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Abstract
3D Morphable Models are models separating shape from appearance variation. Typically, they
are used as a statistical prior in computer graphics and vision. Recent success with neural
representations have caused a resurgence of interest in visual computing problems, leading to more
accurate, higher fidelity, more expressive, and memory-efficient solutions. This report documents
the program and the outcomes of Dagstuhl Seminar 22121, “3D Morphable Models and Beyond”.
This meeting of 39 researchers covered various topics, including 3D morphable models, implicit
neural representations, physics-inspired approaches, and more. We summarise the discussions,
presentations and results of this workshop.
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A total of 63 people were invited to the seminar in the first round of invitations. 39 people
attended, with 15 of those attending the seminar virtually. Participants came from both
academia and industry and at varying stages of their careers. As this seminar took place at
the trailing end of the Covid-19 pandemic, it ran in a hybrid format, and for many attendees,
Dagstuhl was the first in-person seminar in several years. Due to the fantastic facilities of the
Dagstuhl campus, the hybrid format was a great success, enabling accessible and inclusive
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communication with remote participants. Daily Covid testing for those in-person ensured
that everyone remained safe throughout the week. Eighteen presented their work in around
15-30 minute presentations; an abstract for each talk is included in this report.

Alongside traditional presentations, many sessions were left available for activities sugges-
ted by the seminar participants. These could involve workshops, discussions, presentations,
or any other suggested format. During the week, participants could propose plans for the
flexible sessions and the structure of the seminar became fixed as activities and topics for
the sessions were provided. Summaries for the results of these flexible sessions are contained
in this report. One slot was reserved for a joint group discussion on the ethical concerns
of the research we are developing. This resulted in a vivid discussion on the steps we as a
community should be taking to encourage the ethical use of the technology we are developing.
One of the discussions that received broad support was the design of a cheap, open-source
method for collecting camera calibrated illumination environments. This resulted in a Slack
channel for the group of interested researchers and the pursuit of an early prototype design.
We started the seminar with a short introduction from all participants. Everyone was given
one slide to introduce themselves and asked to prepare a question, challenge or goal to discuss
during the seminar.
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3 Overview of Talks

3.1 Learning to Fit Morphable Models
Federica Bogo (Meta Reality Labs Research – Zürich, CH)

License Creative Commons BY 4.0 International license
© Federica Bogo

Joint work of Federica Bogo, Vasileios Choutas, Jingjing Shen, Julien Valentin

Fitting parametric models of human bodies, hands or faces to image data is an important
problem in computer vision. Many recent approaches leverage deep neural networks to
regress the parameters of the model directly from the input. These methods are fast
and robust, but require large amounts of annotated data and may fail to tightly fit the
observations. Therefore, their output is often leveraged as a starting point for an iterative,
optimization-based algorithm minimizing an energy function. These functions typically
involve a data term, plus priors encoding knowledge of the problem’s structure; unfortunately
they are difficult to both formulate and tune. In this talk, I will discuss how learning-based
continuous optimization can capture the best of both deep-learning-based regression and
classic optimization. I will discuss recent advances in the field and introduce a novel, learning-
based approach for human body fitting, inspired by the Levenberg-Marquardt algorithm.
Finally, I will identify some limitations of current state-of-the-art approaches and outline a
few directions for future research.

3.2 From Pixels to Expressive 3D Bodies
Timo Bolkart (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 4.0 International license
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Joint work of Radek Danecek, Michael J. Black, Timo Bolkart, Yao Feng, Vasileios Choutas, Dimitrios Tzionas
Main reference Radek Danecek, Michael J. Black, Timo Bolkart: “EMOCA: Emotion Driven Monocular Face

Capture and Animation”, CoRR, Vol. abs/2204.11312, 2022.
URL https://doi.org/10.48550/arXiv.2204.11312

Main reference Yao Feng, Vasileios Choutas, Timo Bolkart, Dimitrios Tzionas, Michael J. Black: “Collaborative
Regression of Expressive Bodies using Moderation”, in Proc. of the International Conference on 3D
Vision, 3DV 2021, London, United Kingdom, December 1-3, 2021, pp. 792–804, IEEE, 2021.

URL https://doi.org/10.1109/3DV53792.2021.00088

Recovering expressive humans from images is essential for understanding human behavior.
Faces and their emotional expressions provide an important source of information about a
person’s internal emotional state. Unfortunately, the best recent 3D face regression methods
from monocular images are unable to capture the full spectrum of facial expression, such
as subtle or extreme emotions. We address this problem with EMOCA, by introducing a
novel deep perceptual emotion consistency loss during training, which helps ensure that the
reconstructed 3D expression matches the expression depicted in the input image. Reasoning
about humans in images requires estimating not only the face, but the full expressive body.
To that end, we present PIXIE. PIXIE combines a body-driven attention scheme with a
moderator that merges features of body-part experts to reconstruct 3D bodies with articulated
hands and expressive faces directly from images.
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3.3 Plausible (Neural) Rendering of Bodies & Garments in Motion
Duygu Ceylan (Adobe Research – London, GB)

License Creative Commons BY 4.0 International license
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Joint work of Duygu Ceylan, Meng Zhang, Niloy J. Mitra, Tuanfeng Wang, Jae Shin Yoon, Cynthia Lu, Jimei
Yang, Hyun Soo Park, Zhixin Shu

While there has been a lot of work on capturing 3D human body pose from single images
and learning to generate pose-conditioned human models either in 2D or 3D, a relatively less
explored area is to model motion dependent deformations. In this talk, I will discuss some of
my recent work in utilizing motion features to synthesize plausible garments in 2D or 3D. I
will specifically point out the main challenges and speculate on potential directions.

3.4 Inferring people’s anatomic skeleton from their external appearance
Marilyn Keller (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 4.0 International license
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Joint work of Marilyn Keller, Silvia Zuffi, Michael J. Black, Sergi Pujades
Main reference Marilyn Keller, Silvia Zuffi, Michael J. Black, Sergi Pujades: “OSSO: Obtaining Skeletal Shape from

Outside”, CoRR, Vol. abs/2204.10129, 2022.
URL https://doi.org/10.48550/arXiv.2204.10129

Modeling the human internal anatomy is key in medicine and biomechanics. While many
statistical models of the human being have been developed, those mainly describe their
external appearance or individual bones. In this talk, I present how we learn a statistical
model of the whole skeleton and its correlation with the body shape.

We do so using 1000 male and 1000 female dual-energy X-ray absorptiometry (DXA)
scans. To these, we fit a parametric 3D body shape model (STAR) to capture the body
surface and a novel part-based 3D skeleton model to capture the bones. This provides
inside/outside training pairs. We model the statistical variation of full skeletons using PCA
in a pose-normalized space. We then train a regressor from body shape parameters to skeleton
shape parameters and refine the skeleton to satisfy constraints on physical plausibility. We
name our inference tool OSSO, for “Obtaining Skeletal Shape from Outside”. Given an
arbitrary 3D body shape and pose, OSSO predicts a realistic skeleton inside.

3.5 Deep Signatures – Learning Invariants of Planar Curves
Ron Kimmel (Technion – Haifa, IL) and Roy Velich (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
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According to an important theorem by É. Cartan [1, 2], two planar curves are related by a
group action, if and only if their signature curves, with respect to a given transformation
group, are identical. Signature curves are parametrized by the group’s differential invariants.
Therefore, differential invariants provide a fundamental building block for the solution of the
equivalence problem of planar curves, and geometric structures in general. We propose a
learning paradigm for numerical approximation of differential invariants of planar curves.
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Deep neural-networks’ (DNNs) universal approximation properties are utilized to estimate
geometric measures. The proposed framework is shown to be a preferable alternative to
axiomatic constructions. Specifically, we show that DNNs can learn to overcome instabilities
and sampling artifacts and produce numerically-stable signatures for curves subject to a
given group of transformations in the plane. We compare the proposed schemes to alternative
state-of-the-art axiomatic constructions of group invariant arc-lengths and curvatures. We
evaluate our models qualitatively and quantitatively and propose a benchmark dataset to
evaluate approximation models of differential invariants of planar curves.

References
1 E. Cartan. La méthode du repère mobile, la théorie des groupes continus et les espaces

généralisés. The Mathematical Gazette, 1935
2 Olver, Peter J. Classical Invariant Theory. Cambridge University Press, 1999

3.6 Computer Vision does not generalize – 3DMMs and beyond can
help

Adam Kortylewski (MPI für Informatik – Saarbrücken, DE)
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Main reference Angtian Wang, Adam Kortylewski, Alan L. Yuille: “NeMo: Neural Mesh Models of Contrastive
Features for Robust 3D Pose Estimation”, CoRR, Vol. abs/2101.12378, 2021.

URL https://arxiv.org/abs/2101.12378

In this talk, I pointed out a fundamental issue in computer vision research, namely that there
is a large gap between the performance of vision models on academic benchmarks and their
generalization ability in real-world applications. As an illustrative example, I contrasted
the outstanding performance of vision models on popular and challenging benchmarks with
the still unsolved problem of detecting simple STOP signs with self-driving cars. The
fundamental issue is that we assume in academic benchmarks that the training and test data
are very similar (i.e. i.i.d. distributed), while autonomous systems that interact with the
real-world are often confronted with data that is, in some aspect, different from what has
been observed at training time (e.g. unseen illumination, context, occlusion, texture, etc.).
In the second half of this talk, I discussed how advances in statistical generative models
and neural rendering could potentially help to close the genralization gap. I referred to
some of our recent work on integrating deep neural networks with statistical generative
models in 2D [2] and 3D-aware architectures [1], which enabled machines to generalize to
unseen occlusion, to perform amodal segmentation [5], and to reason about occlusion ordering
[3]. I also discussed recent work where we used generative models to benchmark vision
systems through adversarial examination [4], and efforts to design new datasets that focus
on capturing real-world generalization [6].

References
1 Wang, Angtian, Adam Kortylewski, and Alan Yuille. “NeMo: Neural Mesh Models of

Contrastive Features for Robust 3D Pose Estimation.” International Conference on Learning
Representations. 2021.

2 Kortylewski, Adam, et al. “Compositional convolutional neural networks: A deep architecture
with innate robustness to partial occlusion.” Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020.
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3 Yuan, Xiaoding, et al. “Robust instance segmentation through reasoning about multi-object
occlusion.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021.

4 Ruiz, N., Kortylewski, A., Qiu, W., Xie, C., Bargal, S. A., Yuille, A., and Sclaroff, S. (2021).
Simulated Adversarial Testing of Face Recognition Models. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022.

5 Sun, Yihong, Adam Kortylewski, and Alan Yuille. “Amodal Segmentation through Out-of-
Task and Out-of-Distribution Generalization with a Bayesian Model”. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

6 Zhao, Bingchen, et al. “ROBIN: A Benchmark for Robustness to Individual Nuisancesin
Real-World Out-of-Distribution Shifts.” arXiv preprint arXiv:2111.14341 (2021).

3.7 NeRF for View Synthesis
Ben Mildenhall (Google – London, GB)

License Creative Commons BY 4.0 International license
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Joint work of Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
Ren Ng, Jonathan Barron, Peter Hedman, Dor Verbin, Todd Zickler

Main reference Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
Ren Ng: “NeRF: representing scenes as neural radiance fields for view synthesis”, Commun. ACM,
Vol. 65(1), pp. 99–106, 2022.

URL https://doi.org/10.1145/3503250

Recent years have seen a massive jump in quality for the task of photorealistic novel view
synthesis, mainly driven by hybrid neural rendering pipelines in which part or all of the
scene representation or rendering process are optimized for final image quality using gradient
descent. Our group at Google has focused on pushing further towards higher resolution,
bigger scenes, and more physically accurate view synthesis, with the hopes that progress on
representations and rendering methods for this underpinning task can be fruitfully transferred
to many other problems in 3D vision. I will give a brief overview of our recent work on
extending NeRF to perform better on large scenes, shiny objects, and noisy camera data.

3.8 Deep Relighting of 3D Faces
Shunsuke Saito (Reality Labs – Pittsburgh, US)

License Creative Commons BY 4.0 International license
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Joint work of Sai Bi, Stephen Lombardi, Shunsuke Saito, Tomas Simon, Shih-En Wei, Kevyn Mcphail, Ravi
Ramamoorthi, Yaser Sheikh, Jason M. Saragih

Main reference Sai Bi, Stephen Lombardi, Shunsuke Saito, Tomas Simon, Shih-En Wei, Kevyn Mcphail, Ravi
Ramamoorthi, Yaser Sheikh, Jason M. Saragih: “Deep relightable appearance models for animatable
faces”, ACM Trans. Graph., Vol. 40(4), pp. 89:1–89:15, 2021.

URL https://doi.org/10.1145/3450626.3459829

We present a method for building high-fidelity animatable 3D face models that can be
posed and rendered with novel lighting environments in real-time. Our main insight is that
relightable models trained to produce an image lit from a single light direction can generalize
to natural illumination conditions but are computationally expensive to render. On the other
hand, efficient, high-fidelity face models trained with point-light data do not generalize to
novel lighting conditions. We leverage the strengths of each of these two approaches. We first
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train an expensive but generalizable model on point-light illuminations, and use it to generate
a training set of high-quality synthetic face images under natural illumination conditions. We
then train an efficient model on this augmented dataset, reducing the generalization ability
requirements. As the efficacy of this approach hinges on the quality of the synthetic data we
can generate, we present a study of lighting pattern combinations for dynamic captures and
evaluate their suitability for learning generalizable relightable models. Towards achieving
the best possible quality, we present a novel approach for generating dynamic relightable
faces that exceeds state-of-the-art performance. Our method is capable of capturing subtle
lighting effects and can even generate compelling near-field relighting despite being trained
exclusively with far-field lighting data.

3.9 Digital Humans in Motion
Justus Thies (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 4.0 International license
© Justus Thies

The main theme of my work is to capture and to (re-)synthesize the real world using
commodity hardware. It includes the modeling of the human body, tracking, as well as
the reconstruction and interaction with the environment. The digitization is needed for
various applications in AR/VR as well as in movie (post-)production. Teleconferencing and
remote collaborative working in VR is of high interest since it is the next evolution step of
how people communicate. A realistic reproduction of appearances and motions is key for
such applications. Capturing natural motions and expressions as well as the photorealistic
reproduction of images under novel views are challenging. With the rise of deep learning
methods and, especially, neural rendering, we see immense progress to succeed in these
challenges. In this talk, I will focus on the image synthesis of humans, the underlying
representation of appearance, geometry, and motion to allow for explicit and implicit control
over the synthesis process.

3.10 A Structured Latent Space for Human Body Motion Generation
Stefanie Wuhrer (INRIA – Grenoble, FR)

License Creative Commons BY 4.0 International license
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Joint work of Mathieu Marsot, Stefanie Wuhrer, Jean-Sebastien Franco, Stephane Durocher
Main reference Mathieu Marsot, Stefanie Wuhrer, Jean-Sebastien Franco, Stephane Durocher: “A structured latent

space for human body motion generation”, arXiv, 2021.
URL https://doi.org/10.48550/ARXIV.2106.04387

We study learning a structured latent space to represent and generate temporally and
spatially dense 4D human body motion. Once trained, the proposed model generates a
multi-frame sequence of dense 3D meshes based on a single point in a low-dimensional latent
space. This latent motion representation can be learned in a data-driven framework that
builds upon two existing lines of works. The first analyzes temporally dense skeletal data
to capture the global displacement, poses and temporal evolution of the motion, while the
second analyzes static densely captured human scans in 3D to represent realistic 3D human
body surfaces in a low-dimensional space. Building upon the respective advantages of these
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two concepts allows the model to simultaneously represent temporal motion information
for sequences of varying duration and detailed 3D geometry at every time instant of the
motion. Experiments demonstrate that the resulting latent space is structured in the sense
that similar motions form clusters in this space, and that the latent space allows to generate
plausible interpolations between different actions.

3.11 Implicit 3DMMs for Full Heads Including Hair
Tarun Yenamandra (TU München, DE)

License Creative Commons BY 4.0 International license
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Joint work of Tarun Yenamandra, Ayush Tewari, Florian Bernard, Hans-Peter Seidel, Mohamed Elgharib, Daniel
Cremers, Christian Theobalt

Main reference Tarun Yenamandra, Ayush Tewari, Florian Bernard, Hans-Peter Seidel, Mohamed Elgharib, Daniel
Cremers, Christian Theobalt: “i3DMM: Deep Implicit 3D Morphable Model of Human Heads”, in
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021, pp. 12803–12813, Computer Vision Foundation / IEEE, 2021.

URL https://openaccess.thecvf.com/content/CVPR2021/html/Yenamandra_i3DMM_Deep_Implicit_3D_
Morphable_Model_of_Human_Heads_CVPR_2021_paper.html

3DMMs are morphable models of human faces. Existing mesh-based 3DMMs consider only a
part of the human head, commonly the face region. While some also model the shape of the
head, no existing 3DMM can model hair along with other features of human heads. This is
partly due to the unavailability of full head data and due to the challenges in modeling hair
with mesh-based representations. Can an implicit representation-based 3DMM help solve
some of the limitations? What are the challenges of such models?

3.12 Towards Precise Completion of Deformable Shapes
Oshri Halimi (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
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Main reference Oshri Halimi, Ido Imanuel, Or Litany, Giovanni Trappolini, Emanuele Rodolà, Leonidas J. Guibas,
Ron Kimmel: “Towards Precise Completion of Deformable Shapes”, in Proc. of the Computer Vision
– ECCV 2020 – 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
XXIV, Lecture Notes in Computer Science, Vol. 12369, pp. 359–377, Springer, 2020.

URL https://doi.org/10.1007/978-3-030-58586-0_22

According to Aristotle, “the whole is greater than the sum of its parts”. This statement
was adopted to explain human perception by the Gestalt psychology school of thought
in the twentieth century. Here, we claim that when observing a part of an object which
was previously acquired as a whole, one could deal with both partial correspondence and
shape completion in a holistic manner. More specifically, given the geometry of a full,
articulated object in a given pose, as well as a partial scan of the same object in a different
pose, we address the new problem of matching the part to the whole while simultaneously
reconstructing the new pose from its partial observation. Our approach is data-driven and
takes the form of a Siamese autoencoder without the requirement of a consistent vertex
labeling at inference time; as such, it can be used on unorganized point clouds as well as on
triangle meshes. We demonstrate the practical effectiveness of our model in the applications of
single-view deformable shape completion and dense shape correspondence, both on synthetic
and real-world geometric data, where we outperform prior work by a large margin.
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3.13 Do We Still Need to Detect Faces and Facial Landmarks? Do We
Need to Estimate 3D Face Shapes?

Tal Hassner (Facebook AI, California, US)
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This talk aims to challenge long held and widely popular best practices for designing digital
face processing pipelines. Specifically, nearly all face processing pipelines begin with face
detection. Many systems then continue by localizing 2D facial landmarks for each detected
face, a step typically used for face alignment and often also for 3D face reconstruction. Finally,
depending on the application, some systems also estimate the 3D shape of each face. My
talk proposes that these steps may be remnants of legacy designs from a time before effective
deep learning was available, and are no longer required for many practical use cases. In fact,
not only are these steps redundant, they also add unnecessary compute while introducing
noise. As alternatives to these steps, I will share memory and compute efficient solutions for
face detection, face alignment, and 3D face rendering. *The talk represents work done in
academia, prior to joining Facebook / Meta AI and so does not represent that company in
any way.

3.14 On Implicit Avatars, Racial Bias, and the Light/Albedo Ambiguity
Victoria Fernández Abrevaya (MPI für Intelligente Systeme – Tübingen, DE)
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Joint work of Victoria Fernández Abrevaya, Yufeng Zheng, Marcel C. Bühler, Xu Chen, Michael J. Black, Otmar
Hilliges

We discuss two works covering two different aspects of 3DMMs.
In the first part we present IMAvatar [1], a new method for learning implicit morphable

head avatars from videos. Traditional morphable face models provide fine-grained control
over expression and pose, but cannot easily capture geometric and appearance details. Neural
volumetric representations approach photorealism but are hard to animate, and do not
generalize well to unseen expressions. To address this gap we introduce IMAvatar, a novel
method for learning head avatars with an implicit representation, directly from monocular
videos. Inspired by conventional 3DMMs, IMAvatar represents the expression- and pose-
related deformations via learned blendshapes and skinning fields. We employ ray tracing
and iterative root-finding to locate the canonical surface intersection for each pixel. The
experimental results show that our method improves geometry and covers a more complete
expression space, compared to state-of-the-art methods.

In the second part we shift the focus to face appearance. We find that current diffuse
albedo estimation methods are biased towards light skin tones due to (1) strongly biased priors
that prefer light skin, and (2) algorithmic approaches that do not address the light/albedo
ambiguity. We discuss here a solution for the latter that builds on a key observation:
the full scene image contains important information about lighting that can be used for
disambiguation. Our experimental results show significant improvement compared to state-
of-the-art methods on albedo estimation, both in terms of accuracy as well as fairness.
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4 Working groups

4.1 What are the ’Killer Applications’ of 3D Implicit Representations
Ben Mildenhall (Google Research – London, UK)

License Creative Commons BY 4.0 International license
© Ben Mildenhall

Our first discussion topic, proposed by Ben Mildenhall, asked ’what are the ’killer applications’
of 3D implicit representations?’. It was thought that applications in 3D vision are progressing
slowly compared to 2D and that perhaps this was due to not yet currently having a killer
application. Some felt that judging the slow development of 3D compared to current 2D
technology was unfair due to 2D having more than 100 years of development and use in both
technology and culture. Potentially, the slow development of 3D is similar to the original
slow development of 2D over the past 100 years. It was agreed that we need to convince
the general population that 3D computer vision is valuable and that cost of 3D capture
technology is a significant factor. The only number the market understands is cost.

It was suggested that whilst one view is on what is tech feasible. Another discussion point
is to imagine every consumer with this technology and what they would do with it? What
universal adoption would look like? One interesting thing is the tendency of technology and
games toward crafting a space to share with others. Animal Crossing, where users build and
share islands or VR Chat, is a social VR game with no other objective than creating, sharing,
and communicating. These have minimal to no game mechanics, just sharing. People could
make an artistically pleasing space where others can gather in Augmented Reality (AR).
Others suggested that some of the most exciting applications will be the democratisation of
content creation. People either have 3D content creation skills or must go to a special effects
company and ask for the content to be created for a price. However, neural rendering will
enable massive reductions in the cost and skill required to create models. A simple spoken
query to the network and a model will be generated for you.

Some felt that the current limiting factor in creating these experiences is difficulty in
controlling or parameterising implicit representations. The killer applications enable users to
control the neural representation, ask the game to look the way they like, and the network
renders it for them. Along a similar line, it was generally agreed that we need to design and
build improved ways of interacting with 3D content easily. 3D content on a 2D interface is
not taking full advantage. In 2D, it is difficult for most users to interact with 3D content it
is the user interfaces at the moment are challenging for many people. Similar to when 3D
printers first arrived, it was the poor user experience that prevented widespread adoption.

Overall it was agreed by all that the future of 3D vision and neural rendering is inspiring
and that the next decade will see an explosion of creative and exciting uses of these technologies.
There are numerous directions to explore, but the combined progress of research and
engineering in hardware and software will enable widespread adoption.
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4.2 Are Neural Implicit Representations the Future of Morphable
Models?

Christian Theobalt (MPI für Informatik – Saarbrücken, DE)
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In the second flexible session, we tested a different format. Splitting into three groups, two
physical and one remote, each group discussed the proposed topic for 30 minutes. We then
regrouped and shared the results of the discussions with each other.

We concluded that in recent years, the research community had been excited to see
that the implicit representation-based methods are achieving good performance in many
aspects and are addressing many problems of morphable models, for example, in dealing with
self-occlusion problems. They improve the rendering quality of scenes, faces, and objects
and are also more efficient in the sense that only several images from different views are
required for training. The trained network now being able to interpolate pose and generate
images of almost the same quality. Compared to the morphable models using meshes, these
methods do not need dense correspondences for supervision. Some methods do not even
require information regarding the pose, volume or camera parameters.

On the other hand, we encourage further explorations of the generative ability of the
implicit representation-based methods. We know that many questions for the morphable
models or the mesh renderers still hold for the implicit models. For example, to build
models with good generative ability, achieve relighting, render different materials, separate
the albedo with shadow and highlight without losing any details, etc. It is also important
to think about having smooth control over these properties. The morphable models solve
this with dense correspondences, and the deformation space is well modelled so that we
can have parametric control over specific properties. We encourage further thinking on
how such correspondences should be encoded and how we can have smooth control over
the deformations for the implicit models. Combining the Generative Adversarial Networks
(GANs) is promising in this direction, yet we also expect other researchers to explore if a
statistical model based on implicit representations is feasible or not. Implicit representations
solve many problems that the morphable models have, yet we encourage further thinking on
how to reach the same generative ability and smooth control over certain properties.

4.3 How Much 3D is Needed?
Duygu Ceylan (Adobe Research – London, GB)
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In this workshop session, several questions were proposed for discussion. What is the best
representation? Are 2D workflows good enough? Do we need explicit 3D? Is course 3D good
enough? How much 3D do we need for 2D synthesis? Furthermore, how do we scale 3D
methods to “in-the-wild” robustly? The group felt this was an old discussion that had been
going on for many years.

The choice of needing 3D over 2D is very much task-dependent. Traditionally cartoons
were created in 2D. Now, they are 3D even though they sometimes represent 2D as it is a
more accessible representation to work with. Arguing over the coordinate system should
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be decided by the problem. For example, people used to argue over what edge detection is
the best, but it was shown that all edge detections could be viewed as the same algorithm
and depend on the task. It depends on the objective function. There is no right coordinate
system for all problems. Depending on the cost function, if the cost function enforces 3D
consistency, it was suggested that networks would learn to use 3D implicitly and learn from
data as its the lowest energy state. Generally, it was agreed that one could do everything
using just 2D, but 3D might need orders of magnitude less data, and it will be easier to learn.

The discussion amongst the group naturally flowed into a debate about how much humans
learn from data and how much we use prior knowledge. For a lot of things we are now
approximating using neural networks, we have physical theories; could we find these theories
within the networks. Alternatively, could we use the networks to infer new theories about
physical systems. It was argued that we would not be able to find physical laws from the
weights of networks, but perhaps discovering laws that govern human behaviour is possible.
The core issue is having the network communicate this information to us. For example,
something like MuZero can play Go at a very high level, but we cannot understand the
meaning behind its actions.

4.4 Metrical 3D Reconstruction of the Human Face
Justus Thies (MPI für Intelligente Systeme – Tübingen, DE)
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Recent publications argue that a 3D reconstruction is need for various applications in AR/VR.
These applications often rely on a metrically plausible reconstruction, since the face/human is
displayed in a metrical environment (i.e., objects have a known scale). However, benchmarks
for 3D face reconstruction like NoW [1] use a scale-invariant evaluation scheme (they search
for an optimal scale to align the prediction and the reference). Measuring actual metrical
reconstruction errors (i.e., only allowing for a rigid alignment without scaling) leads to a
significantly different benchmark results and rankings. This discrepancy has to be discussed
more prominently in the literature, since ideally we like to reconstruct metrical faces.
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4.5 Synthetic Data Generation Using Morphable Models
Federica Bogo (Meta Reality Labs Research – Zürich, CH)
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Morphable models have been successfully used to generate synthetic data. Recent examples
are the FaceSynthetics [1] and AGORA [2] datasets. These works show how synthetic data
generation is a flexible, powerful tool to train machine learning models, which can be used
on real image data captured in the wild. This session focused on analysing the strengths
and limitations of current synthetic pipelines and identifying how we can better leverage
morphable models to generate higher-quality data.
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It was suggested that an important question is how much one should focus on photo-
realism. Minor discrepancies in local pixel intensity statistics between generated images and
real ones can severely harm inference. However, rendering all the components realistically
in an image (people, their interactions with the scene, background etc.) is very challenging
in practice; this suggests one might need to invest significant effort (including manual work
from technical artists) to obtain high-quality data.

Moreover, even with high-quality synthetic data, we might not be able to adequately
capture the long-tailed distributions commonly found in the real world. A potential way to
identify limitations in the data could be to enable a feedback loop from the trained model,
tested on new examples, back to the training data itself to highlight problematic cases.
Currently, the research community lacks the tooling to generate realistic synthetic data at
scale quickly. We see some efforts in this direction [3], but there is still a lot to do for humans.

In the end, morphable models can play a crucial role in enabling a “virtuous cycle” from
data collection to inference – which allows us to understand the world through our models –
to synthetic data generation: better inference can enable the generation of higher-quality
data; in turn, higher-quality generated data can enable the development of more accurate
and robust models to perceive the world.

References
1 E. Wood et al. Fake it till you make it: Face analysis in the wild using synthetic data alone.

ICCV 2021.
2 P. Patel et al. AGORA: Avatars in geography optimized for regression analysis. CVPR 2021.
3 K. Greff et al. Kubric: A scalable dataset generator. CVPR 2022.

4.6 Morphable Models from Physics
Dan Casas (Universidad Rey Juan Carlos – Madrid, ES)
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State-of-the-art data-driven approaches to model 3D garment deformations are trained using
supervised strategies that require large datasets, usually obtained by expensive physics-based
simulation methods or professional multi-camera capture setups. An alternative is to use
physics-based deformation models. Formulating the problem as a set of physics-based loss
terms that can be used to train neural networks without precomputing ground-truth data.
Can this approach be applied to more areas of morphable models and computer vision in
general?

The group liked this idea seeing it as a variant of thinking about what explicit real-
world knowledge we have that can be used to simplify the situation. However, it gets more
complicated when attempting to include all other physical properties, such as material
parameters and friction in garment modelling. No physical simulation can do that at the
moment; parameters of materials that are entirely unknown, the mass of yarns, for example,
and other material properties are not fully modelled. This massive gap between the real and
simulation world limits the application of these approaches. This simulation gap resulted in
the suggestion that these models should really be called ’physics inspired’ models as you are
making a physical assumption about the world in the simulation, using a subspace of the
physics.
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Physics models are simplifications, so they are limited to the space that the model can
represent; perhaps combining this first-principles approach with a data-driven refinement
phase could be a way to go. Any explicit knowledge we can give the model aids in finding
solutions with a good prior who needs the data. These approaches could help with explain-
ability, as it is now possible to see what the model is understanding and doing to produce
the effects.

Some expressed concern over how we combine physics models with neural scene repres-
entations. Understanding physics could help generalisation but the group see a challenge in
combining these two. One of the benefits of implicit neural representations is that it can be
done without correspondence.

4.7 Ethics
Bernhard Egger (Friedrich-Alexander-Universität Erlangen-Nürnberg, DE)
William Smith (University of York, GB)
Christian Theobalt (MPI für Informatik – Saarbrücken, DE)
Stefanie Wuhrer (INRIA – Grenoble, FR)
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Our final workshop session was reserved for an extended discussion focusing on ethics. So
often, as researchers, we are focused on new functionalities and challenges. However, what we
are starting to develop now, for example, technologies that identify an individual’s emotions,
actions and identities, whilst enabling great opportunities, can have use cases that are
extremely negative and not in the broader social interest. As leaders in this field, we know
more about the possible issues than the general public and politicians. It is our responsibility
to identify and predict any negative use cases and conceive of possible options to address
these. Predicting negative use cases is a challenging problem, but one we need to have some
answers for. To begin to address this, we split this discussion into four sections:

Threats and ethical concerns.
What should we do? What is our role?
What more can our institutions do?
Essential questions to ask ourselves when starting a project.

Threats and Ethical Concerns

It was generally agreed that advances in neural rendering whilst having enormous positive
use cases could enable some very concerning applications. The rise of Deep Fakes has shown
the power of these approaches at producing misinformation, and the level of skill required
to use these methods to create fake content is decreasing yearly. Further advances in these
approaches to 3D computer vision will only enhance their realism and increase the difficulty
of identifying real from fake. Similar unethical use cases involve any non-consensual use of a
person’s likeness; for example, in pornographic applications or as impersonation when using
a telepresence system, it might not be possible to be confident that the person speaking is
that person. Whilst privacy concerns over facial recognition systems are well documented.
Morphable models are likely to be used to analyse people, emotions, attitudes and intents.
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The group also discussed bias in the datasets and models we are developing. All datasets
and models are biased, some to the point that the tools they form are potentially useless,
offensive or upsetting. Do we try to understand the biases, or must we compensate for the
biases somehow? In terms of facial recognition, it is now potentially the most important
criterion, more so than accuracy. Research into ways to fix or quantify the bias is essential.
However, it was also raised that it is sometimes a conscious decision to increase bias; for
example, removing children from datasets might be the right thing to do. Ethical bias is not
just due to data bias; an unbiased dataset can still have a model or data that has intrinsic
bias. For example, women’s faces might naturally have less variation in appearance, making
recognition more challenging.

What should we do? What is our role?

The question was raised as to whether we should consider banning a publication. Is it about
preventing the research or preventing the use case? This is also challenging as there are many
suitable applications of these technologies. It was generally agreed that it is likely we can not
keep these algorithms out of the public sphere. That focus should be exclusively on public
education and detection and preventative measures. There will always be bad actors, and it
will be a cat and mouse game to combat them; we should be focusing on being ahead of these
actors, not trying to prevent them from occurring, as that is impossible. Therefore, should
we explicitly be working on counter models for the harmful applications of the technology we
are developing? This could be an explicit part of the papers and research we do, not just
considering.

Some felt that it would be necessary to create an algorithm equivalent to the FDA (Food
and Drug Administration) that monitors public use cases of algorithms. Any algorithm
released to the public would have to go through this administration. It could also be the
focus of such an institution to educate the public. As researchers, we must push policymakers
to address issues in these publications and institutions. We should be attempting to have
regular meetings with policymakers that involve conversations about the impacts (positive
and negative) and keeping people informed. Higher frequency of communication between
researchers, the public and policy makers. Many of us have not had an opportunity to speak
to policymakers. As academics, we are given by society many resources to do amazing things,
and we must give something back. It is up to us to create these connections and start these
dialogues. One can gain much from speaking with these groups and discussing these topics
outside of one’s research group.

What more can our institutions do?

We discussed the different rules for different publications, i.e. CVPR requires approval
from an institutional ethical review board, and NeurIPS asks reviewers to flag papers that
concern them. Many felt that these rules were not sufficient to self enforce us as a community
to think about these aspects. Some think it has to be on the reviewer’s side, as asking
the others to police themselves is not a practical task. Should it potentially be an ethical
review board rather than the responsibility of the reviewers? Alternatively, should there
be a multi-disciplinary and consistent board of scientists operating across conferences and
checking flagged papers? Others felt ethical statements required by these papers were too
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generic to the point they are not helpful, raising concerns that if researchers are only thinking
about the ethical question only at the point of writing the paper or at the end of writing
the paper, it is already too late. Potentially we should be educating every researcher as a
reviewer and give training on ethical considerations such that during the research, they are
able to think more deeply about these issues.

Essential questions before starting a project

Whilst the three previous discussions were fascinating and beneficial we felt it would be
of use, especially for junior scientists, to collect a list of questions enabling an actionable
output to support researchers in the field. Here we split into five groups, and each group
was tasked with thinking of a set of questions one should ask themselves before starting a
research project. These were then collated into a single document that could be a helpful
starting guide for members of the seminar in future projects. The collated questions are
listed below:

What are potential misuses?
What companies/institutions might be interested as well?
What’s the worst use case?
Are people suffering from your research?
What is the dataset you need to ensure there is no bias in your research? Is bias important
for your research/use case?
Would it be harmful in a democratic country?
Who is funding the project?
What is the field of application? Medical, entertainment, military?
Privacy and consent of the data you would require or collect?
Are people negatively affected by data collection? (Categorising, terrorist content online)
Or obtained via nefarious means?
Would any contracts or work provided by the project be ethical, provide a good standard
of living?
Will the world be a better place if this research is done?
Am I using data for the purpose it was intended?
When we pay participants to have their face or bodies captured, do they truly understand
what they are giving away? Do they really understand how it will be used and how it
could be used in future?
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