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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22081 “Theory of
Randomized Optimization Heuristics”.

This seminar is part of a biennial seminar series. This year, we focused on connections between
classical topics of the community, such as Evolutionary Algorithms and Strategies (EA, ES),
Estimation-of-Distribution Algorithms (EDA) and Evolutionary Multi-Objective Optimization
(EMO), and related fields like Stochastic Gradient Descent (SGD) and Bayesian Optimization
(BO). The mixture proved to be extremely successful. Already the first talk turned into a two hour
long, vivid and productive plenary discussion. The seminar was smaller than previous versions
(due to corona regulations), but its intensity more than made up for the smaller size.
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like Peter Richtarik and Sebastian Stich brought valuable new perspectives from the SGD
community, and Mickaël Binois contributed the BO perspective. This yielded some new
approaches to long-standing open problems, specifically for a convergence proof of the
CMA-ES algorithm on quadratic functions.

Another interesting and fruitful aspect of the seminar was a shift of perspective to search
spaces that are under-represented in the community. Traditionally, the search spaces are
product spaces, either discrete (especially the n-dimensional hypercube), or continuous
(d-dimensional Euclidean space). This year we had some intense discussions in plenum and in
working groups on other search spaces, triggered especially by Ekhine Irurozki’s presentation
on permutation spaces.

Naturally, a big part of the seminar was also devoted to classical topics of the community.
Highlights included talks by Benjamin Doerr on the first runtime result for the Non-Dominated
Sorting Genetic Algorithm (NSGA-II) and by Tobias Glasmachers on Convergence Analysis of
the Hessian Estimation Evolution Strategy (HE-ES). The latter is the first convergence proof
for a covariance matrix algorithm that does not truncate the condition number of the estimated
covariance matrix. Some interesting new topics were also identified in traditional fields, such
as whether we can understand better in which situations adapativity is necessary for efficient
optimization by considering k-adaptive query complexity of optimization benchmarks.

Overall, as organizers we were extremely happy with the mix of core community members
and researchers from related fields. The connections with the latter were close enough that
scientific discussions could (also) happen on technical levels, which is particularly useful since
some low-hanging fruits are available from such interchanges. Importantly, the exchange
happened between people who would probably not have met each other outside of the
Dagstuhl Seminar.

The seminar took place during the peak of the Omicron wave of Covid19, which made
planning very difficult. The key step during preparation phase was a survey among the
participants a few weeks before the seminar. We asked how likely it was that they could
participate in person, and under which circumstances they would prefer which format (in-
person or hybrid). The participants signalled us very clearly that they wanted this event to
happen, and that they wanted it to happen in person. We want to thank all participants
for their support! Other seminars in the week before and after ours had to be cancelled
altogether, and this might also have happened to our seminar if not for the determination of
our participants.

The seminar was smaller than previous versions, due to corona regulations. Moreover,
some participants had to cancel at the last moment because they were corona-positive, or
because they had no reliable child care. Especially the latter point can be frustrating, and we
hope that Dagstuhl will be able to resume their support for on-site child care in the future.
On the positive side, the intensity of the seminar more than made up for the smaller size,
and might even have been due to the smaller number of participants.

Finally, we want to thank Dagstuhl for their great support, both financially and to their
great staff. We could always feel that it was their top priority to help us, and we are greatly
indebted for the support!

The organizers,
Anne Auger, Carlos M Fonseca, Tobias Friedrich, Johannes Lengler
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3 Overview of Talks

3.1 Selection in non-elitist populations: overview and open problems
Duc-Cuong Dang (University of Southampton, GB)

License Creative Commons BY 4.0 International license
© Duc-Cuong Dang

Joint work of Duc-Cuong Dang, Anton V. Eremeev, Per Kristian Lehre

This talk summarises what we know about the selection mechanisms for non-elitist populations
from a theory perspective and open problems. Particularly, we show how selection should be
tuned to find an optimum, and which characteristics of the selection one should look for to
address multiple optima efficiently. These results allow us to identify problem classes where
non-elitist algorithms with the right selection and a proper setting to excel, compared to
elitist algorithms or even when truncation selection is used. Tools used to prove these results,
these limitations and open problems are discussed.

This talk is based on joint works with Anton V. Eremeev and Per Kristian Lehre [1, 2, 3, 4],
and on the fruitful discussions with Pietro S. Oliveto and Tiago Paixao.

References
1 D. Corus and D. Dang and A.V. Eremeev and P.K. Lehre Level-based analysis of genetic

algorithms and other search processes. IEEE Trans. Evol. Comput., 707–719, 2018.
2 D. Dang and A.V. Eremeev and P.K. Lehre Runtime analysis of fitness-proportionate

selection on linear. http://arxiv.org/abs/1908.08686, 2019.
3 D. Dang and A.V. Eremeev and P.K. Lehre Non-elitist evolutionary algorithms excel in

fitness landscapes with sparse deceptive regions and dense valleys. In GECCO ’21: Genetic
and Evolutionary Computation Conference, Lille, France, 1133–1141, July 2021.

4 D. Dang and A.V. Eremeev and P.K. Lehre Escaping local optima with non-elitist evolu-
tionary algorithms. Thirty-Fifth AAAI Conference on Artificial Intelligence, 12275–12283,
2021.

3.2 A First Mathematical Runtime Analysis of the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II)

Benjamin Doerr (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 4.0 International license
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Joint work of Weijie Zheng, Yufei Liu, Benjamin Doerr
Main reference Weijie Zheng, Yufei Liu, Benjamin Doerr: “A First Mathematical Runtime Analysis of the

Non-Dominated Sorting Genetic Algorithm II (NSGA-II)”, CoRR, Vol. abs/2112.08581, 2021.
URL https://arxiv.org/abs/2112.08581

In this talk, I want to discuss a recent joint work with Weijie Zheng (SUSTECH) and Yufei
Liu (Polytechnique). The non-dominated sorting genetic algorithm II (NSGA-II) is the most
intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications.
However, in contrast to several simple MOEAs analyzed also via mathematical means, no
such study exists for the NSGA-II so far. In this work, we show that mathematical runtime
analyses are feasible also for the NSGA-II. As particular results, we prove that with a
population size larger than the Pareto front size by a constant factor, the NSGA-II with
two classic mutation operators and three different ways to select the parents satisfies the
same asymptotic runtime guarantees as the SEMO and GSEMO algorithms on the basic
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OneMinMax and LOTZ benchmark functions. However, if the population size is only equal
to the size of the Pareto front, then the NSGA-II cannot efficiently compute the full Pareto
front (for an exponential number of iterations, the population will always miss a constant
fraction of the Pareto front). Our experiments confirm the above findings.

3.3 Some Theoretical Thoughts on Permutation-based EAs
Benjamin Doerr (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 4.0 International license
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Joint work of Benjamin Doerr, Yassine Ghannane, Marouane Ibn Brahim

While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress
for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical
results exist on how EAs solve permutation-based problems.

To overcome the lack of permutation-based benchmark problems, we propose a general
way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets
of permutations. We then conduct a rigorous runtime analysis of the permutation-based
(1 + 1) EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the
LeadingOnes and Jump benchmarks. The latter shows that, different from bit-strings, it is
not only the Hamming distance that determines how difficult it is to mutate a permutation
σ into another one τ , but also the precise cycle structure of στ−1. For this reason, we also
regard the more symmetric scramble mutation operator. We observe that it not only leads
to simpler proofs, but also reduces the runtime on jump functions with odd jump size by
a factor of Θ(n). Finally, we show that heavy-tailed versions of both operators, as in the
bit-string case, lead to speed-ups of order mΘ(m) on jump functions with jump size m.

3.4 k-Adaptive Black-Box Optimization
Carola Doerr (Sorbonne University – Paris, FR)

License Creative Commons BY 4.0 International license
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Many black-box optimization techniques have a high degree of adaptiveness. But there
are problems for which adaptive sampling has only negligible advantages over non-adaptive
sampling, e.g., the famous 2-color Mastermind problem studied by Erdös and Renyi (1963).

In this talk I propose a black-box complexity model that allows us to study the minimal
number of queries that are needed to optimize a given problem f , in dependency of the
number of iterations k that the algorithms are allowed to perform.
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3.5 Convergence Analysis of the Hessian Estimation Evolution Strategy
Tobias Glasmachers (Ruhr-Universität Bochum, DE)
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Joint work of Tobias Glasmachers, Oswin Krause
Main reference Tobias Glasmachers, Oswin Krause: “Convergence Analysis of the Hessian Estimation Evolution

Strategy”, Evol. Comput., Vol. 30(1), pp. 27–50, 2022.
URL https://doi.org/10.1162/evco_a_00295

I will sketch the convergence proof of a minimal elitist variant of the recently proposed Hessian
Estimation Evolution Strategy (HE-ES). The main difference as compared with CMA-ES is
that the covariance matrix update yields monotonic convergence of the covariance matrix
to the inverse Hessian. This strong stability property allows to prove that the algorithm
converges at a linear rate to the minimum of a convex quadratic objective function, where the
rate is independent of the problem instance. The same holds for CMA-ES, but we are lacking
a proof (since 20 years). The proof works in two steps, both of which employ drift arguments.
The first step is to prove convergence of the covariance matrix, which works independent of
the evolution of mean and step size. The second step is to reduce the convergence proof to
recent powerful results for the (1+1)-ES without CMA.

3.6 Evolution Strategies Reliably Overcome Saddle Points
Tobias Glasmachers (Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
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I will present the (to my knowledge) first result on the behavior of an ES facing saddle points.
The (1+1)-ES overcomes even rather difficult saddle points, where it could be subjected to
convergence prematurely because the success rate is smaller than 1/5, and in fact arbitrarily
close to zero.

3.7 Introductory Talk on the Theory of Continuous Evolutionary
Algorithms

Tobias Glasmachers (Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
© Tobias Glasmachers

I will introduce basic problems (in particular convex quadratic functions) and algorithms (the
classic (1+1)-ES and a variant with covariance matrix adaptation (CMA)). I will describe the
qualitative behavior of evolution strategies with and without CMA on problems with good
and bad conditioning. Some aspects of the behavior are well described by theoretical analysis,
while others are open problems. I’ll then give a gist of existing analysis methodologies:
Markov chains (and a recent way of proving stability), drift, and the IGO framework.
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3.8 Theoretical Aspects of Set-Quality Indicators for Multiobjective
Optimization

Andreia P. Guerreiro (INESC-ID – Lisboa, PT)

License Creative Commons BY 4.0 International license
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Set-quality indicators, which map a point set into a scalar value, are a convenient way to
assess (the image of) solution sets in multiobjective optimization. Such indicators may
comprise in this scalar value the proximity of the set of points to the Pareto front, as well as
information regarding the distribution of points in the set. Performance assessment through
quality indicators can be viewed as a transformation of the multiobjective optimization
problem into a single-objective one, where the goal is to find a point set, frequently bounded
in size, that maximizes the quality indicator. Consequently, each indicator is biased towards
some point sets. The study of the theoretical properties of quality indicators allows to
characterize the indicator-optimal subsets and, therefore, to understand such biases and their
implications in performance assessment and in indicator-based evolutionary multiobjective
optimization algorithms. Such theoretical aspects will be discussed in this talk.

3.9 Black-Box Permutation Problems and weighted medians
Ekhine Irurozki (Telecom Paris, FR)

License Creative Commons BY 4.0 International license
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Main reference Ekhine Irurozki, Manuel López-Ibáñez: “Unbalanced mallows models for optimizing expensive
black-box permutation problems”, in Proc. of the GECCO ’21: Genetic and Evolutionary
Computation Conference, Lille, France, July 10-14, 2021, pp. 225–233, ACM, 2021.

URL https://doi.org/10.1145/3449639.3459366

From the paper: Unbalanced Mallows Models for Optimizing Expensive Black-Box Permuta-
tion Problems

Expensive black-box combinatorial optimization problems arise in practice when the
objective function is evaluated by means of a simulator or a real-world experiment. Since
each fitness evaluation is expensive in terms of time or resources, the number of possible
evaluations is typically several orders of magnitude smaller than in non-expensive problems.
Classical optimization methods are not useful in this scenario. In this talk, we propose
and analyze UMM, an estimation-of-distribution (EDA) algorithm based on a Mallows
probabilistic model and unbalanced rank aggregation (uBorda). UMM is based on a weighted
median for permutations. The core of it is uBorda. Experimental results on black-box
versions of LOP and PFSP show that UMM outperforms the solutions obtained by CEGO,
a Bayesian optimization algorithm for combinatorial optimization. Nevertheless, a slight
modification to CEGO, based on the different interpretations for rankings and orderings,
significantly improves its performance, thus producing solutions that are slightly better
than those of UMM and dramatically better than the original version. Another benefit
of UMM is that its computational complexity increases linearly with both the number of
function evaluations and the permutation size, which results in computation times an order
of magnitude shorter than CEGO, making it specially useful when both computation time
and number of evaluations are limited.
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3.10 Theory of Discrete Randomized Optimization Heuristics – The
What, Why, and How

Martin S. Krejca (Sorbonne University – Paris, FR)

License Creative Commons BY 4.0 International license
© Martin S. Krejca

Randomized optimization heuristics (ROHs) are algorithms applied to optimization problems
where the objective function is only indirectly accessible, that is, it can only be accessed
by evaluating solution candidates. Guided by the quality of such candidates, ROHs aim to
iteratively generate solutions of better quality. This raises natural questions such as how
quickly an ROH improves its solutions, whether it is capable of finding optimal solutions, or
if there are any approaches that generate better solutions more quickly. Theoretical analyzes
aim to answer these questions and more.

In this talk, we provide an introduction to theoretical analyzes on ROHs in the discrete
domain. We introduce the setting that ROHs are applied in, the so-called black-box setting,
and we discuss how theoretical results aim to answer questions about the real-world application
of ROHs. To this end, we introduce common theory benchmark functions, ROHs, as well
as the mathematical tools used for their analyses. We conclude by deriving a standard run
time result, illustrating how problems in this domain are typically approached.

3.11 Failure on Easy Problems
Johannes Lengler (ETH Zürich, CH), Benjamin Doerr (Ecole Polytechnique – Palaiseau,
FR), Carola Doerr (Sorbonne University – Paris, FR), and Dirk Sudholt (Universität Passau,
DE)

License Creative Commons BY 4.0 International license
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I will discuss several seemingly easy situations in which evolutionary and genetic algorithms
can fail. Some of them are rather surprising, since the hardest regions are not always close
to the optimum. In particular, I will mention the detrimental effects of large mutation rates
or of large population size for optimizing monotone functions, introduce a simple dynamic
setting, and discuss how the self-adapting (1, λ)-EA can fail on OneMax.

References
1 Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen and Christine Zarges.

Mutation rate matters even when optimizing monotonic functions. Evolutionary computation,
21(1), 2013, 1-27.

2 Johannes Lengler. A general dichotomy of evolutionary algorithms on monotone functions.
IEEE Transactions on Evolutionary Computation, 24(6), 995–1009, 2019, IEEE

3 Johannes Lengler and Jonas Meier. Large population sizes and crossover help in dynamic
environments. In: International Conference on Parallel Problem Solving from Nature.
Springer, Cham, 2020. S. 610-622.

4 Mario Alejandro Hevia Fajardo and Dirk Sudholt. Self-adjusting population sizes for non-
elitist evolutionary algorithms: why success rates matter. In: Proceedings of the Genetic
and Evolutionary Computation Conference. 2021. S. 1151-1159.

5 Johannes Lengler and Xun Zou. Exponential slowdown for larger populations: The (µ+1)-EA
on monotone functions. Theoretical Computer Science 875 (2021): 28-51.
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6 Johannes Lengler and Simone Riedi. Runtime Analysis of the (µ + 1)-EA on the Dynamic
BinVal Function. In: European Conference on Evolutionary Computation in Combinatorial
Optimization (Part of EvoStar). Springer, Cham, 2021. S. 84-99.

3.12 Population Diversity Makes Lexicase Selection Fast
Johannes Lengler (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
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Joint work of William de Casa, Thomas Helmuth, Johannes Lengler

In Genetic Programming, it is customary to have population sizes in the order of µ =
100 − 1000. For the next generation, λ = 2µ parents are independently selected. In order
to select a parent, lexicase selection first removes duplicates in performance space, i.e.,
individuals which show the same performance on all test cases. Then it picks one test case
at random, and removes all candidates which fail on this test case (unless all candidates
fail, in which case the test is skipped). This is iterated until only one candidate remains.
My two co-authors report that lexicase selection is regarded critically in their community
due to its very bad worst-case runtime, but that the runtime in practice is much faster. We
investigated why the runtime is fast and found a measure for population diversity such that
i) empirically population diversity is large, and ii) a large population diversity guarantees
theoretically fast runtimes.

3.13 Gray-box operator for Vertex Cover
Xiaoyue Li (Hasso-Plattner-Institut, Universität Potsdam, DE)

License Creative Commons BY 4.0 International license
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Joint work of Samuel Baguley, Tobias Friedrich, Timo Kötzing, Xiaoyue Li, Marcus Pappik, Ziena Zeif
Main reference Samuel Baguley, Tobias Friedrich, Timo Kötzing, Xiaoyue Li, Marcus Pappik, Ziena Zeif: “Analysis

of a gray-box operator for vertex cover”, in Proc. of the GECCO ’22: Genetic and Evolutionary
Computation Conference, Boston, Massachusetts, USA, July 9 – 13, 2022, pp. 1363–1371, ACM,
2022.

URL https://doi.org/10.1145/3512290.3528848

In this flash talk, a gray-box operator tailored for combinatorial optimization problems is
presented. The operator is called balanced flip EA, which the mutation operator has been
introduced to the specific problem so that the algorithm is extended for better behavior.
By applying runtime analysis of both the (1+1) EA and the balanced EA, a tighter upper
bound is provided for balanced flip EA as O(\∋) while the (1+1) EA is as O(\△). Other
than the introduction of analysis strategy, the experimental evidence for long bad path to
support the partial proof of the lower bound as well as the probability bound for complete
bipartite graph has also been discussed. As a result, the flash talk presented the key point
that the benefits of gray-box operator should be considered. Especially when it comes to
solve the specific problem like combinatorial optimization.
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3.14 Randomized Smoothing for Non-Convex Optimization
Sebastian U. Stich (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Sebastian U. Stich

Joint work of Ahmad Ajalloeian, Harsh Vardhan, Sebastian Urban Stich

We identify a class of nonconvex functions for which we can show that perturbed gradient
descent converges to a global minimum, in contrast to gradient descent without noise that
can get stuck in local minima far from a global solution.

We give a brief overview of the used techniques, such as convergence analysis of (stochastic)
gradient methods, biased gradients, and randomized smoothing.

Based on joint work with A. Ajalloeian [1] and H. Vardhan [2].

References
1 A. Ajalloeian and S.U. Stich On the Convergence of SGD with Biased Gradients. presented

at ICML 2020 Workshop on Beyond First Order Methods in ML Systems, arXiv preprint
arXiv:2008.00051, 2021.

2 H. Vardhan and S.U. Stich Tackling benign nonconvexity with smoothing and stochastic
gradients. presented at NeurIPS 2021 Workshop on Optimization for Machine Learning,
arXiv preprint arXiv:2202.0905, 2022.

3.15 Analyzing the Cost of Randomness in Evolutionary Algorithms
Dirk Sudholt (Universität Passau, DE) and Carlo Kneißl

License Creative Commons BY 4.0 International license
© Dirk Sudholt and Carlo Kneißl

Evolutionary algorithms make countless random decisions during selection, mutation and
crossover operations. These random decisions require a steady stream of random numbers,
however generating good quality randomness is non-trivial.

We consider the expected number of random bits used throughout a run of an evolutionary
algorithm and refer to this as the cost of randomness. We give general bounds on the cost
of randomness for mutation-based evolutionary algorithms using 1-bit flips or standard
bit mutations using either a naive or a common, more efficient implementation that uses
Theta(log n) random bits per mutation. Uniform crossover is a potentially wasteful operator
as the number of random bits used equals the Hamming distance of the two parents, which
can be up to n. However, we show for a (2+1) GA that optimizes OneMax in expected
Theta(n log n) evaluations that the total cost of randomness during all crossover operations
on OneMax is only Theta(n).

We hope to show that the cost of randomness may be useful as an additional performance
measure, to give new insights into search dynamics and to aid in the design of operators that
use randomness more carefully.
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3.16 On the dynamics of the DE algorithm
Ricardo Takahashi (Federal University of Minas Gerais-Belo Horizonte, BR)

License Creative Commons BY 4.0 International license
© Ricardo Takahashi

This talk presents an ongoing work that aims to develop an analytical study of the Differential
Evolution (DE) algorithm behavior. Analytical formulae for the probability of enhancement
of and individual in populations of the DE/rand/1/bin and DE/rand/1/exp algorithm
versions are developed for the sphere objective function. It is shown that those formulae
can be adapted for the study of the algorithm behavior in the optimization of quadratic
functions with different relations between the minimal and maximal eigenvalues. In the case
of large differences of eigenvalue magnitudes, it is shown that the convergence occurs in
different scales, and the formulae approximately hold for the corresponding scale dimension.
The known effect of performance degradation as the problem dimension increases is partly
explained by the decrease in the probability of enhancement of individuals, as indicated in
the formulae. Experimental results show that DE/best algorithm versions, as expected, are
able to solve problems of higher dimensions. Further research will be performed in order to
examine the convergence dependency with the algorithm parameters.

3.17 Mathematical models for Dominance Move: Comparisons and
complexity analysis

Elizabeth Wanner (CEFET – Belo Horizonte, BR)

License Creative Commons BY 4.0 International license
© Elizabeth Wanner

Dominance move (DoM), a binary quality indicator, can be used in multi-objective and
many-objective optimization to compare two solution sets. DoM is very intuitive but hard to
calculate due to its combinatorial nature. Different mathematical models are presented and
analyzed. A computationally fast approximate approach is also discussed. Computational
results are promising and an upper bound analysis for the approximation ratio would be
useful.

4 Working groups

4.1 k-adaptive black-box complexity
Carola Doerr (Sorbonne University – Paris, FR) and Johannes Lengler (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Carola Doerr and Johannes Lengler

In k-adaptive black-box complexity, algorithms are only allowed to perform k iterations
of queries through which the optimal solution needs to be learned. In each iteration, the
algorithms are allowed to perform an arbitrary number of queries. We are interested in the
minimal total number of queries that a k-adaptive black-box optimization algorithm needs
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to perform in order to find an optimal solution. The k-adaptive black-box complexity models
thus interpolate between non-adaptive query complexity (k = 1) and fully adaptive query
complexity (no restriction on k).

We discussed the k-adaptive black box complexity (BBC) for several benchmark problems,
starting with OneMax and Mastermind. For OneMax, the query complexity does not
substantially increase (only by a constant factor) even if we restrict to k = 1. For general
Mastermind, this is unclear and poses an interesting research question. We took some first
steps in discussing the k = 2 case with n colors and positions.

For LeadingOnes, the situation is almost opposite than for OneMax: if k = n/α, then
we can find an algorithm with 2αn/α queries, and we believe that the query complexity
is exponentially large in α, perhaps even Ω(2αn/α). We spent some time discussing the
differences to Permutation-LeadingOnes: it is at least as hard as LeadingOnes, so the lower
bounds still apply. Analyzing previous work of Benjamin Doerr and Carola Doerr [1], we
have an algorithm that is n-adaptive and has complexity O(n log n/ log log n). Perhaps this
could be improved to O(n log log n), but the general picture is that adaptivity needs to be
very high to avoid an exponentially high price in terms of complexity.

We finally discussed the situation for HiddenSubset, which seems to be an example
for a problem that requires an intermediate level of adaptivity. Known algorithms are
(log n)-adaptive, with optimal runtime O(n log n). It might be interesting to study smaller k,
and we conjecture that this would increase the complexity substantially.

References
1 Benjamin Doerr and Carola Winzen Black-Box Complexity: Breaking the O(n logn) Barrier

of LeadingOnes. presented at Artificial Evolution – 10th International Conference, Evolution
Artificielle, EA 2011, Angers, France, October 24-26, 2011, Revised Selected Papers, 205–216,
https://doi.org/10.1007/978-3-642-35533-2_18, 2011.

2 Jin-Kao Hao and Pierrick Legrand and Pierre Collet and Nicolas Monmarché and Evelyne
Lutton and Marc Schoenauer,Artificial Evolution – 10th International Conference, Evolution
Artificielle, EA 2011, Angers, France, October 24-26, 2011, Revised Selected Papers, Lecture
Notes in Computer Science, 7401, 2012.

4.2 Theory-Friendly Practical Modelling of Combinatorial Optimisation
Problems for ROHs

Carlos M. Fonseca (University of Coimbra, PT)

License Creative Commons BY 4.0 International license
© Carlos M. Fonseca

Problem modelling is often overlooked as the crucial step preceding the practical application
of randomised optimisation heuristics (ROHs). In order to make ROHs more accessible in
the real world, there is a need to specify how optimisation algorithms interface with the
problem instances of interest. In addition, guidance should be provided to practitioners on
how problem-specific information can be exposed to the algorithms through such an interface.
In other words, such an interface definition should support an associated problem modelling
methodology.

From a different perspective, such an interface specification must also support the
development of practical algorithms that can be applied directly to any given problem
implementing that interface. A brief presentation of two Application Programming Interfaces
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(APIs) for combinatorial optimisation under development, and of the design principles behind
them, was the starting point for a discussion on the potential of such an approach and how
theory-friendly it might be.

4.3 Adaptation of proof techniques based on the natural SGD
interpretation of CMA-ES

Tobias Glasmachers (Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
© Tobias Glasmachers

As a minimal example, we went through IGO framework and NES algorithm, using 1D
example f(x) = x2 and Gaussians. We discussed the quantile rescaling technique in detail,
and whether it may or may not be understood as a static fitness transformation. We also
discussed the role of rescaling the gradient with the Fisher information matrix for achieving
linear convergence. We identified potential connections to variance-reduced gradient descent
techniques, as well as to the sampling literature. The general impression was that the natural
SGD setting with quantile rescaling is too far from the standard analysis of SGD to allow for
a straightforward transfer of proof techniques.

4.4 Lyapunov potential for the linear convergence of CMA-ES
Tobias Glasmachers (Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
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We started with a “naive” potential, which is a straightforward extension of the (1+1)-ES
potential. We then focused on Armand’s problem and understood that it is a model of the
initial phase of optimizing the discus problem. We tried to fix the log(∥m∥) term to achieve
additive drift in this situation, without much success. Therefore, we shifted the discussion to
how a multi-stage drift for that situation may work.

4.5 Comma and plus selection strategies with noise
Johannes Lengler (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Johannes Lengler

Main reference Benjamin Doerr: “Does Comma Selection Help to Cope with Local Optima?”, Algorithmica,
Vol. 84(6), pp. 1659–1693, 2022.

URL https://doi.org/10.1007/s00453-021-00896-7

We started gathering examples of problems on which comma selection performs differently to
plus selection, focusing on theoretically proven examples. Although the topic was originally
set to deal with noise, we considered deterministic problems for the most part.

It is known that comma selection in a (µ,λ) EA does not perform better than plus
selection on Jump functions, and this holds for arbitrary population sizes µ and λ. On the
Cliff function, comma strategies perform well, enabling a (1,λ) EA to jump down the cliff if

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00453-021-00896-7
https://doi.org/10.1007/s00453-021-00896-7
https://doi.org/10.1007/s00453-021-00896-7


Anne Auger et al. 101

all offspring are down the cliff and the algorithm moves towards the global optimum without
jumping back up the cliff. For optimal fixed λ, the best known expected runtime is essentially
n3.97... (up to sub-polynomial factors). Self-adjusting λ can reduce this to O(n log n) if a
reset mechanism is used that resets λ to 1 if it exceeds a given threshold. The effect is similar
to using hyperheuristics or ageing where occasionally non-elitist steps are accepted. The
structure of the function is quite benign as the gradient past the cliff points towards the
global optimum.

It is also known that for large values of λ, a comma strategy will behave like a plus strategy
because there is a high probability of cloning the parent. If λ is too small, λ ≤ (1−ε) log e

e−1
n,

optimising any fitness function with a unique optimum takes exponential time. So there is a
narrow region for values of λ where one can see an advantage of comma selection over plus
selection.

We also discussed elitist versus non-elitist algorithms more generally (e.g. tournament
selection, self-adaptation and island models). For all algorithms discussed, the crucial issue
came down to balancing exploration and exploitation: being able to escape from local optima
while also being able to climb hills.

We came to the conclusion that there is a gap between theory and practice as we’re lacking
convincing examples (apart from Cliff) where comma selection provably helps, whereas in
practice comma strategies seem to be quite popular to escape from local optima. Part of
this gap might be caused by theory traditionally aiming to find the exact global optimum,
whereas in practice one is usually content with a good approximation of the optimal fitness.
Using a fixed-target perspective for less ambitious targets might give a different picture as
much smaller values of λ might be sufficient.

5 Open problems

5.1 A problem where CMA-ES performs poorly
Nikolaus Hansen (INRIA Saclay – Palaiseau, FR)

License Creative Commons BY 4.0 International license
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We investigate a 6-dimensional curve fitting problem, where CMA-ES takes a long time to
approach the global optimum. The problem is simple and visually intuitive. Parameters
move very slowly in the same direction towards the optimum for a long time, in which
case we would expect the covariance matrix to speed up the movements. However, the
sample distribution appears to be stable with a condition number of about 106. The leading
hypothesis for the reason is that the problem has a very narrow but slightly bent ridge. The
bend prevents a faster approach to the optimum.
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