistical analysis and
manipulation of networks. It known for its performance since its main algorithms and data
structures are written in C++.

4.6.2 The Many Forms of Higher-Order Networks and their Visualizations

From these known tools and frameworks, we identified some common models of higher-order
network models and visualisations which elucidated even more higher-order visualisation
methods.

Hypergraphs

One existing means of visualising higher-order data is through sets of nodes. Berge used this
technique in his book on hypergraphs [5]. A downside to this visualisation approach is that
an inaccurate drawing may result in nodes appearing to belong to hyperedges that they do
not contain.

Bipartite Networks

Another means of visualizing higher-order data is through a bipartite network. This visual-
isation corresponds to using the incidence matrix of a graph as the adjacency matrix of a
bipartite graph, and is further related to what is called a star expansion of a hypergraph
structure.

Space Embedded Networks

Some network embeddings [23, 16] produce a set of coordinates for a network by minimising
an energy function over small sets sampled from the network. These have been extended
to higher-order data as well [11, 29], where the output is typically set of coordinate in a
high-dimensional space, with 1 coordinate per node. These can be subsequently processed
with tSNE [30] or UMAP [20] or alternative dimension reduction techniques, though these
dimension reduction techniques do have their biases and compromises [32]. Some methods
to embed networks in spacetime [8] have also been explored.

4.6.3 Key Opportunities and Takeaways

From these discussions, we deduced that network visualisation serves two primary roles: (1)
to elucidate results in studied network data, as a static figure or a short movie – a form
of network data visualisation that has appeared on the cover image of many highly regarded
interdisciplinary journals – and (2) to facilitate the discovery of features in data,
where tools often have interactive graphical components that make it easy to manipulate
diverse data.

In an ideal scenario, higher-order graph models and data can simultaneously be visualised
and interpreted by existing tools and also pose new challenges and opportunities beyond
them. This apparent contradiction follows because, while there are many ways to translate
higher-order data into network-like representations, each interpretation has its biases which
obscures some properties of the higher order data over others. To illustrate this point, see
Figure 2. The contents of the figure require its higher-order data to be expressed in a new
or different way. Similar figures, with new visualisation strategies, arise in many papers
introducing higher-order topics [21, 25, 3]. Many of these figures use non-standard visual
representations of higher-order data that are difficult or impossible to replicate with standard
tools.
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Dimensions of Higher-Order Network Visualisations

These two primary roles make just one of the many notable dimensions we found network
visualisations to have, including: Interactive vs Static For data exploration and online
showcases, interactive visualisations are preferred over static visualisations, while paper
figures are typically static, and have stricter requirements for legibility. Multi-layer vs
Single-layer With usually an ordinary 2D layout of the network in each layer, a multi-layer
network visualisation can either be in two or three visual dimensions with each layer drawn
as cards side by side. 10 vs 1000 vs millions of nodes It is easy to visualise entire
small networks, but significantly more difficult to interpret visualisations of large networks.
Annotated vs Non-annotated While annotations in our visualisations aid comprehension
of the data and provide additional information about topics that aren’t evident to the human
eye, having a lot of annotations make visualisations undesirably noisy and cluttered. Raw
Network vs Clusters In most interactive maps, the level of detail shown depends on the
zoom level. A hierarchical clustering algorithm can similarly help us navigate a very large
network, overcoming potential graphical or computational limitations. Node-edge Plots
vs Feature Embeddings A standard way of drawing a network is to plot both nodes
and edges, and for that to look nice for a broad range of networks, it typically requires a
force-directed layout algorithm, or similar, that minimises edge crossings. On the other hand,
if we want to highlight some features of our data, we may, for example, embed nodes in a
high-dimensional space of node features, and employ dimensionality reduction techniques to
layout nodes in two or three visual dimensions. Instantaneous vs Evolving visualisations.
GUI vs Programming Interfaces Many GUI apps contain various tools that are often
more user friendly and less time consuming than their programming counterparts, which,
instead, often offer greater customisability and reproducibility.

We note that the seemingly opposing poles in each of these dimensions listed above are
not necessarily mutually exclusive – e.g. a GUI app could have a programming interface, and
that the current state of the art supports only a small subspace of these dimensions. The
following example may further elucidate how the current lack of tools and techniques hampers
research: in Gleich’s work this past summer studying a set of emails surrounding the US
government’s response to the COVID pandemic, we sought to use time-varying hypergraphs
to represent the email information [4, 6]. Hypergraphs were key to the representation as
often a single email will bridge a number of different organisational entities in the strongly
hierarchical government agencies. Yet, without current tools supporting them adequately,
the team had to implement rudimentary ideas as surrogates for investigations they wished to
conduct. This make it significantly more difficult to interpret the data using the growing set
of higher-order data tools produced by the community.

A List of Some of the Many Forms of Higher-Order Network Visualisations

As another key takeaway we briefly list some of the common forms of higher-order network
visualisations we discussed: hypergraphs, simplicial complexes, bipartite networks,
multi-layer networks, multiplex networks, higher-order space embedded networks.
This list highlights, among other things, the variety in visualisation methods and language
of, which made discussions especially challenging and interesting, and an apparent recurring
and arguably most interesting theme throughout this Dagstuhl.
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4.6.4 Key Opportunities

Finally, we concluded that the following are two key opportunities in the field for further
study and development: (1) Interactive tools for higher-order data There is ongoing
work on tools to work with higher-order representations of processes on network data by
the workshop participants in the Infomap Network Navigator (see the paragraph below).
Additional tools have identified similar weaknesses and aspects. See, for instance, open issues
on the Gephi and graphviz software to support hypergraph drawings. (2) Revisiting
fundamental ideas Many existing network visualisations involve a variety of studies
closely related to many applied algorithms. For instance, spectral network drawing was
originally proposed as an energy minimisation technique [18] that predated Fiedler’s work
on Laplacian eigenvectors [14]. There are now higher-order generalisations of many similar
ideas [19] (and references therein). Many successful node placement techniques for graph
visualisation are based on force simulations (e.g. Force-Atlas, etc.) Higher-order data present
novel opportunities to evolve this research. For instance, recent work on force directed
placement [1]. Related work includes efficient molecular dynamics simulations [24], which
suggest novel types of possible forces for higher-order data.

References
1 Naheed Anjum Arafat and Stéphane Bressan. Hypergraph drawing by force-directed

placement. In Djamal Benslimane, Ernesto Damiani, William I. Grosky, Abdelkader
Hameurlain, Amit Sheth, and Roland R. Wagner, editors, Database and Expert Systems
Applications, pages 387–394, Cham, 2017. Springer International Publishing.

2 Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an open source software
for exploring and manipulating networks. In Third international AAAI conference on weblogs
and social media, 2009.

3 Austin Benson, David F. Gleich, and Jure Leskovec. Higher-order organization of complex
networks. Science, 353(6295):163–166, 2016.

4 Austin Benson, Nate Veldt, and David F. Gleich. fauci-email: a json digest of anthony
fauci’s released emails. arXiv, cs.SI:2108.01239, 2021. Code and data available from
https://github.com/nveldt/fauci-email.

5 Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.
6 Natalie Bettendorf and Jason Leopold. Anthony fauci’s emails reveal the pressure

that fell on one man. BuzzFeed News, https://www.buzzfeednews.com/article/
nataliebettendorf/fauci-emails-covid-response, June 2021.

7 Mike Bostock. D3.js – data-driven documents, 2012.
8 James R. Clough and Tim S. Evans. Embedding graphs in lorentzian spacetime. PLOS

ONE, 12(11):e0187301, Nov 2017.
9 Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research.

InterJournal, Complex Systems:1695, 2006.
10 Manlio De Domenico, Mason A Porter, and Alex Arenas. Muxviz: a tool for multilayer

analysis and visualization of networks. Journal of Complex Networks, 3(2):159–176, 2015.
11 Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. Metapath2vec: Scalable repres-

entation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17, page 135–144,
New York, NY, USA, 2017. Association for Computing Machinery.

12 D. Edler, A. Eriksson, and M. Rosvall. The Infomap Software Package, 2021.
13 John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North, Gordon Woodhull, Short

Description, and Lucent Technologies. Graphviz — open source graph drawing tools. In
Lecture Notes in Computer Science, pages 483–484. Springer-Verlag, 2001.

https://github.com/nveldt/fauci-email
https://www.buzzfeednews.com/article/nataliebettendorf/fauci-emails-covid-response
https://www.buzzfeednews.com/article/nataliebettendorf/fauci-emails-covid-response


Tina Eliassi-Rad, Vito Latora, Martin Rosvall, and Ingo Scholtes 173

14 Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(98):298–305, 1973.

15 Kimon Fountoulakis, David F. Gleich, and Michael W. Mahoney. A short introduction to
local graph clustering methods and software. In Book of Abstracts for 7th International
Conference on Complex Networks and Their Applications, pages 56–59, 2018.

16 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864, 2016.

17 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

18 Kenneth M. Hall. An r-dimensional quadratic placement algorithm. Management Science,
17(3):219–229, 1970.

19 Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, Cheeger inequalities
and spectral clustering. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3014–3023, Stockholm Sweden, 10–15 Jul 2018. PMLR.

20 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

21 Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter, and Jukka-Pekka
Onnela. Community structure in time-dependent, multiscale, and multiplex networks.
Science, 328(5980):876–878, 2010.

22 Tiago P. Peixoto. The graph-tool python library. figshare, 2014.
23 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, pages 701–710, New York, NY, USA,
2014. ACM.

24 Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of
computational physics, 117(1):1–19, 1995.

25 Martin Rosvall, Alcides V. Esquivel, Andrea Lancichinetti, Jevin D. West, and Renaud
Lambiotte. Memory in network flows and its effects on spreading dynamics and community
detection. Nature Communications, 5(4630), 2014.

26 Jürgen Hackl, Ingo Scholtes, Luka V Petrović, Vincenzo Perri, Luca Verginer, Christoph
Gote. Analysis and visualisation of time series data on networks with pathpy In Proceedings
of the 11th Temporal Web Analytics Workshop (TempWeb 2021) held in conjunction with
The Web Conference 2021, Ljubljana, Slovenia, April 2021

27 Ingo Scholtes. When is a network a network? multi-order graphical model selection in
pathways and temporal networks. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’17, page 1037–1046, New
York, NY, USA, 2017. Association for Computing Machinery.

28 Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel
Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software en-
vironment for integrated models of biomolecular interaction networks. Genome research,
13(11):2498–2504, 2003.

29 Justin Sybrandt, Ruslan Shaydulin, and Ilya Safro. Hypergraph partitioning with embed-
dings. IEEE Transactions on Knowledge and Data Engineering, page 1–1, 2020.

30 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

31 Nate Veldt, Austin R. Benson, and Jon Kleinberg. Hypergraph cuts with general splitting
functions, 2020.

32 Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill,
1(10):e2, 2016.

21352



174 21352 – Higher-Order Graph Models

5 Panel discussions

5.1 What are Higher-Order Graph Models?
Ingo Scholtes (Julius-Maximilians-Universität Würzburg, DE & Universität Zürich, CH)
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Joint work of all seminar participants who participated in the panel discussion

Following the sessions with brief introductory statements and a first meeting of the working
groups, participants spontaneously engaged in an open-end evening discussion on what they
identified as an important open issue in the community: we lack a commonly agreed-upon
definition of higher-order graphs and networks. In particular, different researchers use the
term “higher-order” to refer to different characteristics of either networked systems, network
models, or data.

The discussion revealed that the seminar participants agree that, as a community, we
must more clearly distinguish between (i) complex networked systems that consist of many
interacting elements, (ii) high-dimensional data that capture those interactions between
system elements, and (iii) graph or network models of those systems. Commonly used graph
models with a single type of dyadic, static links as the simplest possible – but neither the only
nor necessarily optimal – graphical representation of data on element-element interactions
that can be used to generate insights into complex systems. The analysis of such first-order
graph model can nevertheless be reasonable if (a) we know that the system exclusively
features a single type of interaction between pairs of elements, (b) we only have access to
relational data capturing pair-wise interactions even though we know interactions in the
system are more complex, or (c) we seek to understand which of the system’s characteristics
can already be explained by first-order interaction.

A clear distinction whether the term network refers to the system to be modelled, the
structure of the available data, or the mathematical model used to analyse the data is often
missing. This complicates the rigorous definition of higher-order graphs and networks and has
– at times – fostered misunderstandings between different communities regarding whether a
given type of model should be considered higher-order or not. Summarising the results of the
panel discussion, in the following we take two perspectives that focus on the characteristics
of the model and the data on the system to be modelled.

Model perspective

A first approach to define higher-order graph models considers the mathematical representation
used to study the topology, i.e. who can influence whom and how, of a complex system.
First-order graph models assume that the topology (and the resulting behaviour) of a
complex system can be reduced to a set of dyadic edges, which can be mathematically
represented in terms of adjacency, transition, or Laplacian matrices with O(n2) entries,
where n is the number of elements or vertices in the system. Despite major differences in
terms of modelling assumptions, a common feature of all higher-order graph models – be it
hypergraphs, simplicial complexes, memory networks, or high-dimensional De Bruijn graphs –
is that they require mathematical notations with higher dimensionality than common matrix
representations. This characteristic of different higher-order models translates to similar ideas,
e.g. the use of tensors and flattened representations of high-dimensional linear operators,
as well as common challenges, e.g. computational challenges and dimensionality issues in
higher-order graph learning methods.
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Figure 3 Different higher-order graph models can be viewed as different projections of high-
dimensional data on interactions in complex systems along different dimensions, where single-typed
dyadic graphs can be viewed as a maximally simple projection of those different higher-order models.

While it may seem intuitive that the use of higher-order graph models either requires
networked systems with non-dyadic interactions or data with higher-order characteristics,
this is not necessarily the case. Several graph learning techniques make use of higher-order
primitives, which – however – are not used to model higher-order structure in the underlying
systems or data. A prominent example is node2vec[16], which can be viewed as a random
walk in a second-order graph model, but which is usually applied to data on graphs with
simple dyadic interactions. Here, the higher-order model is rather used to encode non-local
features of the graph topology into a model for a dynamical process on the graph. The
question whether we consider such a model as higher-order graph model or not highlights
that we may need to look beyond the characteristics of the data.

Data perspective

An interesting point raised during the discussion was that it may actually be easier to reach
consensus on a definition of higher-order characteristics in data, rather than higher-order
characteristics in graph models. From the perspective of “first-order” graph theory or network
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science, higher-order characteristics in data can be defined as any information that goes
beyond the specification of dyadic edges, i.e. any data that gives rise to more than a subset
of the Cartesian product of vertices. Examples for such data with higher-order characteristics
include but are not limited to:

multiple sets of edges capturing interactions with different properties (such as multi-typed
or signed interactions that invalidate a simple transitive treatment of edges)
data capturing polyadic interactions, e.g. tuples or sets with a cardinality higher than
two
ordered or time-stamped sequences of dyadic or polyadic interactions

In network science, such higher-order characteristics in data is often reduced to dyads
because we want to apply standard graph algorithms or network analysis techniques. In
contrast, as higher-order graph models we can define any model that seeks to more faithfully
represent (one or more) of the higher-order characteristics present in data on complex systems
that influence how nodes can directly or indirectly influence each other. Notably, different
types of higher-order graph models can destroy different higher-order characteristics in the
data: A hypergraph model of time-stamped polyadic interactions destroys higher-order
patterns that are due to the timing and ordering of interactions, while higher-order De
Bruijn graph models for temporally-ordered dyadic links destroy patterns that are due to the
polyadic nature of the interactions. The combination or unification of different higher-order
modelling frameworks to capture multiple higher-order characteristics of data is an important
open challenge that must be addressed by the community.

We finally noted that the large popularity of graph models with dyadic links or edges
often leads to the unfortunate development that the data collection and engineering process
is informed by the features of simple graph models rather than the modelling process being
informed by the higher-order characteristics of the system to be modelled. As an example,
data on co-authorship networks are often provided in the form of dyadic relationships between
authors even though the underlying interactions are fundamentally non-dyadic. Similarly,
data is often tailored to the application of time-slice snapshot network models, discarding
information that would be important to infer higher-order patterns in the temporal ordering
of interactions. This leads to what could be called a “data bottleneck” that hinders the
application of higher-order graph structures to model the higher-order characteristics present
in many real complex systems.
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