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Abstract
Computability and continuity are closely linked – in fact, continuity can be seen as computability
relative to an arbitrary oracle. As such, concepts from topology and descriptive set theory
feature heavily in the foundations of computable analysis. Conversely, techniques developed in
computability theory can be fruitfully employed in topology and descriptive set theory, even if the
desired results mention no computability at all. In this Dagstuhl Seminar, we brought together
researchers from computable analysis, from classical computability theory, from descriptive set
theory, formal topology, and other relevant areas. Our goals were to identify key open questions
related to this interplay, to exploit synergies between the areas and to intensify collaboration
between the relevant communities.
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Research area and topics
Descriptive set theory traditionally studies the complexity of subsets of and functions between
Polish spaces (which are the completely metrizable separable spaces). As a mathematical
area, it has well-established interactions with set theory and real analysis. Its canonical
textbook is Kechris [11].

Following the developments in (classical) descriptive set theory, also the area of effective
descriptive set theory flourished. In a way, this is the result of replacing continuous by
computable everywhere, and by replacing arbitrary countable union by effective ones. Here,
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the canonical textbook is Moschovakis’ [19]. While classical descriptive set theory is trivial on
discrete spaces, the results from effective descriptive set theory on N often generalize results
from computability theory. While this is rarely emphasized (see [20] for an exception), one can
recover classical descriptive set theory from effective descriptive set theory by relativization –
provided that theorems are phrased in the right way.

Recent years have seen a lot of interest in the interplay between descriptive set theory
and theoretical computer science going beyond the natural meeting point of effective DST.
Four core developments outlined below are particularly relevant for the meeting:

DST on spaces of interest for TCS

Certain classes of topological spaces were revealed as applicable to reasoning about the
semantics of programming. The most famous example is domain theory, but Escardo’s
synthetic topology [6] or the relationship between well-structured transition systems and
Noetherian spaces revealed by Goubault-Larrecq [7] were also very influential. The spaces
relevant for TCS are often not Hausdorff, and in particular not Polish. Selivanov pioneered
the call for a development of descriptive set theory for these spaces [28, 29]. A break-through
was achieved by de Brecht [3] with identifying the class of quasi-Polish spaces as a common
generalization of Polish spaces and omega-continuous domains, and by showing that many
core results of descriptive set theory can be extended to quasi-Polish spaces.

In computable analysis, we typically work with the category of admissible represented
spaces (equivalently, with QCB0-spaces, i.e. T0-quotients of countably-based spaces) [24].
This is a Cartesian-closed category, meaning that we can form function spaces. This is a very
natural requirement from a TCS-perspective, but does not preserve being countably-based.
How descriptive set theory works on non-countably-based spaces is still a mystery. de Brecht,
Selivanov and Schröder have undertaken initial investigations, in particular into the Kleene-
Kreisel spaces in [27, 26, 5]. Hoyrup has shown that even very simple non-countably-based
spaces such as O(ωω) exhibit very unfamiliar behaviour compared to the usual DST [8].

Synthetic DST

de Brecht and Pauly observed a connection between synthetic topology (which in turn
can be seen as the theory of functional programming [6]), models of hypercomputation
and descriptive set theory [22, 23, 4]. This connection opens up the opportunity to apply
reasoning styles about models of computation to descriptive set theory. Work by Kihara on
the Jayne-Rogers conjecture has shown significant potential of this approach for solving open
questions in descriptive set theory [12]. There is also a hope that this theory can connect to
other parts of TCS such as descriptive complexity.

DST and computability theory

Traditional computability theory, in particular the study of enumeration degrees, was related
to the study of topological spaces via the notion of point degree spectrum introduced by
Kihara and Pauly [13], building on earlier work by J. Miller [17]. This lets us reason about
the degrees of individual points in a topological space, and understand properties of the space
in terms of what degrees are realized there. This technique was already used to resolve a
long-standing open question by Jayne ([9], also [21]) on the number of sigma-homeomorphism
types of Polish spaces in [13].

This connection is bidirectional, and also allows for the application of topological argu-
ments in computability theory. As such, it has inspired a flurry of recent developments in the
area of enumeration degrees by J. Miller, M. Soskova and others [2, 18, 1, 16]. Particularly
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remarkable here is the existence of non-total almost-total enumeration degrees. This is a
purely recursion-theoretic statement, but the various known proofs all invoke topological ar-
guments such as Brouwer’s Fixed Point theorem, Urysohn’s metrization theorem or Hurewicz’
and Wallmann’s characterization of countably-dimensional Polish spaces.

Of a similar flavour (but the precise connections are still unclear) is the approach to fractal
geometry and Hausdorff dimension via effective dimension of points, defined via Kolmogorov
complexity [14]. This approach has already been demonstrated to provide strengthening
of core results of fractal geometry, in many cases by rendering inessential restrictions to
measurable sets. This includes a reproof of known answer to the two-dimensional Kakeya-
conjecture [15].

coPolish spaces and computational complexity

In general, it seems that computational complexity of algorithms from computable analysis
needs second-order complexity (Kawamura and Cook [10]). For certain spaces, however,
runtimes of algorithms are still first-order objects [25]. Ongoing work by de Brecht and
Schröder has shown that this holds for the coPolish spaces, a dual notion to the quasi-Polish
spaces. As such, it seems that “spaces where descriptive set theory is well-behaved” is
the dual notion to “spaces where complexity theory is well-behaved”. This merits further
attention by a broader community.

Seminar structure
As our seminar brought together researchers from previously rather disconnected areas, we
included several tutorial talks of one hour each to introduce the various facets of our seminar
topics to everyone. The talks covered Quasi-Polish spaces (Matthew de Brecht), Quantitative
Coding and Complexity Theory of Continuous Data (Martin Ziegler), CoPolish spaces and
Effectively Hausdorff spaces (Matthias Schröder), New directions in Synthetic Descriptive Set
Theory (Takayuki Kihara), Categorical aspects of Descriptive Set Theory (Ruiyuan Chen),
Topology reflected in the enumeration degrees (Joseph S. Miller), Point-free Descriptive Set
Theory (Alex Simpson) and Borel combinatorics fail in HYP (Linda Westrick).

In addition, we had many short (fifteen minute) talks introducing topics or open questions.
The prompt for these talks was “What theorem do you want to prove during/following this
workshop?”, and we are excited to learn what will come from this in the next months.

Challenges in hybrid Dagstuhl meetings
While the organizers and most participants had grown very accustomed to virtual meetings,
the setting for our seminar was decidedly hybrid: About half of the participants were present
in person, half were participating remotely. The same split applied to the organizing team.

The Dagstuhl team had equipped our main meeting room with multiple cameras and
microphones (including microphones suspended from the ceiling throughout the room to pick
up audience contributions). The equipment was controlled by several volunteers amongst the
participants, and we are very grateful to Nikolay Bazhenov, Josiah Jacobsen-Grocott and
Eike Neumann for having performed this crucial role. This setup made interactions in the
lecture theatre between remote and in-person participants almost seamless.
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A feature we felt was both crucial for a successful Dagstuhl seminar and difficult to
accomplish in a hybrid setting are the informal discussions taking place in smaller groups.
Our approach was to make those slightly less informal, and to use the collaboration platform
Slack for arranging meetings. Slack also served for asking questions somewhat after the talks.
This was somewhat successful, and several fruitful discussions involving both remote and
in-person participants took place. It is difficult to ascertain though how much potential for
additional discussions remained untapped.
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3 Tutorial Talks

3.1 Categorical aspects of DST
Ruiyuan (Ronnie) Chen (McGill University – Montreal, CA)

License Creative Commons BY 4.0 International license
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We gave an introduction to categorical structures of interest in (classical) descriptive set
theory, including axioms on limits and colimits in categories of topological and Borel spaces
[3], duality with countably presented algebras, locales and point-free descriptive set theory
[4], and connections with infinitary propositional and first-order logic [1, 2].
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3.2 Tutorial on Quasi-Polish Spaces
Matthew de Brecht (Kyoto University, JP)
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We give a brief introduction to quasi-Polish spaces and their connections with Descriptive
set theory, Domain theory, Computable topology, Geometric logic, and Duality.

3.3 New Directions in Synthetic Descriptive Set Theory
Takayuki Kihara (Nagoya University, JP)
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Main reference Takayuki Kihara: “Lawvere-Tierney topologies for computability theorists”, CoRR,
Vol. abs/2106.03061, 2021.
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Main reference Takayuki Kihara: “Lawvere-Tierney topologies for computability theorists. arxiv: 2106.03061 (2021).

Takayuki Kihara: Rethinking the notion of oracle: A bridge between synthetic descriptive set theory
and effective topos theory”, in preparation (2022).

Main reference Arno Pauly, Matthew de Brecht: “Descriptive Set Theory in the Category of Represented Spaces”, in
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Japan, July 6-10, 2015, pp. 438–449, IEEE Computer Society, 2015.
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Let us reconsider what an oracle is. At least three different perspectives of oracle can be
presented. The first perspective is the most standard one, which is to think of an oracle as a
blackbox, represented as a set, a function, an infinite string, etc. If we think of a blackbox as
just a container to store an input data (whose data type is stream), as some people say, an
oracle is merely an input stream. The latter idea is also quite standard nowadays.
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The second perspective is based on a recent approach taken e.g. by de Brecht and Pauly to
develop synthetic descriptive set theory, which is, according to them, the idea that descriptive
set theory can be reinterpreted as the study of certain endofunctors and derived concepts,
primarily in the category of represented spaces. We interpret this key idea of synthetic
descriptive set theory as relativizing topological notions by (higher-type) oracles. In this
approach, an oracle is considered to be a functor that allows us to change the way we access
spaces.

The third perspective of oracle is the one that we promote in this talk. In this third
perspective, we consider an oracle to be an operation on truth-values that may cause a
transformation of one world into another. One might say that this is based on the idea that
there is a correspondence between computations using oracles and proofs using transcendental
axioms”. Such an idea is used as a very standard technique in, for example, classical reverse
mathematics. Our approach is similar, but with a newer perspective that deals more directly
with operations on truth-values. More explicitly, it is formulated using topos-theoretic notions
such as Lawvere-Tierney topology, which is a kind of generalization of Grothendieck topology
to an arbitrary topos.

In this talk, we clarify the connection between these three perspectives of oracle. In this
way, we attempt to bridge the gap between computability theory, synthetic description set
theory, and effective topos theory.

3.4 Topology reflected in the enumeration degrees
Joseph S. Miller (University of Wisconsin – Madison, US)
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This was an expository talk on connections between pure topology and the enumerations
degrees.

The continuous degrees were introduced by the speaker (2004) to measure the comput-
ability-theoretic content of elements of computable metric spaces. They properly extend
the Turing degrees. All known constructions of nontotal (i.e., non-Turing) continuous
degrees involve a nontrivial topological component. Indeed, the fact that there is a nontotal
continuous degrees in every upper cone is equivalent to the fact that the Hilbert cube is not
a countable union of (subspaces homeomorphic to) subspaces of Cantor space.

The continuous degrees naturally embed in the enumeration degrees, where there are more
connections to topology. Many of these were described by Kihara and Pauly, who assigned
enumeration degrees to the points of any second countable T0 topological space. This work
was continued by Kihara, Ng, and Pauly. Among their many results, they characterized the
cototal degrees as the degrees of points in (ωcof)ω, where ωcof is ω with the cofinite topology.

It is not know if every continuous degree is graph cototal, but the work above allows us
to translate this into a topological question. In particular, the following are equivalent:

There is a continuous degree that is not graph cototal in every upper cone.
The Hilbert cube is not a countable union of (subspaces homeomorphic to) subspaces of
(ωcof)ω.
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3.5 CoPolish Spaces and Effectively Hausdorff Spaces
Matthias Schröder (TU Darmstadt, DE)
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This talk presented two classes of topological spaces which play a big role in Computable
Analysis, namely CoPolish spaces and effectively Hausdorff spaces. CoPolish spaces are a
generalisation of locally compact spaces in the realm of QCB-spaces. They form exactly the
class of topological spaces which admit Simple Complexity, i.e. the measurement of Time
Complexity in terms of a discrete parameter on the input and the desired output precision.
Moreover, we show that there exists a universal CoPolish space, which is a CoPolish space
into which every other CoPolish space embeds as a closed subspace. Effectively Hausdorff
spaces generalise computable metric spaces and yield a better effectivisation of Hausdorffness
than the current notion of a computable Hausdorff space. Unlike computable Hausdorff
spaces they admit computability of a certain form of overt compact choice. Moreover,
we characterise computability of multivalued functions from computable metric spaces to
effectively Hausdorff spaces.

3.6 Tutorial: Quantitative Coding and Complexity Theory of Compact
Metric Spaces

Martin Ziegler (KAIST – Daejeon, KR)

License Creative Commons BY 4.0 International license
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Joint work of Donghyun Lim, Martin Ziegler
Main reference Donghyun Lim, Martin Ziegler: “Quantitative Coding and Complexity Theory of Compact Metric

Spaces”, in Proc. of the Beyond the Horizon of Computability – 16th Conference on Computability
in Europe, CiE 2020, Fisciano, Italy, June 29 – July 3, 2020, Proceedings, Lecture Notes in
Computer Science, Vol. 12098, pp. 205–214, Springer, 2020.

URL https://doi.org/10.1007/978-3-030-51466-2_18
URL http://youtu.be/QGTkZfUzhrI

Specifying a computational problem includes fixing encodings for input and output: encoding
graphs as adjacency matrices, characters as integers, integers as bit strings, and vice versa.
For such discrete data, the actual encoding is usually straightforward and/or complexity-
theoretically inessential (up to linear or polynomial time, say). Concerning continuous data,
already real numbers naturally suggest various encodings (formalized as historically so-called
representations) with very different algorithmic properties, ranging from the computably
“unreasonable” binary expansion [doi:10.1112/plms/s2-43.6.544] via qualitatively to polyno-
mially and even linearly complexity-theoretically “reasonable” signed-digit expansion. But
how to distinguish between un/suitable encodings of other spaces common in Calculus and
Numerics, such as Sobolev?

With respect to qualitative computability over topological spaces, admissibility had been
identified [doi:10.1016/0304-3975(85)90208-7] as a crucial criterion for a representation over
the Cantor space of infinite binary sequences to be ‘reasonable’: It requires the representation
to be (sequentially) continuous, and to be maximal with respect to (sequentially) continuous
reduction [doi:10.1007/11780342_48]. Such representations are guaranteed to exist for a
large class of spaces. And for (precisely) these does the sometimes so-called Main Theorem
hold: which characterizes continuity of functions by the continuity of mappings translating
codes, so-called realizers.
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qualitative computability topology (uniform) continuity compactness equilogical

quantitative complexity metric modulus of continuity entropy ultrametric

Following this ”dictionary”, we refine qualitative computability over topological spaces to
quantitative complexity over metric spaces, by developing the theory of polynomially and of
linearly admissible representations. Informally speaking, these are ‘optimally’ continuous,
namely linearly/polynomially relative to the space’s entropy; and maximal with respect to
relative linearly/polynomially continuous reductions defined below. A large class of spaces is
shown to admit a quantitatively admissible representation, including a generalization of the
signed-digit encoding; and these exhibit a quantitative strengthening of the qualitative Main
Theorem, namely now characterizing quantitative continuity of functions by quantitative
continuity of realizers. Our quantitative admissibility thus provides the desired criterion for
complexity-theoretically ‘reasonable’ encodings.

3.7 Borel combinatorics fail in HYP
Linda Westrick (Pennsylvania State University – University Park, US)

License Creative Commons BY 4.0 International license
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Joint work of Linda Westrick, Henry Towsner, Rose Weisshaar
Main reference H. Towsner, R. Weisshaar, L. Westrick: “Borel combinatorics fail in HYP”, To appear in the Journal

of Mathematical Logic
URL http://arxiv.org/abs/2106.13330

Of the principles just slightly weaker than ATR, the most well-known are the theories of
hyperarithmetic analysis (THA). By definition, such principles hold in HYP. Motivated by
the question of whether the Borel Dual Ramsey Theorem is a THA, we consider several
theorems involving Borel sets and ask whether they hold in HYP. To make sense of Borel
sets without ATR, we formalize the theorems using completely determined Borel sets. We
characterize the completely determined Borel subsets of HYP as precisely the sets of reals
which are ∆1

1 in Lωck
1

. Using this, we show that in HYP, Borel sets behave quite differently
than in reality. For example, in HYP, the Borel dual Ramsey theorem fails, every n-regular
Borel acyclic graph has a Borel 2-coloring, and the prisoners have a Borel winning strategy
in the infinite prisoner hat game. Thus the negations of these statements are not THA.

Funding: NSF grant DMS-1854107

4 Short Talks

4.1 Continuity and Computability
Vasco Brattka (Bundeswehr University Munich, DE)

License Creative Commons BY 4.0 International license
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We discuss relations between continuity and computability. From the folklore fact that LPO
is the weakest discontinuous function with respect to the topological version of Weihrauch
reducibility, we deduce a characterization of discontinuity as the class of those functions
whose parallelization realizes every Turing jump on some cone. We also show that the
parallelization of a function being computably reducible to the identity is a condition that
sits in between computability and computability with respect to the halting problem and we
raise the question whether this condition can be separated from computability.
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4.2 When does Wadge meet Tang and Pequignot?
Riccardo Camerlo (University of Genova, IT)

License Creative Commons BY 4.0 International license
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Wadge hierarchy on topological spaces has been introduced by W.W. Wadge to compare
subsets according to their complexity. A variation of this hierarchy has been introduced
by A. Tang for the Scott domain, and more recently generalized by Y. Pequignot to every
T0 second countable spaces. I discuss the question of when these two hierarchies coincide,
presenting what is known and which problems are still open.

4.3 Algorithmic Learning of Structures
Ekaterina Fokina (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Ekaterina Fokina

Joint work of Nikolay Bazhenov, Ekaterina Fokina, Dino Rossegger, Luca San Mauro, Alexandra Soskova, Mariya
Soskova, Stefan Vatev

Main reference Nikolay Bazhenov, Ekaterina B. Fokina, Luca San Mauro: “Learning families of algebraic structures
from informant”, Inf. Comput., Vol. 275, p. 104590, 2020.

URL https://doi.org/10.1016/j.ic.2020.104590

In this talk we summarize some of the recent results and mention several open questions on
algorithmic learning of structures. We combine the ideas of computable structure theory and
algorithmic learning theory (inductive inference) to study the question of what classes of
structures are learnable under various learning criteria and restrictions. A class of structures
is said to be learnable if there is a learner (a function) that correctly learns each structure
from the class. This means, that the learner observes larger and larger finite pieces of the
structure and makes guesses about which structure it is observing. After finitely many steps
the learner must converge to a correct hypothesis. In general, we do not care about the
complexity of the learner, but sometimes we do.

In the talk we explain the main result of [1] which gives a syntactic characterization of
explanatory learnability of classes of structures from informant and also gives an upper bound
on the complexity of the learner. We then mention a similar result for the notion of learning
of structures from text (work in progress [3]). Furthermore, we mention results from [2]
that reveal an interesting relation between explanatory learning of structures from informant
and descriptive set theory. We wonder what other learning criteria can be characterized
syntactically and/or in terms of equivalence relations.

References
1 N. Bazhenov, E. Fokina, and L. San Mauro. Learning families of algebraic structures from

informant, Information and Computation, 275, 2020.
2 N. Bazhenov, V. Cipriani, and L. San Mauro. Learning structures and Borel equivalence

relations, preprint 2021.
3 N. Bazhenov, E. Fokina, D. Rossegger, A. Soskova, M. Soskova, S. Vatev. Vaught’s theorem

for the Scott topology and a syntactic characterization for learning, work in progress.
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4.4 Refuting Selman’s theorem in the hyperenumeration degrees
Jun Le Goh (University of Wisconsin – Madison, US)

License Creative Commons BY 4.0 International license
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We report on discussions by the participants in the #e-degrees Slack channel, specifically on
hyperenumeration reducibility ≤he (see M. Soskova’s abstract in the present report).

We came up with a possible strategy for refuting the analog of Selman’s theorem for ≤he,
i.e., for constructing sets A ̸≤he B such that whenever B ≤he C ⊕ Cc, we have A ≤he C ⊕ Cc.
The idea is to construct a ∆1

1-pointed tree T ⊆ ω<ω with no dead ends such that T c ̸≤he T .
It then suffices to consider A = T c and B = T : If T ≤he C ⊕ Cc, then T is Π1

1(C), so T has
a path P which is Π1

1(C). Since T is ∆1
1-pointed, it is ∆1

1(P ), hence ∆1
1(C). We conclude

that T c is Π1
1(C), i.e., T c ≤he C ⊕ Cc as desired.

Josiah Jacobsen-Grocott has made progress on implementing the above strategy.

4.5 A characterization of Π0
3-completeness

Vassilios Gregoriades (National Technical University of Athens, GR)

License Creative Commons BY 4.0 International license
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Main reference Vassilios Gregoriades: “Intersections of ℓq spaces in the Borel hierarchy”, Journal of Mathematical
Analysis and Applications, Vol. 498(1), p. 124922, 2021.

URL https://doi.org/10.1016/j.jmaa.2021.124922

Given 0 < a < q, the intersection of all spaces ℓp for p > a is a Π0
3-complete subset of

ℓq. This answers a question by Nestoridis [1]. The proof motivates a characterization of
Π0

3-completeness of sets in Polish spaces.

References
1 Vassili Nestoridis. A project about chains of spaces, regarding topological and algebraic

genericity and spaceability. https://arxiv.org/abs/2005.01023, 2020.

4.6 There is no Good Notion of Quasi-Polish Convergence Spaces
Reinhold Heckmann (AbsInt – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
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We looked for a full subcategory QP-CONV of the category CONV of convergence spaces that
is closed under countable product, equalizers, and exponentials and whose topological spaces
are exactly the quasi-Polish spaces. A natural candidate is QPE, the least full subcategory
of CONV that contains the Sierpinski space and is closed under isomorphism, countable
products, equalizers, and exponentials. Yet QPE contains the subspace Q of R, which is
not quasi-Polish, and this implies that there is no category QP-CONV with the desired
properties. Nevertheless, we think that QPE is an interesting category for further study.
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4.7 Descriptive complexity on represented spaces
Mathieu Hoyrup (Loria, Inria – Nancy, FR)

License Creative Commons BY 4.0 International license
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Our goal is to better understand the relationship between two notions of descriptive com-
plexity for subsets of a represented space, one using the topology, the other one using the
representation.

4.8 Regularity properties, determinacy, and Solovay models
Daisuke Ikegami (Shibaura Institute of Technology – Tokyo, JP)

License Creative Commons BY 4.0 International license
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Main reference Daisuke Ikegami: “I-regularity, determinacy, and ∞-Borel sets of reals”, CoRR, Vol. 2108.06632,
2021.

URL https://arxiv.org/abs/2108.06632

Regularity properties for sets of reals have been extensively studied since the early 20th
century. A set of reals with a regularity property can be approximated by simple sets (such as
Borel sets) modulo some small sets. Typical examples of regularity properties are Lebesgue
measurability, the Baire property, the perfect set property, and Ramseyness.

For each σ-ideal I on the Baire space, Khomskii introduced a regularity property called
I-regularity, and developed a general theory of I-regularity. Khomskii asked if strong axioms
of determinacy (such as the Axiom of Determinacy) imply every set of reals is I-regular for
any I such that the associated preorder PI is proper.

In this talk, we discuss some results and questions concerning I-regularity, determinacy
of infinite games, and Solovay models.

4.9 Resource-bounded effective dimension and the point-to-set principle
Elvira Mayordomo (University of Zaragoza, ES)

License Creative Commons BY 4.0 International license
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Main reference Jack H. Lutz, Neil Lutz, Elvira Mayordomo: “Dimension and the Structure of Complexity Classes”,

CoRR, Vol. abs/2109.05956, 2021.
URL https://arxiv.org/abs/2109.05956

In this short talk I review the recent results on the point to set principle for resource-bounded
dimensions [1] stating that if ∆ is a resource bound more general than Γ then ∆-dimension
can be characterized in terms of Γ-dimension relativized to oracles dependent on ∆. I also
include a few questions on the optimality and complexity of the corresponding oracles for
different resource-bounds and gauge functions.

References
1 Jack H. Lutz, Neil Lutz, and Elvira Mayordomo. Dimension and the Structure of Complexity

Classes. Arxiv arXiv:2109.05956, 2021
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4.10 Computable presentations in topology
Alexander Melnikov

License Creative Commons BY 4.0 International license
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Main reference Matthew Harrison-Trainor, Alexander G. Melnikov, Keng Meng Ng: “Computability of Polish Spaces

up to Homeomorphism”, J. Symb. Log., Vol. 85(4), pp. 1664–1686, 2020.
URL https://doi.org/10.1017/jsl.2020.67

Computable presentations in effective algebra have been studied extensively for over 60
years. Classical results of Turing, Novikov, Boone, Feiner, and Khisamiev (in chronological
order) illustrate that the standard notions of computable presentability for discrete algebraic
structures differ in the standard classes such as semigroups, finitely presented groups, Boolean
algebras, and abelian groups, respectively. Similar results are well-known for other common
classes of structures such as, e.g., linear orders.

Similarly, investigations into the algorithmic content of abstract topological structures can
be traced back to Maltcev in the 1960s. There are many definitions in the literature of what
it means for a Polishable space to be computably presentable. These include computable
complete metrization, computable topological presentation, and an effectively compact
(completely metrized) presentation. These three notions seem to be the most commonly
used notions throughout the literature. Nonetheless, in contrast with effective algebra, until
very recently it was not known whether these notions of computable presentability differed
(up to homeomorphism). We discuss several very recent works in which, using classical and
advanced modern techniques, these notions have been separated in several common classed
of compact spaces.

4.11 Topological spaces of countable structures
Russell G. Miller (CUNY Queens College – Flushing, US)

License Creative Commons BY 4.0 International license
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Main reference Russell Miller: “Isomorphism and classification for countable structures”, Comput., Vol. 8(2),
pp. 99–117, 2019.

URL https://doi.org/10.3233/COM-180095

We describe a natural way to view a collection of (isomorphism types of) countable structures
as a topological space. The space is T0 provided that the structures all have distinct existential
theories: sometimes it is useful to adjoin definable predicates to the signature to achieve
this. The notion of a (boldface) Turing-computable embedding, developed by Knight et al., is
simply a continuous injective map from one such space to another.

We consider the specific example of algebraic field extensions of the rational numbers.
Here the topology turns out to be that of a spectral space, meaning that (by a theorem
of Hochster) there is some commutative ring R whose spectrum of prime ideals, under the
Zariski topology, is homeomorphic to this space and thus can serve as a classification of these
fields.

The main point of this talk is to raise questions. First, what is this ring R whose spectrum
classifies the algebraic fields? (Well-known polynomial rings and other obvious guesses at R

have all so far turned out to be wrong.) Second, the procedure above gives rise to many more
computable topological spaces, some of which are spectral and others not. In what ways do
the separate, well-developed disciplines of computable topology and computable structure
theory interact here, and how can we use the interaction to develop these disciplines further
and to link them together?
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4.12 Computable Endofunctors, Markov-computability and
Relativization

Arno Pauly (Swansea University, GB)

License Creative Commons BY 4.0 International license
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Joint work of Arno Pauly, Matthew de Brecht

The notion of a computable endofunctor was introduced by Pauly and de Brecht [4] in order
to give a somewhat unified and principled approach to develop descriptive set theory for
arbitrary represented spaces. The technology was used in [3] to obtain a computable version
of the Jayne Rogers theorem, and in [1] to effectivize the property of being a Noetherian
topological space (in a way that revealed it to be a higher-order analogue of both compactness
and overtness).

(As pointed out by Neumann in [2], the terminology “locally computable endofunctor”
would be more appropriate.)

If the endofunctors generating the usual notions of interest for descriptive set theory
had left adjoints, we could use abstract category theory to draw conclusions in a way that
generalizes retopologization arguments. Alas, adjoints seem to be rare over the category of
represented spaces and continuous functions. If instead, we take Markov-computable maps
as morphisms, adjoints become abundant. A challenging question now is whether we can
incorporate relativization arguments into the category-theoretic framework in a way that
links the Markov-computable setting with the usual one.

References
1 Matthew de Brecht and Arno Pauly. Noetherian Quasi-Polish spaces. In Valentin Goranko
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University, 2018.
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4.13 Effective overtness of generalised Cantor spaces
Philipp Schlicht (University of Bristol, GB)
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Joint work of Arno Pauly, Philipp Schlicht

The generalised Cantor space 2κ for an uncountable regular cardinal κ is the space of binary
sequences of length κ. One can translate the notion of representable space to this context,
since 2κ comes with a natural notion of computability with time bound κ. While 2κ need
not have a κ-computable dense subset of size κ, we discuss the weaker notion of effective
overtness for these spaces.

4.14 Effective embedding and interpretations
Alexandra A. Soskova (University of Sofia, BG)

License Creative Commons BY 4.0 International license
© Alexandra A. Soskova

Joint work of Rachael Alvir, Wesley Calvert, G. Goodman, Valentina S. Harizanov, Julia F. Knight, R. Miller,
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Friedman and Stanley [2] introduced Borel embeddings as a way of comparing classification
problems for different classes of structures. A Borel embedding for a class K in a class K ′

represents a uniform procedure for coding structures from K in structures from K ′. Many
Borel embeddings are actually Turing computable. When a structure A is coded in a structure
B, effective decoding is represented by a Medvedev reduction of A to B. Harrison-Trainor,
Melnikov, Miller, and Montalbán [3] defined a notion of effective interpretation of A in B
and proved that this is equivalent with the existing of computable functor.

The class of undirected graphs and the class of linear orderings both lie “on top” under
Turing computable embeddings. The standard Turing computable embeddings of structures
in undirected graphs come with uniform effective interpretations. We [4] give examples of
graphs that are not Medvedev reducible to any linear ordering, or to the jump of any linear
ordering. Any graph can be interpreted in a linear ordering using computable Σ3 formulas.
Friedman and Stanley gave a Turing computable embedding L of directed graphs in linear
orderings. We show that there does not exist a Borel interpretation, i.e. there are no Lω1ω

formulas that, for all graphs G, interpret G in L(G). Our conjecture is: For any Turing
computable embedding Θ of graphs in orderings, there do not exist Lω1ω formulas that, for
all graphs G, define an interpretation of G in Θ(G).

We [1] succeed to find an effective interpretation of a field in its Heisenberg group without
parameters, generalising an old result of Maltsev, who gave a definition of a field in its
Heisenberg group with a pair of parameters. We could define an algebraically closed field
C in the group SL2(C) using finitary existential formulas with a pair of parameters. The
question is: Are there formulas that, for all algebraically closed fields C of characteristic 0,
define an effective interpretation of C in SL2(C)? Are there existential formulas that serve?

The work was partially supported by BNSF, KP-06-Austria-04/06.08.2019, FNI-SU
80-10-136/26.03.2021.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/jsl.2019.91
https://doi.org/10.1017/jsl.2019.91
https://doi.org/10.1017/jsl.2019.91


Mathieu Hoyrup, Arno Pauly, Victor Selivanov and Mariya I. Soskova 89

References
1 R. Alvir, W. Calvert, G. Goodman, V. Harizanov, J. Knight, A. Morozov, R. Miller, A.

Soskova, and R. Weisshaar. Interpreting a field in its Heisenberg group. J. Symbolic Logic,
2021

2 H. Friedman and L. Stanley. Borel reducibility theory for classes of countable structures. J.
Symbolic Logic, 54, 894–914, 1989

3 M. Harrison-Trainor, A. Melnikov, R. Miller, and A. Montalbán. Computable functors and
effective interpretability. J. Symbolic Logic, 82, 77–97, 2017

4 J. Knight, A. Soskova, and S. Vatev. Coding in graphs and linear orderings. J. Symbolic
Logic, 85 (2), 673– 690, 2020

4.15 The hyper enumeration degrees
Mariya I. Soskova (University of Wisconsin – Madison, US)
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In this talk I outlined some main aspects of the enumeration degrees and their relationship
to the Turing degrees, so that I can draw a parallel between the enumeration degrees and
the hyperenumeration degrees. We say that A is hyper enumeration reducible to B if there
is a c.e. set W such that x ∈ A if and only if for every f ∈ ω<ω there is some n and some
finite set D such that (f ↾ n, x, D) ∈ W and D ⊆ B. This notion was introduced and studied
by Sanchis [1], who showed that in many ways hyper enumeration reducibility relates to
hyperarithmetic reducibility in the same way that enumeration reducibility relates to Turing
reducibility.

I focused on two open questions:
1. Do we have an analog of Selman’s theorem for hyper-enumeration reducibility: Is it true

that A ≤he B if and only if for every X if B is Π1
1(X) then A is Π1

1(X)?
2. Is there a way to stratify hyper-enumeration reducibility: We know that A ≤h B if and

only if A ≤T B(α) for some B-computable ordinal α. Do we have some analogous result
for hyper enumeration reducibility, perhaps using the skip instead of the jump?
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5 Working groups

5.1 Computable categoricity of Polish spaces
Nikolay Bazhenov (Sobolev Institute of Mathematics – Novosibirsk, RU), Ivan Georgiev (Sofia
University “St. Kliment Ohridski”, BG), Jun Le Goh (University of Wisconsin – Madison,
US), Vassilios Gregoriades (National Technical University of Athens, GR), Mathieu Hoyrup
(LORIA & INRIA Nancy, FR), Iskander Shagitovich Kalimullin (Kazan Federal University,
RU), Steffen Lempp (University of Wisconsin – Madison, US), Alexander Melnikov (Victoria
University – Wellington, NZ), Russell G. Miller (CUNY Queens College – Flushing, US),
Eike Neumann (MPI für Informatik – Saarbrücken, DE), Keng Meng Ng (Nanyang TU –
Singapore, SG), Arno Pauly (Swansea University, GB), Alexandra A. Soskova (University of
Sofia, BG), and Daniel Turetsky (Victoria University – Wellington, NZ)
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This working group followed talks by Ng and Melnikov.
Galicki, Melnikov and Ng have studied categoricity of Polish spaces. A Polish space X is

computably categorical if all computable presentations of X are computably homeomorphic.
More generally, a set A is the degree of categoricity of a space X if A is the minimal oracle
such that all computable copies of X are A-computably homeomorphic.

They proved the following results, among others:
The space of natural numbers N has degree 0’,
The Cantor space has degree 0’,
The Baire space is not 0’-computably categorical,
The unit interval [0,1] has degree 0”.

They also have a sketch proof that no compact Polish space is computably categorical.
In this group we have discussed the case of compact Polish spaces, trying to complete the

proof, and obtained that X a compact space is not computably categorical in the following
cases:

If X has a computable copy containing a nowhere dense non-empty Pi01-set,
If X has a computable copy such that N computably embeds in the isolated points of X.

The arguments also extend to sigma-compact spaces.
It remains open whether there is computably categorical compact Polish space, more

generally if there is a computably categorical Polish space.

5.2 AE-theory of enumeration degree structures
Steffen Lempp (University of Wisconsin – Madison, US), Jun Le Goh (University of Wisconsin
– Madison, US), Keng Meng Ng (Nanyang TU – Singapore, SG), and Mariya I. Soskova
(University of Wisconsin – Madison, US)
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This is to follow up on the short talk I gave on progress toward deciding the AE-fragments of
the first-order theories of two degree structures, the global enumeration degrees and the local
Σ0

2-enumeration degrees. For the global structure, significant progress was already reported
on from the paper [1]. Plans are in place to extend our results toward a full solution. For
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the local structure, significant progress has been made during and since the workshop by the
four of us: We now have a working conjecture for 1-point extensions of antichains, which we
hope to check and write up carefully over the next few months, whereas at the time of the
workshop, we only had an analysis of the very special case where the antichain has size 3!

References
1 Lempp, Steffen; Soskova, Mariya I.; and Slaman, Theodore A., Fragments of the theory of

the enumeration degrees, Advances in Mathematics, Vol. 383, 2021, paper 107686, 39 pages.

6 Open problems

6.1 Questions on left-c.e. reals
Iskander Shagitovich Kalimullin (Kazan Federal University, RU)
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Joint work of Iskander Shagitovich Kalimullin, Marat Kh. Faizrahmanov
Main reference Marat Kh. Faizrahmanov, Iskander Sh. Kalimullin: “Limitwise monotonic sets of reals”, Math. Log.

Q., Vol. 61(3), pp. 224–229, 2015.
URL https://doi.org/10.1002/malq.201400015

The talk is devoted to possible applications and problems in computable topology related to
the paper [1]. In this paper the authors found a countable subset of the reals which is not
left-c.e. but is non-uniformly left-c.e. relative to any non-computable oracle. This has an
applications in computable structure theory, but it is interesting also to know what effects
we have studying uncountable subsets of the reals.

References
1 Marat Kh. Faizrahmanov, Iskander Sh. Kalimullin, Limitwise monotonic sets of reals. Math.

Log. Q. 61(3): 224-229 (2015)

6.2 Which Compact Metric spaces do/don’t admit polynomially
admissible representations?

Martin Ziegler (KAIST – Daejeon, KR)

License Creative Commons BY 4.0 International license
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Donghyun Lim and Martin Ziegler [arXiv:2002.04005v5] have quantitatively refined the
qualitative notion of “admissible representation” [Kreitz&Weihrauch’85]; see the tutorial in
this very seminar.

Many spaces admit polynomially admissible representations, the reals even a linearly
admissible (namely the signed-digit) representations.

We wonder about compact metric spaces that provably do NOT admit a polynomially
admissible representatios; and perhaps even a characterization of those that do.
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