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Abstract
The Dagstuhl Seminar 22111 on “Database indexing and query processing”, held from March 13
to March 18 2022, brought together researchers from academia and industry to discuss robustness
in database management systems. This seminar was a continuation of previous seminars on
the topic of Robust Query Processing, where we included indexing as a general topic and also
discussed aspects that have not been addressed by the previous instances of the seminar. This
article summarizes the main discussion topics, and presents the summary of the outputs of three
work groups that discussed: i) storage architectures, ii) robust operators, and iii) indexing for
data warehousing.
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The Dagstuhl Seminar 22111 on “Database indexing and query processing” assembled
researchers from industry and academia for the fourth time to discuss robustness issues in
database query performance. The seminar gathered researchers around the world working
on indexing, storage, plan generation and plan execution in database query processing, and
in cloud-based massively parallel systems with the purpose to address the open research
challenges with respect to the robustness of database management systems. Delivering robust
query performance is well known to be a difficult problem for database management systems.
All experienced DBAs and database users are familiar with sudden disruptions in data centers
due to poor performance of queries that have performed perfectly well in the past. The
goal of the seminar was to discuss the current state-of-the-art, to identify specific research
opportunities in order to improve the state-of-affairs in query processing, and to develop new
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approaches or even solutions for these opportunities, building upon successes of the past
Dagstuhl Seminars [1, 2, 3]. The organizers (Renata Borovica-Gajic, Goetz Graefe, Allison
Lee, Caetano Sauer, and Pinar Tözün) this time attempted to have a focused subset of topics
that the participants discussed and analyzed in more depth. From the proposed topics on
algorithm choices, join sequences, learned and lightweight indexes, database utilities, modern
storage hardware, and benchmarking for robust query processing, the participants formed
three work groups: i) one discussing indexing for data warehousing, ii) one discussing robust
query operators, and iii) one discussing robust storage architectures. Upon choosing the
topics of interest, the organizers then guided the participants to approach the topic through
a set of steps: by first considering related work in the area; then introducing metrics and
tests that will be used for testing the validity and robustness of the solution; after metrics,
the focus was on proposing specific mechanisms for the proposed approaches; and finally
the last step focused on the implementation policies. At the end of the week, each group
presented their progress with the hope to continue their work towards a research publication.
The reports of work groups are presented next.
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3 Working Groups

3.1 Storage Architectures
Pinar Tözün (IT University of Copenhagen, DK), Goetz Graefe (Google – Madison, US),
Thomas Heinis (Imperial College London, GB), Sangjin Lee (Hanyang University – Seoul,
KR), Alberto Lerner (University of Fribourg, CH), Danica Porobic (Oracle Switzerland –
Zürich, CH), Daniel Ritter (Hasso-Plattner-Institut, Universität Potsdam, DE), Lukas Vogel
(TU München, DE), and Tianzheng Wang (Simon Fraser University – Burnaby, CA)

License Creative Commons BY 4.0 International license
© Pinar Tözün, Goetz Graefe, Thomas Heinis, Sangjin Lee, Alberto Lerner, Danica Porobic, Daniel
Ritter, Lukas Vogel, and Tianzheng Wang

The storage hierarchy has been getting deeper and more heterogeneous. In addition, platforms
that enable computational storage and/or near-data processing are becoming more widely-
available [1]. This storage landscape is an opportunity for data-intensive systems. However,
it also presents us with several challenges when it comes to exploiting these technologies.

One key challenge that comes with the deeper and heterogeneous storage landscape is
the various sources of unpredictability.

Device types: Hard disks (HDD), Solid-state Drives (SSD), Persistent Memory (PMEM),
DRAM have different device characteristics requiring the end-users to adopt different
system optimizations. In addition, there may even be variety among the same class of
devices. For example, SSDs are not a uniform class of devices. There are space-optimized
(QLC, TLC) or speed-optimized (SLC) SSDs, and devices from different vendors behave
differently.
Interfaces: With the variety of the devices comes also the variety of device interfaces to
interact with. Even within the same class of devices, there could be different options.
For example, NVMe standard defines different interfaces for key-value SSDs, zoned-
namespaces, computational storage (currently being standardized), etc.
Disaggregated storage: It is common practice to separate compute nodes from storage
nodes for large-scale hardware deployments. Accessing a locally-attached storage device
could behave differently than accessing a storage device over the network.
Access modes: There are different ways to access storage devices. One may include
CPU on the path or bypass it using direct memory access (DMA). Some accesses may
be transparent to the end-user implicitly being controlled by hardware itself, while
some hardware may give more explicit controls to the end-user for application-specific
optimizations.
Workloads: Data-intensive workloads exhibit a high variety as well. While some workloads
have well-behaved and predictable data read/write and movement characteristics, some
can have unpredictable ad-hoc behavior.
Infrastructure: Today many data-intensive systems run on the cloud. Cloud infrastructures
take away the burden of managing a big hardware infrastructure from the end-users.
However, they do so by abstracting or virtualizing hardware. This means that servers
and storage devices used by a data-intensive system may change at any point. In
addition, servers from different popular vendors that make up the cloud support different
technologies. For example, Intel servers come with support for persistent memory, while
AMD servers don’t have this support. In contrast, AMD servers are optimized for
supporting many PCIe lanes making them good choices if one wants to deploy many
SSDs.
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In the storage working group of this Dagstuhl Seminar, we specifically focused on the
following research question: How can we robustly exploit the modern storage hierarchy
despite all the sources of unpredictability?

If one digs deeper, at the heart of this challenge lies the challenge of orchestrating the data
movement across the variety storage layers and devices. Therefore, the question above boils
down to how can we orchestrate the data movement across layers to get more predictably
good performance (a) when a workload is well-behaved and (b) when a workload isn’t
well-behaved?

3.1.1 Well-behaved scenario

We started our discussion focusing on the easier case, which is the well-behaved scenario. A
representative workload for this scenario is external sort, which is a building block for many
data-intensive operations such as the compaction operation for log-structured merge trees,
sorting results of a query, etc. The key challenge with this operation is the temporary data
it creates, which in turn creates storage pressure. Our goal is to design a robust and efficient
external sort mechanism that can exploit different storage layers. The main design principle
/ intuition of our mechanism is to separate the read and write traffic for the data
movement.

While we aimed at avoiding any assumptions regarding the functionality of available
storage devices, one key requirement for the efficiency of our mechanism is having a form
of DMA support. This is not an unreasonable requirement for today’s storage landscape
considering the availability of PCIe DMA engine for SSDs, ioat for moving data from DRAM
to PMEM, S3 async put in the cloud, remote direct memory access (RDMA), etc.

Next we describe the external sort mechanism following our goal and design principle.
There are two versions of it that differ in the way the sort and merge tasks are scheduled.
Each version also has an associated illustration.

Way up / Sorts: The data to be sorted is read directly to processor caches from the
persistent storage unit, which is the data source, using the DMA engine. The size unit of
these fetches, let’s call them runs, could be based on the LLC cache size per core divided
by 2. The reason is for each direct data fetch to cache, even though one bypasses the CPU
and memory layers, the associated memory space has to be allocated. We need twice the
space to allow dual-buffering at LLC rather than going to DRAM while a core is sorting the
fetched data.

Way down / Merges: In the non-pipelined version, we first wait for all data to be
sorted in units of runs before each core starts merging of these runs.

Each core performs merges till the DRAM size is exhausted. The merge-sorted run can
be spilled to a persistent storage device as soon as the initial block/page of it is produced.
This persistent storage device could be a different one than the data source if such a device
is available. We will call it the staging area. Ideally, such a staging area should have low
access latency such as PMEM or new-gen SSDs. Ideal number of runs a core merges at a
time still requires a discussion.

The merge-sorted runs are read from the staging area using DMA using a fetch unit
similar to the way up / sorting phase. However, this time, the runs are already sorted, so
the cores just perform merging. This is repeated as long as it is needed to get the final
merge-sorted run.

Where or which device we end up writing the sorted run to depends on the use case.
The main difference between the non-pipelined and the pipelined mechanisms is the way

in which available cores are assigned to sort and merge tasks of the external merge-sort task.
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1

Figure 1 Not-pipelined scenario.

In the non-pipelined merge-sort mechanism, the sort (way-up) and merge (way-down) stages
are separate stages. First, all the available cores sort the runs and then they all merge the
sorted runs. Rather than this strict separation of the two stages, one can assign some cores
for sorting the runs and some cores for merging, where the sorted runs are transferred to the
cores responsible for merging. In this scheme the sort and merge operations are pipelined in
stages, similar to earlier work like StagedDB and SharedDB.

How the data is fetched from or written to persistent storage devices is the same across
the not-pipelined and pipelined versions of the merge-sort.

3.1.2 Not well-behaved scenario

During the seminar, we didn’t have time to talk in detail about the not well-behaved scenarios.
Such scenarios are characterized by the unpredictability of the read and write patterns such
as online transaction processing (OLTP) workloads.

In the literature, a common way to handle OLTP workloads is creating hardware-conscious
data structures such as log-structured merge trees [3], B-epsilon tree [2], Plush [4], Apex
[5], etc. The main design goal when it comes to creating these data structures is to morph
the workload’s unpredictable data access patterns or movement to a more well-behaved
pattern for the target storage device. The issue is that usually there is only one or two
devices targeted such as DRAM & PMEM and DRAM & SSD. There are only a few recent
works (e.g., Umzi [6], NovaLSM [7], etc.) that target multiple layers of storage hierarchy or
disaggregated storage.

We overall support the approach of morphing the data movement patterns using novel
and hardware-conscious data structures for not well-behaved workloads. On the other hand,
we encourage our research community to consider the new and multiple layers of the storage
hierarchy when adopting this approach.

22111
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2

Figure 2 Pipelined scenario.

3.1.3 Co-design of storage and data-intensive systems

During the seminar, we also didn’t have the time to touch upon challenges for co-design and
utilizing computational storage for data-intensive systems.

The co-design challenge boils down to the trade-off between having a predictable but
sub-optimal mechanism vs unpredictable but smart mechanism. It is easier to have co-design
principles for well-behaved workloads that would lead to predictably smart and optimal
choices. However, the not well-behaved patterns may lead to unpredictability, which may
overweigh the gains of being smart and optimal most of the time when interacting with
storage devices. Nevertheless, it is still worthwhile to deploy storage and data-intensive
system co-design mechanisms for operations such as filtering, encryption, compression, etc.

3.1.4 Next Steps

The next steps to this work are:
Modeling the data movement cost to reason about benefits
Reasoning about the tuning of parameters such as data fetch units, degree of parallelism,
number of runs to merge, etc.
Discussion on what happens if the server is shared with other requests
Implementing the two versions of the external sort mechanism
Additional work orthogonal to external sort design: extensive storage access tracing for
big database systems

References
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3.2 Robust Operators
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Mountain View, US), Mhd Yamen Haddad (Ecole Polytechnique – Palaiseau, FR), David
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The Dagstuhl Seminar 17222 on “Robust Performance in Database Query Processing” pro-
posed a novel dynamic join order selection path method named “Plan of Least Resistance”,
which is described in the Dynamic Join Sequence working group section of the seminar report
[1].

This novel algorithm aimed to increase the robustness of query processing by dynamically
avoiding poorly chosen join orders based on runtime feedback. However it was not clear
after the conclusion of Seminar 17222 how widely applicable and implementable this novel
algorithm is.

Research Question: Is the “Plan of Least Resistance” (POLR) approach for robust query
processing practical for commercial systems?

Success definition: Outline a minimal commercially viable implementation of POLR.

3.2.1 Review: Plan of Least Resistance

There are many open questions to this approach, so we focused only on those that must be
resolved for a minimum viable commercial implementation of this approach:

What shapes/orders of join plans are possible in the potentially routable paths, and which
possible join orders should be included in the plan?
What is the routing policy for the Multiplexer, and what cost metrics are required to
implement that policy?

22111
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Figure 3 Schematic Plan of Least Resistance: a Router chooses based on some model which of
two join orders to route tuples from t3. One path joins t2 first and then t3, and one path joins t3
first followed by t2. The execution engine tracks the cost of evaluating the join tree that was chosen,
for the tuple(s) and feeds that cost information back to the router to inform its future choices.

3.2.2 Join Order Selection

The goal of Join Order selection is to determine a practical way to pick join orders that will
provide robust query performance for the switcher.

Assumptions:
System that will use hash join with some form of sideways information passing (SIPS)
filter that can be applied to join keys during scans of other relations
Only consider linear join plans (left deep / right deep depending on which side you prefer
to draw the build input)

Using the information about the input relation sizes, the system leverages a classical
optimizer to pick a candidate set of plans. An algorithm was proposed to generate a set of
plans that provides good coverage across the space of possible cardinalities of intermediate
results. The initial table to scan can also be chosen with the help of the classical optimizer,
to pick the best cost table that is robust across the space of cardinalities.

This approach is more robust than a fixed join order, and it is implementable in typical
commercial database systems.

3.2.3 Multiplexer Tuple Routing

The goal of the router is to route input tuples the best among available join orders. Its
dynamic nature also allows it to adapt automatically to changes in the input and be robust
to various clusterings of input values in the incoming data stream.

We propose a “bounded regret” approach algorithm to select which possibility a particular
tuple is routed to. Specifically, the user provides a budget for how much extra time the
robust plan to spend vs. the fastest currently known plan. The router will then choose a
tuple routing to stay within this budget.



Renata Borovica-Gajic, Goetz Graefe, Allison Lee, Caetano Sauer, and Pinar Tözün 91

Adaptive Union

Multiplexer

Rest of plan

Join
Order

X

Join
Order

Y

Join
Order

Z

Multiplexer routes input tuples 
to one of three possible Join 
Orders, each of which 
contains a left/right deep tree

Figure 4 A Multiplexer beneath an Adaptive Union routes tuples to one of three possible join
orders.

Initially the router will send “enough” tuples to all three of the branches to be confident
in the observed cost. After this initial phase, the router will send tuples to each join order
with a certain probability, depending on the observed cost of that plan, in order to constrain
the overhead to within the budget, while maximizing observations of potentially better plans.
If the observed costs change significantly over time, then this algorithm is run again to
update the weights.

This technique is more robust than picking the best order after initial measurement
because it can switch between multiple plans over time, and even if it gets it wrong initially
the runtime feedback loop can guide it to a better plan over time. This technique is
implementable as it requires straightforward calculations that are neither overly burdensome
to implement and require trivial CPU and memory resources, and are easy to test.

3.2.4 Next Steps

During our week at Dagstuhl, we proposed a practical, robust solution to join order selection
in database systems. The next steps for this work include:

Build a research prototype of our solution. This would allow us to experiment with some
of the alternative policy options that we considered for join order generation and tuple
routing.
Propose solutions to open questions unrelated to the minimal implementation, including
different join shapes, distributed execution plans, and spilling operators.
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3.3 Indexing for Data Warehousing
Caetano Sauer (Salesforce – München, DE), Peter A. Boncz (CWI – Amsterdam, NL), Yannis
Chronis (University of Wisconsin-Madison, US), Jan Finis (Salesforce – München, DE),
Stefan Halfpap (Hasso-Plattner-Institut, Universität Potsdam, DE), Viktor Leis (Universität
Erlangen-Nürnberg, DE), Thomas Neumann (TU München, DE), Anisoara Nica (SAP SE
– Waterloo, CA), Knut Stolze (IBM Deutschland – Böblingen, DE), and Marcin Zukowski
(Snowflake – San Mateo, US)
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Selective queries are quite common in large-scale data analytics; for example, when drilling
down into a specific customer in a dashboard. Traditionally, selective queries are optimized
by creating secondary indexes. However, because of their large size, expensive maintenance,
and difficulty to tune and automate, indexes are typically not used in modern cloud data
warehouses. Instead, such systems rely mostly on full table scans and lightweight optimizations
like min/max filtering, whose effectiveness depends heavily on the data layout and value
distributions. It is also difficult to predict whether certain columns will be targeted by
selective queries or not, which may preclude an upfront decision to create indexes.

In this working group, we sketched a general indexing framework called SPA (Smooth
Predicate Acceleration). It optimizes selective queries automatically, by adaptively indexing
subsets of data in an incremental and workload-driven manner. It makes fine-granular
decisions and continuously monitors their benefit, dynamically allocating an optimization
budget in a way that bounds the additional cost of indexing. Furthermore, it guarantees a
performance improvement in the cases where indexes—potentially partial ones—prove to be
beneficial. On the other hand, when indexes lose their benefit due to a shifting workload,
they are also gradually deconstructed in favor of optimizations that accommodate recent
trends.

3.3.1 Desiderata

The framework envisioned in our working group should be:
Workload-driven: indexes are created and dropped solely based on workload observations,
without upfront decisions or manual interventions.
Smooth: index maintenance is carried out in incremental steps, as a side-effect of table
scans and without spikes in query latency.
Economical: decisions are taken and evaluated based solely on the monetary cost in
comparison to a baseline of full table scans.
Cost-bounded (i.e., “do no harm”): bad decisions should not impact the user-observed
response times by more than a configurable percentage.
Modular: the framework supports different types of index or summary structures, and
their individual characteristics are taken into account by the economic model.

3.3.2 General approach

The SPA framework observes the workload and automatically maintains partial indexes in
an incremental manner. The decisions taken by the framework are purely economical: it
tracks the additional cost of index maintenance (for both computing and storage) as well
as the benefit provided by indexes during scans. A positive balance on this benefit gives
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the framework more budget to continue building indexes; a negative balance, on the other
hand, leads to a gradual deconstruction of indexes. Thus, index creation can be seen as an
investment with continuously evaluated returns. The additional cost of indexing is bounded
thanks to a configurable budget (or “indexing tax”), which is specified as a percentage of the
cost of a full table scan (e.g., 1%): if none of the indexing investments pay off, the system
guarantees that queries will not be slowed down by more than this percentage on average.

Indexes are built incrementally by first indexing individual subsets of a table, such as
a file or a block on storage. These are considered units of scanning which can be skipped
with available summaries such as min/max small materialized aggregates (SMAs) [2, 1]. If
the available summaries are not able to filter out a particular block and matches are not
found for a given predicate, then the SPA framework might create an index on that block
specifically. On subsequent scans, that index can be probed before fetching and scanning the
corresponding block. As more and more blocks get indexed, they might also be merged into
larger indexes covering multiple blocks, similar to a log-structured merge tree. These partial
index structures might also lose their value over time, in which case a caching policy can
drop them or deconstruct large indexes into smaller ones.

3.3.3 Simulation

To simulate the behavior of SPA, we implemented a mock of an in-memory, column-oriented
table scan operator in C++. This prototype, available in an open source repository1,
organizes records into blocks of 100,00 tuples. It uses a simple randomized approach to create
indexes in these blocks individually. This works as follows: whenever a block is scanned
and no match is found for the simulated predicate, the system randomly chooses whether to
create an index for this block. The probability of this choice is proportional to an artificial
budget variable. This variable is incremented by a small fixed amount with every block
scanned (1), and decremented by a much larger amount if an index is created (2). In the
case where an index is available and this index allows a block to be skipped, the budget is
increased by a comparatively large amount (3). The reasoning behind each of these budget
changes is explained below, referring back to the numbers in parentheses above:
1. A small budget should be accrued regularly to allow for index creations in the first

place; this can be seen as a regular small deposit (or savings) into the index maintenance
account.

2. Creating an index has a non-negligible cost on scan performance; it is an investment that
decreases the account balance but hopefully brings returns in the future.

3. If an index allows the scan operator to skip blocks, then the investment has paid off, and
returns are deposited into the account.

As more budget is accrued (hopefully exponentially thanks to compounded returns) and
more indexes are built, smaller indexes are also merged into larger ones. Just like index
creation, the merge operation also deducts from the budget and pays back returns whenever
it is used to avoid scan work.

Figure 5 below shows the observed query response times from an execution of this
prototype with different deposit rates, i.e., the budget increase with every block scan in step
1 above. Note that this is a unitless parameter, as it just serves to scale the probability of
creating an index. This experiment sends repeated queries (x axis) with a random equality
predicate on a given column. The query response time is plotted in the y axis.

1 https://github.com/JFinis/dagstuhl-spa
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Figure 5 Simulation of budget-driven index creation.

As the results show, a deposit rate of zero (blue line) has nearly constant response time
of 200ms, serving as the baseline for the experiment. As the deposit rate increases, the first
queries in the sequence observe larger response times, but they converge faster into a fully
index-based scan, with response time under 50ms. This reflects the expected behavior of
our economic model: lower deposit rates have lower disturbance in query response times,
while higher deposit rates benefit faster from indexing performance; in the end, all choices
converge to faster execution speeds thanks to indexing.

3.3.4 Future work

Our working group considers the ideas developed during this seminar novel and industry-
relevant. As such, we plan to refine these ideas into a more detailed description of the SPA
framework and submit them as part of a vision paper to a major database conference. To
validate the benefits investigated with the prototype implementation described above, we
also plan to implement a cost-based prototype in a commercial database system and publish
our evaluation results as part of the aforementioned vision paper.

On the technical side, there are also multiple avenues to pursue in terms of design choices:
Experiment with different index structures, which might trade-off accuracy for space
consumption.
Evaluate partial index structures in terms of how efficient and simple they are to merge
and deconstruct incrementally (i.e., their composability).
Investigate different cost models, especially focused on the cost of resources in the cloud.
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