
Report from Dagstuhl Seminar 21431

Rigorous Methods for Smart Contracts
Edited by
Nikolaj S. Bjørner1, Maria Christakis2, Matteo Maffei3, and
Grigore Rosu4

1 Microsoft – Redmond, US, nbjorner@microsoft.com
2 MPI-SWS – Kaiserslautern, DE, maria@mpi-sws.org
3 TU Wien, AT, matteo.maffei@tuwien.ac.at
4 University of Illinois – Urbana-Champaign, US, grosu@illinois.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21431 “Rigorous
Methods for Smart Contracts”. Blockchain technologies have emerged as an exciting field for
both researchers and practitioners focusing on formal guarantees for software. It is arguably
a “once in a lifetime” opportunity for rigorous methods to be integrated in audit processes for
parties deploying smart contracts, whether for fund raising, securities trading, or supply-chain
management.

Smart contracts are programs managing cryptocurrency accounts on a blockchain. Research in
the area of smart contracts includes a fascinating combination of formal methods, programming-
language semantics, and cryptography. First, there is vibrant development of verification and
program-analysis techniques that check the correctness of smart-contract code. Second, there
are emerging designs of programming languages and methodologies for writing smart contracts
such that they are more robust by construction or more amenable to analysis and verification.
Programming-language abstraction layers expose low-level cryptographic primitives enabling
developers to design high-level cryptographic protocols. Automated-reasoning mechanisms present
a common underlying enabler; and the specific needs of the smart-contract world offer new
challenges.

This workshop brought together stakeholders in the aforementioned areas related to advancing
reliable smart-contract technologies.

Seminar October 24–29, 2021 – http://www.dagstuhl.de/21431
2012 ACM Subject Classification Security and privacy → Logic and verification; Software

and its engineering → Formal language definitions; Software and its engineering → Software
verification and validation

Keywords and phrases automated reasoning, cryptographic protocols, program verification,
programming languages, smart contracts

Digital Object Identifier 10.4230/DagRep.11.9.80
Edited in cooperation with Schindler, Tanja

1 Executive Summary

Nikolaj S. Bjørner (Microsoft – Redmond, US)

License Creative Commons BY 4.0 International license
© Nikolaj S. Bjørner

The seminar attracted 22 on-site and approximately as many off-site participants. The
hybrid mode presented an opportunity for collaborators, particularly students, of invitees to
participate remotely and contribute to the discussions. Remote participation spanned all

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Rigorous Methods for Smart Contracts, Dagstuhl Reports, Vol. 11, Issue 09, pp. 80–101
Editors: Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/21431
https://doi.org/10.4230/DagRep.11.9.80
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 81

time zones which attested to their involvement. The on-site participants had the benefit of
extended interactions and relation building so crucial for advancing scientific activities.

The technical program was organized around first day of tutorial presentations on the
main topics covered by the seminar. These topics were static analysis techniques, program
verification methods, protocol design for decentralized ledgers, and semantic-based tools.

The following days provided for in-depth sessions around these topics. Static analysis
techniques spanned using Horn clause solvers, Datalog engines, and abstract interpretation
frameworks in a mixture of academic and industrial settings. Program verification techniques,
likewise, were pursued both by academic and industry participants. The seminar offered
an excellent forum for the scientific and commercial community around smart contracts to
exchange experiences and develop ideas.

For the social program, we hiked for two hours during a beautiful October afternoon to
Landgasthof Paulus & Der Laden for a delightful dinner.

21431

82 21431 – Rigorous Methods for Smart Contracts

2 Table of Contents

Executive Summary
Nikolaj S. Bjørner . 80

Overview of Talks
The GASOL project: a GAS Optimization tooLkit
Elvira Albert and Albert Rubio . 84

Formally Verifying Ethereum Smart Contracts by Overwhelming Horn Solvers
Leonardo Alt . 84

Smart contracts in Bitcoin and BitML
Massimo Bartoletti . 85

On Supporting Smart Contract Verification in Z3
Nikolaj S. Bjørner . 86

Resource-Aware Session Types for Digital Contracts
Ankush Das . 87

Rich Specifications for Ethereum Smart Contract Verification
Marco Eilers . 87

Verifying Lighting in Why3
Grzegorz Fabianski . 88

Consensus for Decentralized Ledgers
Bryan Ford . 88

Program analysis tools for software auditors
Diego Garbervetsky . 89

Modular verification of memory-manipulating programs
Isabel Garcia-Contreras . 90

On the Just-In-Time Discovery of Profit-Generating Transactions in DeFi Protocols
Arthur Gervais . 90

Gigahorse: A Declaratively-Specified EVM Binary Lifter
Neville Grech . 91

solc-verify: A Modular Verifier for Solidity Smart Contracts
Ákos Hajdu . 91

Smart contract = contract + control + settlement
Fritz Henglein . 92

Speculative Smart Contracts
Jing Chen . 93

Testing Cosmos applications with TLA+ and Apalache
Igor Konnov . 93

Towards Automated Verification of Smart Contract Fairness
Yi Li . 93

Practical and Provably Sound Static Analysis of Ethereum Smart Contracts
Matteo Maffei . 94

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 83

What we do at Certora
Alexander Nutz . 95

Off-Chain Protocols meet Game Theory
Sophie Rain . 95

Formal Methods in Zero-Knowledge Protocols: Challenges in the circom Program-
ming Language
Albert Rubio . 96

Sharding Smart Contracts
Ilya Sergey . 96

Smart Contract Vulnerabilities and Analysis
Yannis Smaragdakis and Neville Grech . 97

Accounts vs UTXO
Philip Wadler . 97

Formal Verification of Smart Contracts with the Move Prover
Wolfgang Grieskamp . 98

Checking Properties of Smart Contract Systems
Valentin Wüstholz and Maria Christakis . 98

Int-blasting
Yoni Zohar . 99

Working groups
Specification Languages for Smart Contracts (Group Discussion)
discussion participants . 99

Verifying Arithmetic Circuits from Zero Knowledge Applications
Leo Alt and Nikolaj Bjørner . 99

Participants . 101

Remote Participants . 101

21431

84 21431 – Rigorous Methods for Smart Contracts

3 Overview of Talks

3.1 The GASOL project: a GAS Optimization tooLkit
Elvira Albert (Complutense University of Madrid, ES) and Albert Rubio (Complutense
University of Madrid, ES)

License Creative Commons BY 4.0 International license
© Elvira Albert and Albert Rubio

Joint work of Elvira Albert, Pablo Gordillo, Alejandro Hernández-Cerezo, Albert Rubio

Super-optimization is a compilation technique that searches for the optimal sequence of
instructions semantically equivalent to a given (loop-free) initial sequence. This talks
overviews our approach for super-optimization of smart contracts based on Max-SMT which
is split into two main phases:(i) the extraction of a functional specification from the basic
blocks of the smart contract, which is simplified using rules that capture the semantics of
the arithmetic, bit-wise, relational operations, etc. and(ii) the synthesis of optimized blocks
which, by means of an efficient Max-SMT encoding, finds the bytecode blocks with minimal
cost (according to the selected optimization criteria) and whose functional specification is
equal (modulo commutativity) to the extracted one. Our experiments on randomly selected
real contracts achieve important gains in gas and in bytes-size over code already optimized
by solc.

References
1 Elvira Albert, Pablo Gordillo, Albert Rubio, Maria Anna Schett: Synthesis of Super-

Optimized Smart Contracts Using Max-SMT. CAV (1) 2020: 177-200

3.2 Formally Verifying Ethereum Smart Contracts by Overwhelming
Horn Solvers

Leonardo Alt (Ethereum – Berlin, DE)

License Creative Commons BY 4.0 International license
© Leonardo Alt

Ethereum smart contracts hold billions of USD, have (usually) immutable logic, and are
(also usually) open source. Therefore, ensuring that the programs are bug free is essential for
this ecosystem. Formal verification, particularly, has seen a successful application in smart
contracts also due to their rather small complexity compare to other types of systems, since
the contract size is limited and complex code often implies higher computation costs. In this
work we present a model checker for Solidity smart contracts based on Constrained Horn
Clauses [1]. The Solidity programs are encoded as systems of Horn clauses where verifying
a safety clause consists of Horn satisfiability. We show how the encoding is performed
following [2], and the special behaviors from smart contracts that lead to the specific Horn
encoding for these problems from [1]. We also show experiments on a small scale, focusing on
specific features, as well as large real-world instances, demonstrating how properties that are
part of large systems can also be solved automatically. Finally, we present data comparing
how the two backend Horn solvers used by the tool, Spacer and Eldarica, compare in the
different instances that are part of the experiments.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 85

References
1 Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster, Antti E. J. Hyvärinen,

Natasha Sharygina: Accurate Smart Contract Verification Through Direct Modelling. ISoLA
(3) 2020: 178-194

2 Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, Andrey Rybalchenko: Horn Clause
Solvers for Program Verification. Fields of Logic and Computation II 2015: 24-51

3.3 Smart contracts in Bitcoin and BitML
Massimo Bartoletti (University of Cagliari, IT)

License Creative Commons BY 4.0 International license
© Massimo Bartoletti

Joint work of Massimo Bartoletti, Roberto Zunino
Main reference Massimo Bartoletti, Roberto Zunino: “BitML: A Calculus for Bitcoin Smart Contracts”, in Proc. of

the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, pp. 83–100, ACM, 2018.

URL https://doi.org/10.1145/3243734.3243795

Although Bitcoin is mainly used to exchange crypto-currency, its blockchain and consensus
mechanism can also be exploited to execute smart contracts, allowing mutually untrusted
parties to exchange crypto-assets according to pre-agreed rules. To this purpose, Bitcoin
features a non Turing-complete script language, which is used to specify the redeem conditions
of transactions. This is a simple language of expressions, without loops or recursion. To
write complex smart contracts, one needs to suitably combine transactions: in this approach,
executing a contract amounts to appending sequences of transactions in a given order.

A drawback of this approach is that the complexity of writing smart contracts grows
quickly in the number of transactions needed to implement it. Reasoning about the correctness
of these contracts is even harder: one would have to consider computational adversaries
who interact with the blockchain, only being constrained to use PPTIME algorithms. To
overcome these issues we have proposed BITML [1], a high-level DSL for smart contracts
with a computationally sound compiler to Bitcoin transactions.

The computational soundness property allows us to reason about contracts at the symbolic
level of the BitML semantics. We exploit this possibility to investigate a landmark property
of contracts, called liquidity, which ensures that funds never remain frozen within a contract.
Liquidity is a relevant issue, as witnessed by a recent attack to the Ethereum Parity Wallet,
which has frozen 160M USD within the contract, making this sum unredeemable by any
user.

We develop a static analysis for liquidity of BitML contracts. This is achieved by
first devising a finite-state, safe abstraction of infinite-state semantics of BitML, and then
model-checking this abstraction.

We conclude by discussing a few open issues: in particular, how to enhance the express-
iveness of Bitcoin contracts via minor extensions of the Bitcoin script language, and how to
reduce the cost of executing contracts.

References
1 Massimo Bartoletti, Roberto Zunino: BitML: A Calculus for Bitcoin Smart Contracts. CCS

2018: 83-100

21431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1145/3243734.3243795

86 21431 – Rigorous Methods for Smart Contracts

3.4 On Supporting Smart Contract Verification in Z3
Nikolaj S. Bjørner (Microsoft – Redmond, US)

License Creative Commons BY 4.0 International license
© Nikolaj S. Bjørner

We give an overview of current activities and features in Z3 that are aimed to make reasoning
about smart contracts more efficient. The use of SMT solvers for Smart Contract analysis
spans a range of scenarios, noteworthy symbolic execution, extended static analysis, symbolic
model checking through solving satisfiability of Horn clauses, to program verification style
reasoning. Thus, there is a fair range of reasoning capabilities that are relevant for Smart
Contracts. Based on current experiences from users of z3 the talk presents ongoing work and
extensions that may be of use for advancing reasoning about smart contracts.

Native Large Bit-width reasoning Verification conditions seem from Certora include code
paths from EVM that involve bit-vectors with 256 bits each. When translating bit-vector
reasoning to integers, the large bit-widths result in formulas with numerals that require
expensive representations of large numerals. Integer reasoning does not assume fixed
width numerals and has to take into account that integers can be unbounded. Integer
reasoning is furthermore limited when it comes to non-linear arithmetic, as generally even
quantifier-free non-linear integer satisfiability is undecidable (Hilbert’s 10’th problem).
Z3’s native bit-vector reasoning engine converts bit-vector reasoning to propositional SAT.
The overhead of representing bit-vector multiplication and division for large bit-widths
makes propositional bit-vector reasoning impractical. With Jakob Rath at TU Vienna
we are developing an new word level bit-vector reasoning engine in Z3 called PolySAT.
PolySAT builds on and extends ideas developed by [1] to handle constraints that involve
polynomial inequalities over bit-vectors. The main innovations in PolySAT include a
generalization of conflict detection to linear inequalities, not only linear inequalities with
unit coefficients. Conflict detection is complemented by an on-demand saturation phase
to generalize infeasible cores.

Refinement Sorts Uses of Z3 at Meta (Facebook) suggest the relevance of integrating
refinement sorts to the input formalism of SMT solvers. For example, the sort of natural
numbers is a refinement sort of integers that are non-negative. Each natural number is
an integer that is also non-negative. We illustrate how refinement sorts can be supported
as theory that lazily instantiates axioms required to enforce refinement constraints.

Code as Constraints A new capability in Z3 is (re)exposing a capability to encode on-
demand propagators outside of the solver. This enables users to encode properties that
may require a bloated axiomatization.

References
1 Stéphane Graham-Lengrand and Dejan Jovanovic and Bruno Dutertre, Solving Bitvectors

with MCSAT: Explanations from Bits and Pieces, in Automated Reasoning – 10th In-
ternational Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part I

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 87

3.5 Resource-Aware Session Types for Digital Contracts
Ankush Das (Amazon – Cupertino, US)

License Creative Commons BY 4.0 International license
© Ankush Das

Joint work of Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, Ishani Santurkar
Main reference Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, Ishani Santurkar: “Resource-Aware

Session Types for Digital Contracts”, in Proc. of the 34th IEEE Computer Security Foundations
Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021, pp. 1–16, IEEE, 2021.

URL https://doi.org/10.1109/CSF51468.2021.00004

Programming digital contracts comes with unique challenges, which include (i) expressing
and enforcing protocols of interaction, (ii) controlling resource usage, and (iii) preventing
the duplication or deletion of a contract’s assets. This talk presents the type-theoretic
foundation and implementation of Nomos, a programming language for digital contracts that
addresses these challenges. To express and enforce protocols, Nomos is based on shared binary
session types. To control resource usage, Nomos employs automatic amortized resource
analysis. To prevent the duplication or deletion of assets, Nomos uses a linear type system.
A monad integrates the effectful session-typed language with a general-purpose functional
language. Nomos’ prototype implementation features linear-time type checking and efficient
type reconstruction that includes automatic inference of resource bounds via off-the-shelf
linear optimization. The effectiveness of the language is evaluated with case studies about
implementing common smart contracts such as auctions, elections, and currencies. Nomos
is completely formalized, including the type system, a cost semantics, and a transactional
semantics to instantiate Nomos contracts on a blockchain. The type soundness proof ensures
that protocols are followed at run-time and that types establish sound upper bounds on the
resource consumption, ruling out re-entrancy and out-of-gas vulnerabilities.

3.6 Rich Specifications for Ethereum Smart Contract Verification
Marco Eilers (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Marco Eilers

Joint work of Christian Bräm, Marco Eilers, Peter Müller, Robin Sierra, Alexander J. Summers
Main reference Christian Bräm, Marco Eilers, Peter Müller, Robin Sierra, Alexander J. Summers: “Rich

specifications for Ethereum smart contract verification”, Proc. ACM Program. Lang.,
Vol. 5(OOPSLA), pp. 1–30, 2021.

URL https://doi.org/10.1145/3485523

The verification of smart contracts poses challenges that rarely arise in other domains due to
their typical use case (manipulating and transferring resources) and the necessity to interact
with adversarial outside code. In this talk, I present a novel specification methodology,
tailored to the domain of smart contracts, which enables (1) sound and precise reasoning
in the presence of unverified code and arbitrary re-entrancy, (2) modular reasoning about
collaborating smart contracts, and (3) domain-specific specification of resources and resource
transfers, expressing a contract’s behavior in intuitive and concise ways and excluding typical
errors by default. I also briefly show the implementation of our technique in 2vyper, an
SMT-based automated verification tool for Ethereum smart contracts written in Vyper,
demonstrating its effectiveness for verifying real-world contracts.

21431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.1109/CSF51468.2021.00004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485523
https://doi.org/10.1145/3485523
https://doi.org/10.1145/3485523
https://doi.org/10.1145/3485523

88 21431 – Rigorous Methods for Smart Contracts

3.7 Verifying Lighting in Why3
Grzegorz Fabianski (University of Warsaw, PL)

License Creative Commons BY 4.0 International license
© Grzegorz Fabianski

Joint work of Grzegorz Fabianski, Rafał Stefański

Lighting Network is an off-chain payment protocol working over bitcoin (and arguably the
biggest application of scripting capabalities of bitcoin). As such, it uses complicated logic on
the client-side to circumvent limited capabalities of bitcoin scripting language. In this talk, I
present the status of ongoing work about verifying the Lighting network in the Why3 system.
I will describe techniques that will enable us to verify randomized protocol (like Lighting)
using deterministic Hoare Logic. Then I’ll explain an overview of the project architecture
and used abstractions.

3.8 Consensus for Decentralized Ledgers
Bryan Ford (EPFL Lausanne, CH)

License Creative Commons BY 4.0 International license
© Bryan Ford

URL https://drive.google.com/file/d/1M0xEtOT7lNBQFE7DCzWhBDMFrSKXnOey/view?usp=sharing

Blockchain and distributed ledger technology, as popularized by Bitcoin, has reinvigorated the
classic computer science topic of consensus algorithms and protocols, and sent research in this
space in many new directions. This talk summarizes a few of these developments in consensus
for decentralized ledger systems. While classic “permission” consensus mechanisms such as
Paxos assume a fixed set of a few consensus nodes, cryptocurrencies like Bitcoin established
new expectations: to be open to “permissionless” participation; to scale to thousands or
millions of participants; and to ensure that Byzantine security increases as participation
increases and diversifies. Bitcoin’s “Nakamoto consensus” is slow and has many other costs
and limitations, however. Research on improving blockchain consensus has introduced “hybrid”
schemes such as Byzcoin that achieve the best properties of Bitcoin-style permissionless
consensus and PBFT-style Byzantine consensus. Sharding schemes such as Omniledger allow
a blockchain’s processing capacity to increase via horizontal scalability as the number of
participants grows, potentially without bound, without sacrificing Byzantine security or the
ability to execute transactions atomically across shards. Random beacon protocols such as
RandHound/RandHerd and drand are instrumental to enabling secure sharding and other
advanced blockchain consensus schemes. New asynchronous consensus algorithms inspired
by blockchain systems, while still not yet deployed in practice, promise greater resilience to
potentially-adversarial network conditions such as denial-of-service attacks once they become
truly practical. New structuring concepts such as threshold logical clocks (TLC) may help
make asynchronous consensus both more practical and more understandable. Proof of Stake
offers an alternative permissionless participation foundation to proof of work, offering much
lower energy waste, but still suffers from potential (re-)centralization or “rich get richer”
effects. Proof of Personhood schemes, such as pseudonym parties, offer a more egalitarian
path towards inclusive permissionless participation, attempting to ensure “one person, one
vote” or “one person, one unit of stake” in permissionless blockchain consensus.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://drive.google.com/file/d/1M0xEtOT7lNBQFE7DCzWhBDMFrSKXnOey/view?usp=sharing

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 89

References
1 Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta,

Bryan Ford: OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding. IEEE
Symposium on Security and Privacy 2018: 583-598.

2 Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
Bryan Ford: Enhancing Bitcoin Security and Performance with Strong Consistency via
Collective Signing. USENIX Security Symposium 2016: 279-296

3 Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser, Ismail
Khoffi, Michael J. Fischer, Bryan Ford: Scalable Bias-Resistant Distributed Randomness.
IEEE Symposium on Security and Privacy 2017: 444-460

4 Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser,
Ismail Khoffi, Justin Cappos, Bryan Ford: CHAINIAC: Proactive Software-Update Transpar-
ency via Collectively Signed Skipchains and Verified Builds. USENIX Security Symposium
2017: 1271-1287

5 Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,
Bryan Ford: Proof-of-Personhood: Redemocratizing Permissionless Cryptocurrencies.
EuroS&P Workshops 2017: 23-26

6 Bryan Ford: Threshold Logical Clocks for Asynchronous Distributed Coordination and
Consensus. CoRR abs/1907.07010 (2019)

7 Bryan Ford, Philipp Jovanovic, Ewa Syta: Que Sera Consensus: Simple Asynchronous
Agreement with Private Coins and Threshold Logical Clocks. CoRR abs/2003.02291 (2020)

8 Bryan Ford: Identity and Personhood in Digital Democracy: Evaluating Inclusion, Equality,
Security, and Privacy in Pseudonym Parties and Other Proofs of Personhood. CoRR
abs/2011.02412 (2020)

3.9 Program analysis tools for software auditors
Diego Garbervetsky (University of Buenos Aires, AR)

License Creative Commons BY 4.0 International license
© Diego Garbervetsky

Joint work of Diego Garbervetsky, Javier Godoy, Juan Pablo Galeotti, Sebastian Uchitel

In this talk I will summary part of the collaboration work with OpenZeppelin. In particular
our quest for tools that can help auditors to be more productive. In this collaboration we
first explore how expert perform software auditors, we then participated in audits trying to
see how to formalize some of the properties found by auditors. We also performed a survey
of existing tools and analyze which tools could fit OpenZeppelin’s audit process. Finally we
discuss a new approach to understand and validate smart contracts based on abstractions of
behavioral models.

21431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

90 21431 – Rigorous Methods for Smart Contracts

3.10 Modular verification of memory-manipulating programs
Isabel Garcia-Contreras (IMDEA Software – Madrid, ES)

License Creative Commons BY 4.0 International license
© Isabel Garcia-Contreras

Joint work of Isabel Garcia-Contreras, Arie Gurfinkel, Jorge A. Navas

In SMT-based model-checking (SMT-MC) the correctness of a program is determined through
the satisfiability of logical verification conditions (VCs) expressing the program semantics. A
popular approach to model memory is to encode memory accesses using array store or select
terms. When generating modular (i.e., per function) VCs, functions modifying memory take
arrays as parameters, and their summaries consist then of two sub-formulae: one expressing
memory changes and the other, called the frame, expressing the unmodified parts. Due to
the unbounded nature of arrays, the frame is often expressed by quantified formulae.

In this talk, we focus on the problem of discovering automatically inductive invariants
and function summaries. We contribute to the generation of modular VCs, using Constrained
Horn Clauses (CHCs), which are more amenable for SMT-MC. We first propose a new static
analysis that infers the finite memory footprint of a function. That is, the memory regions
that may be only accessed in a bounded number of locations. Second, we encode finite
memory using finite maps, eliminating the need of quantifiers to express frame axioms. We
propose a theory of finite maps adapted to CHCs and an algorithm to check satisfiability of
CHCs over integers, arrays and finite maps.

3.11 On the Just-In-Time Discovery of Profit-Generating Transactions
in DeFi Protocols

Arthur Gervais (Imperial College London, GB)

License Creative Commons BY 4.0 International license
© Arthur Gervais

Joint work of Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, Arthur Gervais
Main reference Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, Arthur Gervais: “On the Just-In-Time

Discovery of Profit-Generating Transactions in DeFi Protocols”, CoRR, Vol. abs/2103.02228, 2021.
URL https://arxiv.org/abs/2103.02228

In this paper, we investigate two methods that allow us to automatically create profitable
DeFi trades, one well-suited to arbitrage and the other applicable to more complicated
settings. We first adopt the Bellman-Ford-Moore algorithm with DEFIPOSER-ARB and
then create logical DeFi protocol models for a theorem prover in DEFIPOSER-SMT. While
DEFIPOSER-ARB focuses on DeFi transactions that form a cycle and performs very well
for arbitrage, DEFIPOSER-SMT can detect more complicated profitable transactions. We
estimate that DEFIPOSER-ARB and DEFIPOSER-SMT can generate an average weekly
revenue of 191.48ETH (76,592USD) and 72.44ETH (28,976USD) respectively, with the highest
transaction revenue being 81.31ETH(32,524USD) and22.40ETH (8,960USD) respectively. We
further show that DEFIPOSER-SMT finds the known economic bZx attack from February
2020, which yields 0.48M USD. Our forensic investigations show that this opportunity existed
for 69 days and could have yielded more revenue if exploited one day earlier. Our evaluation
spans 150 days, given 96 DeFi protocol actions, and 25 assets.

Looking beyond the financial gains mentioned above, forks deteriorate the blockchain
consensus security, as they increase the risks of double-spending and selfish mining. We explore
the implications of DEFIPOSER-ARB and DEFIPOSER-SMT on blockchain consensus.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2103.02228
https://arxiv.org/abs/2103.02228
https://arxiv.org/abs/2103.02228

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 91

Specifically, we show that the trades identified by our tools exceed the Ethereum block
reward by up to 874x. Given optimal adversarial strategies provided by a Markov Decision
Process (MDP), we quantify the value threshold at which a profitable transaction qualifies
as Miner ExtractableValue (MEV) and would incentivize MEV-aware miners to fork the
blockchain. For instance, we find that on Ethereum, a miner with a hash rate of 10% would
fork the blockchain if an MEV opportunity exceeds 4x the block reward.

3.12 Gigahorse: A Declaratively-Specified EVM Binary Lifter
Neville Grech (University of Malta – Msida, MT)

License Creative Commons BY 4.0 International license
© Neville Grech

Joint work of Neville Grech, Lexi Brent, Bernhard Scholz, Yannis Smaragdakis
Main reference Neville Grech, Lexi Brent, Bernhard Scholz, Yannis Smaragdakis: “Gigahorse: thorough, declarative

decompilation of smart contracts”, in Proc. of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pp. 1176–1186, IEEE / ACM,
2019.

URL https://doi.org/10.1109/ICSE.2019.00120

Smart contracts on blockchain platforms (e.g. Ethereum) represent a software domain with
critical correctness needs. Smart contract users and security auditors can greatly benefit
from a mechanism to recover the original structure of contracts, as evident from past work:
many security analyses of smart contracts begin with a decompilation step.

In this talk, we present the Gigahorse framework, which is at the core of the contract-
library.com service. Contract-library.com contains the most complete, high-level decompiled
representation of all Ethereum smart contracts, with security analyses applied to these in
realtime. The Gigahorse framework is a decompilation and security analysis framework that
natively supports Ethereum Virtual Machine (EVM) bytecode. Its internal intermediate
representation of smart contracts makes implicit data- and control-flow dependencies of
the EVM bytecode explicit. Using this framework we have developed and adapted several
advanced high-level client analyses, including MadMax and Ethainter. All our client analyses
benefit from high-level domain-specific concepts (such as “dynamic data structure storage”
and “safely resumable loops”) and achieve high precision and scalability.

One such client analysis, MadMax, flags contracts with a current monetary value in the
$B range. (Manual inspection of a sample of flagged contracts shows that 81% of the sampled
warnings do indeed lead to vulnerabilities.)

3.13 solc-verify: A Modular Verifier for Solidity Smart Contracts
Ákos Hajdu (Budapest Univ. of Technology & Economics, HU)

License Creative Commons BY 4.0 International license
© Ákos Hajdu

Joint work of Hajdu, Ákos; Jovanović, Dejan; Ciocarlie, Gabriela
Main reference Ákos Hajdu, Dejan Jovanovic: “solc-verify: A Modular Verifier for Solidity Smart Contracts”, in

Proc. of the Verified Software. Theories, Tools, and Experiments – 11th International Conference,
VSTTE 2019, New York City, NY, USA, July 13-14, 2019, Revised Selected Papers, Lecture Notes in
Computer Science, Vol. 12031, pp. 161–179, Springer, 2019.

URL https://doi.org/10.1007/978-3-030-41600-3_11

Solc-verify [1] is a source-level verification tool for Ethereum smart contracts. It takes smart
contracts written in Solidity and discharges verification conditions using modular program
analysis and SMT solvers. Built on top of the Solidity compiler, solc-verify reasons at the

21431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-41600-3_11

92 21431 – Rigorous Methods for Smart Contracts

level of the contract source code. This enables solc-verify to effectively reason about high-level
contract properties while modeling low-level language semantics precisely. The contract
properties, such as contract invariants, loop invariants, function pre- and post-conditions,
and event specifications [1, 3] can be provided as annotations in the code by the developer.
This enables automated, yet user-friendly formal verification for smart contracts.

A distinguishing feature of solc-verify is its memory model [2], which is based on a
formalization that covers all features of the language related to managing state and memory.
In addition, the formalization is effective: all but few features can be encoded in the quantifier-
free fragment of standard SMT theories. This enables precise and efficient reasoning about
the state of smart contracts. The formalization is implemented in solc-verify and we provide
an extensive set of tests that covers the breadth of the required semantics. We also provide
an evaluation on the test set that validates the semantics and shows the novelty of the
approach compared to other Solidity-level contract analysis tools.

References
1 Ákos Hajdu and Dejan Jovanović. solc-verify: A Modular Verifier for Solidity Smart

Contracts. VSTTE 2019
2 Ákos Hajdu and Dejan Jovanović. SMT-Friendly Formalization of the Solidity Memory

Model. ESOP 2020
3 Ákos Hajdu, Dejan Jovanović and Gabriela Ciocarlie. Formal Specification and Verification

of Solidity Contracts with Events (short paper). FMBC 2020

3.14 Smart contract = contract + control + settlement
Fritz Henglein (University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
© Fritz Henglein

Joint work of Fritz Henglein, Christian Kjær Larsen, Agata Murawska
Main reference Fritz Henglein, Christian Kjær Larsen, Agata Murawska: “A Formally Verified Static Analysis

Framework for Compositional Contracts”, in Proc. of the Financial Cryptography and Data Security
– FC 2020 International Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC, Kota Kinabalu,
Malaysia, February 14, 2020, Revised Selected Papers, Lecture Notes in Computer Science,
Vol. 12063, pp. 599–619, Springer, 2020.

URL https://doi.org/10.1007/978-3-030-54455-3_42

We present a smart contract architecture where a smart contract is decomposed into a
declarative contract (composed from subcontracts specifying obligations and permission),
contract manager (a generic program that, for any given contract, monitors or controls
contract events to be consistent with the contract’s semantics), and ra esource manager
(a system that maintains ownership state of user-definable resource types, which accepts
only resource-preserving transfers and thus guarantees nonduplication of any resource).
This separation of concerns facilitates expressing contracts in a declarative domain-specific
language for expressing commercial contracts and financial instruments, with formally
specified denotational semantics and support for mechanized static analysis [1].

References
1 Fritz Henglein, Christian Kjær Larsen, Agata Murawska. A Formally Verified Static Analysis

Framework for Compositional Contracts. Proc. 4th Workshop on Trusted Smart Contracts,
February 2020

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-54455-3_42
https://doi.org/10.1007/978-3-030-54455-3_42
https://doi.org/10.1007/978-3-030-54455-3_42
https://doi.org/10.1007/978-3-030-54455-3_42
https://doi.org/10.1007/978-3-030-54455-3_42
https://doi.org/10.1007/978-3-030-54455-3_42

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 93

3.15 Speculative Smart Contracts
Jing Chen (Algorand Inc, US)

License Creative Commons BY 4.0 International license
© Jing Chen

Joint work of Jing Chen, Maurice Herlihy, John Jannotti, Victor Luchangco, Liuba Shrira

Existing smart contract architectures suffer from a bottleneck problem: smart contract calls
result in user code being executed in the ledger’s critical path, potentially delaying simple
payments and transfers. We describe an alternative smart contract structure that executes
user code speculatively away from the blockchain’s critical path. A secure committee validates
and votes on the results of each such execution, certifying the execution’s preconditions
and its effects, and forwarding the certified results to a distinct consensus committee that
manages access to the ledger itself.

3.16 Testing Cosmos applications with TLA+ and Apalache
Igor Konnov (Informal Systems – Wien, AT)

License Creative Commons BY 4.0 International license
© Igor Konnov

TLA+ is a language for formal specification of all kinds of computer systems. System
designers use this language to specify concurrent, distributed, and fault-tolerant protocols,
which are traditionally presented in pseudo-code. At Informal Systems, we are using TLA+
to specify and reason about the protocols that are implemented in the Tendermint blockchains
and Cosmos ecosystem. To this end, we run Apalache, our symbolic model checker for TLA+.

In this talk, we show how to leverage TLA+ and Apalache to produce tests for block-
chain applications. In our approach, verification engineers are incrementally writing TLA+
specifications and their expected properties. By running the model checker, they produce
sequences of transactions, to be tried against the test environment. While this approach can
be used for testing Cosmos applications as a black box, we find it to be the most effective
when verification engineers have access to the source code.

3.17 Towards Automated Verification of Smart Contract Fairness
Yi Li (Nanyang TU – Singapore, SG)

License Creative Commons BY 4.0 International license
© Yi Li

Joint work of Ye Liu, Yi Li, Shang-Wei Lin, Rong Zhao
Main reference Ye Liu, Yi Li, Shang-Wei Lin, Rong Zhao: “Towards Automated Verification of Smart Contract

Fairness”, in Proc. of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, p. 666–677,
Association for Computing Machinery, 2020.

URL https://doi.org/10.1145/3368089.3409740

Smart contracts are computer programs allowing users to define and execute transactions
automatically on top of the blockchain platform. Many of such smart contracts can be
viewed as games. A game-like contract accepts inputs from multiple participants, and
upon ending, automatically derives an outcome while distributing assets according to some
predefined rules. Without clear understanding of the game rules, participants may suffer

21431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3368089.3409740
https://doi.org/10.1145/3368089.3409740
https://doi.org/10.1145/3368089.3409740
https://doi.org/10.1145/3368089.3409740
https://doi.org/10.1145/3368089.3409740

94 21431 – Rigorous Methods for Smart Contracts

from fraudulent advertisements and financial losses. In this paper, we present a framework
to perform (semi-)automated verification of smart contract fairness, whose results can be
used to refute false claims with concrete examples or certify contract implementations with
respect to desired fairness properties. We implement FairCon, which is able to check fairness
properties including truthfulness, efficiency, optimality, and collusion-freeness for Ethereum
smart contracts. We evaluate FairCon on a set of real-world benchmarks and the experiment
result indicates that FairCon is effective in detecting property violations and able to prove
fairness for common types of contracts.

3.18 Practical and Provably Sound Static Analysis of Ethereum Smart
Contracts

Matteo Maffei (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Matteo Maffei

Joint work of Matteo Maffei, Clara Scheidewind, Markus Scherer, Ilya Grishchenko
Main reference Clara Schneidewind, Ilya Grishchenko, Markus Scherer, Matteo Maffei: “eThor: Practical and

Provably Sound Static Analysis of Ethereum Smart Contracts”, in Proc. of the CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, November
9-13, 2020, pp. 621–640, ACM, 2020.

URL https://doi.org/10.1145/3372297.3417250

Ethereum has emerged as the most popular smart contract development platform, with
hundreds of thousands of contracts stored on the blockchain and covering a variety of
application scenarios, such as auctions, trading platforms, and so on. Given their financial
nature, security vulnerabilities may lead to catastrophic consequences and, even worse, they
can be hardly fixed as data stored on the blockchain, including the smart contract code itself,
are immutable. An automated security analysis of these contracts is thus of utmost interest,
but at the same time technically challenging for a variety of reasons, such as the specific
transaction-oriented programming mechanisms, which feature a subtle semantics, and the
fact that the blockchain data which the contract under analysis interacts with, including the
code of callers and callees, are not statically known.

In this talk, I will present eThor, the first sound and automated static analyzer for
EVM bytecode, which is based on an abstraction of the EVM bytecode semantics based
on Horn clauses. In particular, our static analysis supports reachability properties, which
we show to be sufficient for capturing interesting security properties for smart contracts
(e.g., single-entrancy) as well as contract-specific functional properties. Our analysis is
proven sound against a complete semantics of EVM bytecode and an experimental large-scale
evaluation on real-world contracts demonstrates that eThor is practical and outperforms the
state-of-the-art static analyzers.

This talk is based on a paper with the same title presented at CCS 2020.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 95

3.19 What we do at Certora
Alexander Nutz (Certora – Berlin, DE)

License Creative Commons BY 4.0 International license
© Alexander Nutz

Joint work of All members of Certora

Certora’s mission is “ensuring smart contract security”. To achieve this we are developing
a specification language for EVM smart contracts with the goal of being accessible to
programmers with only basic preexisting knowledge of formal verification. In addition,
specifications should be as portable as possible. In this context it is crucial to strike a
balance between minimally invasive specifications (which is important for understandability
and portability) and specs that are amenable to automatic proving techniques. We are also
developing a tool to automatically check these specifications, which works by translating
correctness queries to SMT formulas. There are numerous challenges in having these formulas
solved by today’s SMT solvers. We apply a variety of simplifications and abstractions to
make this feasible. Static analysis is an important enabler to make these transformations
sound. When running SMT solvers we are using a portfolio approach; depending on the
input, we can translate to various different encodings as well as running different solvers
and configurations. We also work closely with SMT solver developers to solve remaining
problems. In particular the fragment of large bit vectors (256 bit) combined with nonlinear
arithmetic is crucial for our efforts while having gotten comparatively little attention in the
past.

3.20 Off-Chain Protocols meet Game Theory
Sophie Rain (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Sophie Rain

Joint work of Sophie Rain, Zeta Avarikioti, Laura Kovács, Matteo Maffei
Main reference Sophie Rain, Zeta Avarikioti, Laura Kovács, Matteo Maffei: “Towards a Game-Theoretic Security

Analysis of Off-Chain Protocols”, CoRR, Vol. abs/2109.07429, 2021.
URL https://arxiv.org/abs/2109.07429

On-chain protocols constitute one of the most promising approaches to solve the inherent
scalability issue of blockchain technologies. The core idea is to let parties transact on-chain
only once to establish a channel between them, leveraging later on the resulting channel paths
to perform arbitrarily many peer-to-peer transactions on-chain. While significant progress
has been made in terms of proof techniques for on- chain protocols, existing approaches do
not capture the game-theoretic incentives at the core of their design, which led to overlooking
significant attack vectors like the Wormhole attack in the past. This work introduces the
first game-theoretic model that is expressive enough to reason about the security of on-chain
protocols. We advocate the use of Extensive Form Games EFGs and introduce two instances
of EFGs to capture security properties of the closing and the routing of the Lightning
Network. Specifically, we model the closing protocol, which relies on punishment mechanisms
to disincentivize the uploading on-chain of old channel states, as well as the routing protocol,
thereby formally characterizing the Wormhole attack, a vulnerability that undermines the
fee-based incentive mechanism underlying the Lightning Network.

21431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2109.07429
https://arxiv.org/abs/2109.07429
https://arxiv.org/abs/2109.07429

96 21431 – Rigorous Methods for Smart Contracts

3.21 Formal Methods in Zero-Knowledge Protocols: Challenges in the
circom Programming Language

Albert Rubio (Complutense University of Madrid, ES)

License Creative Commons BY 4.0 International license
© Albert Rubio

Joint work of Elvira Albert, Jordi Baylina, Marta Belles-Muñoz, Hermenegildo García-Navarro, Miguel
Isabel-Márquez, José Manuel Muñoz-Tapia, Clara Rodríguez-Núñez, Albert Rubio

The most widely studied language in the context of Zero-Knowledge (ZK) proofs is arithmetic
circuit satisfiability. In this talk we present circom, a programming language and a compiler
that allows the programmer to provide a low-level description of the arithmetic circuit
together with an effective way to execute it. We will introduce challenging safety properties
to be checked in circom programs and show the need of improving existing techniques to
analyse and simplify the nonlinear arithmetic constraints generated by the compiler.

3.22 Sharding Smart Contracts
Ilya Sergey (National University of Singapore, SG)

License Creative Commons BY 4.0 International license
© Ilya Sergey

Joint work of George Pîrlea, Amrit Kumar, Ilya Sergey
Main reference George Pîrlea, Amrit Kumar, Ilya Sergey: “Practical smart contract sharding with ownership and

commutativity analysis”, in Proc. of the PLDI ’21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
pp. 1327–1341, ACM, 2021.

URL https://doi.org/10.1145/3453483.3454112

Sharding is a popular way to achieve scalability in blockchain protocols. Existing approaches
for blockchain sharding, however, do not scale well when concurrent transactions alter the
same replicated state component–a common scenario in Ethereum-style smart contracts.

I will outline a novel approach for efficiently sharding such transactions. It is based
on a folklore idea: state-manipulating atomic operations that commute can be processed
in parallel, with their cumulative result defined deterministically, while executing non-
commuting operations requires one to own the state they alter. We developed a static
program analysis that soundly infers ownership and commutativity summaries for smart
contracts and translates those summaries to sharding signatures that are used by the
blockchain protocol to maximise parallelism. Our evaluation shows that using the analysis
introduces negligible overhead to the transaction validation cost, while the inferred signatures
allow the system to achieve a significant increase in transaction processing throughput for
real-world smart contracts.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1145/3453483.3454112

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 97

3.23 Smart Contract Vulnerabilities and Analysis
Yannis Smaragdakis (University of Athens, GR) and Neville Grech (University of Malta –
Msida, MT)

License Creative Commons BY 4.0 International license
© Yannis Smaragdakis and Neville Grech

Joint work of Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, Ilias Tsatiris
Main reference Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, Ilias Tsatiris:

“Symbolic value-flow static analysis: deep, precise, complete modeling of Ethereum smart contracts”,
Proc. ACM Program. Lang., Vol. 5(OOPSLA), pp. 1–30, 2021.

URL https://doi.org/10.1145/3485540

In this talk, I give a quick introduction to the kinds of vulnerabilities that often appear in
Ethereum smart contract coding, and discuss a static analysis infrastructure that has led to
multiple high-profile vulnerability disclosures in the past year.

The main analysis architecture is “symbolic value-flow” (symvalic) analysis: a technique
that reasons about the program both symbolically and with concrete values, while abstracting
away from the program’s control flow. Precision is being maintained through a set of
“dependencies” between inferred values. This analysis architecture represents an attempt to
defeat the state-explosion problem (as in model checking or concrete execution) by sacrificing
a small amount of precision.

3.24 Accounts vs UTXO
Philip Wadler (University of Edinburgh, GB)

License Creative Commons BY 4.0 International license
© Philip Wadler

Joint work of Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Michael
Peyton Jones, Philip Wadler

Main reference Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Michael
Peyton Jones, Philip Wadler: “The Extended UTXO Model”, in Proc. of the Financial
Cryptography and Data Security – FC 2020 International Workshops, AsiaUSEC, CoDeFi, VOTING,
and WTSC, Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected Papers, Lecture Notes in
Computer Science, Vol. 12063, pp. 525–539, Springer, 2020.

URL https://doi.org/10.1007/978-3-030-54455-3_37

The talk offered a brief description of two approaches to tracking balances, accounts as used
by Ethereum and UTxO (Unspent Transaction Outputs) as used by Bitcoin and Cardano.
The strengths and weaknesses of the two are contrasted. One strength of UTxO as compared
with contracts is that the precise cost of running the smart contract can be calculated in
advance – there are never any surprises where, due to a change on the blockchain that
occurred between submitting the transaction and running the transaction, the cost of running
the transaction has changed.

References
1 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian,

Michael Peyton Jones, Philip Wadler: The Extended UTXO Model. Financial Cryptography
Workshops 2020: 525-539.

2 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann
Müller, Michael Peyton Jones, Polina Vinogradova, Philip Wadler: Native Custom Tokens
in the Extended UTXO Model. ISoLA (3) 2020: 89-111

21431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485540
https://doi.org/10.1145/3485540
https://doi.org/10.1145/3485540
https://doi.org/10.1145/3485540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37

98 21431 – Rigorous Methods for Smart Contracts

3.25 Formal Verification of Smart Contracts with the Move Prover
Wolfgang Grieskamp (Facebook – Bellevue, US)

License Creative Commons BY 4.0 International license
© Wolfgang Grieskamp

Joint work of David Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, Emma Zhong
Main reference David L. Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, Jingyi Emma Zhong:

“Fast and Reliable Formal Verification of Smart Contracts with the Move Prover”, CoRR,
Vol. abs/2110.08362, 2021.

URL https://arxiv.org/abs/2110.08362

The Move Prover (MVP) is a formal verifier for smart contracts written in the Move
programming language. MVP has an expressive specification language, and is fast and
reliable enough that it can be run routinely by developers and in integration testing. Besides
the simplicity of smart contracts and the Move language, three implementation approaches
are responsible for the practicality of MVP: (1) an alias-free memory model, (2) fine-grained
invariant checking, and (3) monomorphization. The entirety of the Move code for the Diem
blockchain has been extensively specified and can be completely verified by MVP in a few
minutes. Changes in the Diem framework must be successfully verified before being integrated
into the open source repository on GitHub.

3.26 Checking Properties of Smart Contract Systems
Valentin Wüstholz (ConsenSys – Kaiserslautern, DE) and Maria Christakis (MPI-SWS –
Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
© Valentin Wüstholz and Maria Christakis

Joint work of Dimitar Bounov, Maria Christakis, Arie Gurfinkel, Joran J. Honig, Jorge A. Navas, Richard J.
Trefler, Scott Wesley, Valentin Wüstholz

Main reference Valentin Wüstholz, Maria Christakis: “Harvey: a greybox fuzzer for smart contracts”, in Proc. of
the ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, pp. 1398–1409,
ACM, 2020.

URL https://doi.org/10.1145/3368089.3417064

Ensuring the correctness of smart contracts is becoming increasingly challenging. We provide
an overview of how to check custom correctness properties for complex systems of smart
contracts. We introduce the Harvey fuzzer which is used in two industrial analysis services
for smart contracts. We also provide a brief overview of the Scribble specification language
that we use to instrument contracts with runtime checks. Finally, we introduce SmartACE,
a new analysis framework for Solidity contracts.

References
1 Valentin Wüstholz, Maria Christakis: Harvey: a greybox fuzzer for smart contracts. ES-

EC/SIGSOFT FSE 2020: 1398-1409
2 Valentin Wüstholz, Maria Christakis: Targeted greybox fuzzing with static lookahead

analysis. ICSE 2020: 789-800
3 Scott Wesley, Maria Christakis, Jorge A. Navas, Richard J. Trefler, Valentin Wüstholz,

Arie Gurfinkel: Compositional Verification of Smart Contracts Through Communication
Abstraction. SAS 2021: 429-452

4 Scott Wesley, Maria Christakis, Jorge A. Navas, Richard J. Trefler, Valentin Wüstholz,
Arie Gurfinkel: Verifying Solidity Smart Contracts Via Communication Abstraction in
SmartACE. VMCAI 2022 (to appear)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2110.08362
https://arxiv.org/abs/2110.08362
https://arxiv.org/abs/2110.08362
https://arxiv.org/abs/2110.08362
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3368089.3417064

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 99

3.27 Int-blasting
Yoni Zohar (Bar-Ilan University – Ramat Gan, IL)

License Creative Commons BY 4.0 International license
© Yoni Zohar

Joint work of Ahmed Irfan, Makai Mann, Aina Niemetz, Andres Noetzli, Mathias Preiner, Andrew Reynolds,
Clark Barrett, Cesare Tinelli, Yoni Zohar

The state of the art for bit-precise reasoning in the context of Satisfiability Modulo Theories
(SMT) is a SAT-based technique called bit-blasting where the input formula is first simplified
and then translated to an equisatisfiable propositional formula. The main limitation of
this technique is scalability, especially in the presence of large bit-widths and arithmetic
operators.

In this talk we introduced an alternative technique, which we call int-blasting, based
on a translation to an extension of integer arithmetic rather than propositional logic. We
present several alternative translations, discuss their differences, and evaluate them on
benchmarks that arise from verification of rewrite rule candidates for bit-vector solving, as
well as benchmarks from SMT-LIB. We also provide preliminary results on 35 benchmarks
that arise from smart contract verification. The evaluation shows that this technique is
particularly useful for benchmarks with large bit-widths and can solve benchmarks that the
state of the art cannot.

4 Working groups

4.1 Specification Languages for Smart Contracts (Group Discussion)
discussion participants

License Creative Commons BY 4.0 International license
© discussion participants

The discussion was centered around specification languages for smart contracts and broadly
touched on various related topics, such as expressiveness (e.g., safety properties, liveness
properties, hyperproperties) and accessibility to programmers without background in formal
methods.

4.2 Verifying Arithmetic Circuits from Zero Knowledge Applications
Leo Alt and Nikolaj Bjørner

License Creative Commons BY 4.0 International license
© Leo Alt and Nikolaj Bjørner

Zero knowledge cryptography enables private computation in the form of zkSNARKs [1], that
is, you can use an application without revealing some private input. The ZCash blockchain
pioneered private cryptocurrency transactions, and nowadays several different applications
use the same or similar technology in different ways. These computations that are performed
on private data are represented as polynomials in the deepest layer of the proof system.
However, initially, they are represented by arithmetic circuits. The small but huge difference
from the machine circuits we may be used too is that the arithmetic on these circuits is
performed over a very large prime field, since that is where the cryptographic primitives
operate.

21431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

100 21431 – Rigorous Methods for Smart Contracts

We studied how the ZoKrates [2] compiler translates high level program statements into
arithmetic circuits. Because of the nature of the proof system and the verification process in
the zkSNARK workflow (which I will not expand here), it is useful for such a compiler to not
translate the statements intro precise constraints, but use rather weaker constraints to save
circuit and proof size. In some cases, this may lead to nondeterminism in the circuit, which
may or may not be harmful. This is under control for the statements that the compiler itself
generates, but may become problematic once a developer starts writing custom constraints,
as is common in Circom [3] and TurboPLONK [4].

We discussed about safety properties over these circuits, but converged on the smaller
problem of detecting nondeterminism of a circuit. The research question now is, how can we
modify/extend the tools we currently have in order to check the stated problem? If we just
feed the circuit into an SMT solver that has Nonlinear Arithmetic support with extra modulo
operations on all sums and multiplications, we know that this is quickly going to explode.
So we need a specific approach that works fundamentally better on prime fields. Moreover,
we also know that these primes are very large (254 bits), so this also needs to be taken into
account when designing an algorithm for that. There are algorithms for finding roots of a
system of polynomials, also on prime fields, but their complexity is prohibitively high in
practice. However, we do not need full roots solving, we would be happy with satisfiability.
So how can we design something in the middle?

References
1 https://zcash.github.io/halo2/concepts/proofs.html
2 https://zokrates.github.io/
3 https://github.com/iden3/circom
4 https://zcash.github.io/halo2/concepts/arithmetization.html

https://zcash.github.io/halo2/concepts/proofs.html
https://zokrates.github.io/
https://github.com/iden3/circom
https://zcash.github.io/halo2/concepts/arithmetization.html

Nikolaj S. Bjørner, Maria Christakis, Matteo Maffei, and Grigore Rosu 101

Participants

Elvira Albert
Complutense University of
Madrid, ES

Leonardo Alt
Ethereum – Berlin, DE

Nikolaj S. Bjørner
Microsoft – Redmond, US

Maria Christakis
MPI-SWS – Kaiserslautern, DE

Marco Eilers
ETH Zürich, CH

Grzegorz Fabianski
University of Warsaw, PL

Josselin Feist
Trail of Bits Inc. – New York, US

Bryan Ford
EPFL Lausanne, CH

Diego Garbervetsky
University of Buenos Aires, AR

Isabel Garcia-Contreras
IMDEA Software – Madrid, ES

Arthur Gervais
Imperial College London, GB

Neville Grech
University of Malta – Msida, MT

Wolfgang Grieskamp
Facebook – Bellevue, US

Fritz Henglein
University of Copenhagen, DK

Matteo Maffei
TU Wien, AT

Alexander Nutz
Certora – Berlin, DE

Sophie Rain
TU Wien, AT

Albert Rubio
Complutense University of
Madrid, ES

Tanja Schindler
Universität Freiburg, DE

Yannis Smaragdakis
University of Athens, GR

Valentin Wüstholz
ConsenSys – Kaiserslautern, DE

Remote Participants

Massimo Bartoletti
University of Cagliari, IT

Andreea Buterchi
MPI-SWS – Kaiserslautern, DE

Jing Chen
Stony Brook University, US

Shuo Chen
Microsoft Research Asia –
Beijing, CN

Ankush Das
Amazon – Cupertino, US

Stefan Dziembowski
University of Warsaw, PL

Ákos Hajdu
Budapest Univ. of Technology &
Economics, HU

Aniket Kate
Purdue University –
West Lafayette, US

Markulf Kohlweiss
University of Edinburgh, GB

Igor Konnov
Informal Systems – Wien, AT

Yi Li
Nanyang TU – Singapore, SG

Victor Luchangco
Algorand – Boston, US

Anastasia Mavridou
NASA – Moffett Field, US

Noam Rinetzky
Tel Aviv University, IL

Grigore Rosu
University of Illinois –
Urbana-Champaign, US

Giulia Scaffino
TU Wien, AT

Gerardo Schneider
University of Gothenburg, SE

Ilya Sergey
National University of
Singapore, SG

Zhong Shao
Yale University – New Haven, US

Philip Wadler
University of Edinburgh, GB

Yoni Zohar
Bar-Ilan University –
Ramat Gan, IL

21431

	Executive Summary Nikolaj S. Bjørner
	Table of Contents
	Overview of Talks
	The GASOL project: a GAS Optimization tooLkit Elvira Albert and Albert Rubio
	Formally Verifying Ethereum Smart Contracts by Overwhelming Horn Solvers Leonardo Alt
	Smart contracts in Bitcoin and BitML Massimo Bartoletti
	On Supporting Smart Contract Verification in Z3 Nikolaj S. Bjørner
	Resource-Aware Session Types for Digital Contracts Ankush Das
	Rich Specifications for Ethereum Smart Contract Verification Marco Eilers
	Verifying Lighting in Why3 Grzegorz Fabianski
	Consensus for Decentralized Ledgers Bryan Ford
	Program analysis tools for software auditors Diego Garbervetsky
	Modular verification of memory-manipulating programs Isabel Garcia-Contreras
	On the Just-In-Time Discovery of Profit-Generating Transactions in DeFi Protocols Arthur Gervais
	Gigahorse: A Declaratively-Specified EVM Binary Lifter Neville Grech
	solc-verify: A Modular Verifier for Solidity Smart Contracts Ákos Hajdu
	Smart contract = contract + control + settlement Fritz Henglein
	Speculative Smart Contracts Jing Chen
	Testing Cosmos applications with TLA+ and Apalache Igor Konnov
	Towards Automated Verification of Smart Contract Fairness Yi Li
	Practical and Provably Sound Static Analysis of Ethereum Smart Contracts Matteo Maffei
	What we do at Certora Alexander Nutz
	Off-Chain Protocols meet Game Theory Sophie Rain
	Formal Methods in Zero-Knowledge Protocols: Challenges in the circom Programming Language Albert Rubio
	Sharding Smart Contracts Ilya Sergey
	Smart Contract Vulnerabilities and Analysis Yannis Smaragdakis and Neville Grech
	Accounts vs UTXO Philip Wadler
	Formal Verification of Smart Contracts with the Move Prover Wolfgang Grieskamp
	Checking Properties of Smart Contract Systems Valentin Wüstholz and Maria Christakis
	Int-blasting Yoni Zohar

	Working groups
	Specification Languages for Smart Contracts (Group Discussion) discussion participants
	Verifying Arithmetic Circuits from Zero Knowledge Applications Leo Alt and Nikolaj Bjørner

	Participants
	Remote Participants

