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Abstract
Vectorial representations of graphs and relational structures, so-called graph embeddings, make it
possible to apply standard tools from data mining, machine learning, and statistics to the graph
domain. In particular, graph embeddings aim to capture important information about, both, the
graph structure and available side information as a vector, to enable downstream tasks such as
classification, regression, or clustering. Starting from the 1960s in chemoinformatics, research in
various communities has resulted in a plethora of approaches, often with recurring ideas. However,
most of the field advancements are driven by intuition and empiricism, often tailored to a specific
application domain. Until recently, the area has received little stimulus from theoretical computer
science, graph theory, and learning theory. The Dagstuhl Seminar 22132 “Graph Embeddings:
Theory meets Practice”, was aimed to gather leading applied and theoretical researchers in graph
embeddings and adjacent areas, such as graph isomorphism, bio- and chemoinformatics, and
graph theory, to stimulate an increased exchange of ideas between these communities.
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Graph-structured data is ubiquitous across application domains ranging from chemo- and
bioinformatics to image and social network analysis. To develop successful machine learning
algorithms or apply standard data analysis tools in these domains, we need techniques
that map the rich information inherent in the graph structure to a vectorial representation
in a meaningful way-so-called graph embeddings. Designing such embeddings comes with
unique challenges. The embedding has to account for the complex structure of (real-world)
networks and additional high-dimensional continuous vectors attached to nodes and edges
in a (permutation) invariant way while being scalable to massive graphs or sets of graphs.
Moreover, when used in supervised machine learning, the model trained with such embeddings
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must generalize well to new or previously unseen (graph) instances. Hence, more abstractly,
designing graph embeddings results in a trade-off between expressivity, scalability, and
generalization.

Starting from the 1960s in chemoinformatics, different research communities have worked
in the area under various guises, often leading to recurring ideas. Moreover, triggered by
the resurgence of (deep) neural networks, there is an ongoing trend in the machine learning
community to design invariant/equivariant neural architectures that are capable of dealing
with graph- and relational input, both (semi-)supervised and unsupervised, often denoted as
graph neural networks. Although successful in practical settings, most of these developments
are driven by intuition and empiricism and are geared towards specific application areas. There
is no clear understanding of these approaches’ limitations and their trade-offs in complexity,
expressivity, and generalization. Researchers recently started to leverage connections to
graph theory, group theory, logic, combinatorial algorithms, and (algorithmic) learning theory,
leading to new theoretical insights and triggering new research in applications. Hence, in
this seminar, we aimed to bring together leading applied and theoretical researchers in graph
embeddings and adjacent areas, such as graph isomorphism, bio- and chemoinformatics, graph
theory, to facilitate an increased exchange of ideas between these communities. Concretely, we
aimed to understand what hinders recent theoretical developments being applied in application
areas and worked towards a more practical theory. Further, we aimed at understanding
the overarching challenges across applications and challenges inherent to specific areas to
stimulate directions for further practical and theoretical research.

The seminar bought together 33 researchers from (applied) mathematics, specifically
harmonic analysis and (algebraic) topology, (theoretical) computer science, machine learning,
bioinformatics, and network science. Eighteen researchers attended remotely owing to the
global COVID-19 pandemic. In total, the participants presented 18 talks on their recent
progress in a better understanding of graph embeddings, focusing on supervised machine
learning, particularly graph neural networks. Many talks dealt with leveraging tools from
graph isomorphism testing and related areas such as finite model theory and group theory.
In particular, the Weisfeiler-Leman algorithm, a popular heuristic for the graph isomorphism
problem, was used to measure the expressivity of the presented algorithms and neural
architectures. The consensus was that the above algorithm leads to a too coarse-grained
measure of expressivity, and new notions of expressivity are needed to develop a thorough
understanding. Surprisingly, only a few talks dealt with developing a better understanding of
generalization, indicating that the research community still lacks an understanding. Notably,
Gitta Kutyniok showed how to leverage random graph models and graphons to analyze
the generalization error of graph neural networks, while Bruno Ribeiro talked about the
connection between causality and out-of-distribution generalization. Further, some talks
used methods from (algebraic) topology and their connection to graph theory to devise
provably expressive architectures and to better understand common problems with graph
neural networks, e.g., the problem of “over-smoothing” of node representations faced when
considering deep architectures. Moreover, two talks covered the challenges of applying
graph neural networks to biomedical data and industrial applications at Google, respectively,
indicating a gap between theoretical results and practical architectures.

Concluding Remarks

The seminar was well received, as witnessed by several positive comments from on-site
participants. In general, there was an exciting atmosphere at the seminar, particularly among
the large number of junior researchers attending the seminar on-site, also witnessed by many
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lively discussions during on-site talks. However, this was not always the case during online
talks, and the active participation of online participants was relatively low. Finally, the
organizers wish to express their gratitude to the Scientific Directors of Schloss Dagstuhl –
Leibniz Center for Informatics for their support of the seminar.
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3 Overview of Talks

3.1 Graph Neural Networks with Local Graph Parameters
Pablo Barcelo (PUC – Santiago de Chile, CL)
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Main reference Pablo Barceló, Floris Geerts, Juan Reutter, Maksimilian Ryschkov: “Graph Neural Networks with
Local Graph Parameters”, in Proc. of the Advances in Neural Information Processing Systems,
Vol. 34, pp. 25280–25293, Curran Associates, Inc., 2021.

URL https://proceedings.neurips.cc/paper/2021/file/d4d8d1ac7e00e9105775a6b660dd3cbb-Paper.pdf

Various recent proposals increase the distinguishing power of Graph Neural Networks (GNNs)
by propagating features between k-tuples of vertices. The distinguishing power of these
“higher-order” GNNs is known to be bounded by the k-dimensional Weisfeiler-Leman (WL)
test, yet their nonlinear memory requirements limit their applicability. Other proposals
infuse GNNs with local higher-order graph structural information from the start, thereby
inheriting the desirable linear memory requirement from GNNs at the cost of a one-time,
possibly non-linear, preprocessing step. We propose local graph parameter enabled GNNs
as a framework for studying the latter kind of approaches. We precisely characterize their
distinguishing power, in terms of a variant of the WL test, and in terms of the graph structural
properties that they can take into account. Local graph parameters can be added to any
GNN architecture, and are cheap to compute. In terms of expressive power, our proposal
lies in the middle of GNNs and their higher-order counterparts. Further, we propose several
techniques to aid in choosing the right local graph parameters. Our results connect GNNs
with deep results in finite model theory and finite variable logics.

3.2 Probing Graph Representations
Aleksandar Bojchevski (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
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Today we have a good theoretical understanding of the representational power of Graph
Neural Networks (GNNs). For example, their limitations have been characterized in relation
to a hierarchy of Weisfeiler-Lehman (WL) graph isomorphism tests. Consequently, there
is a large body of work proposing more powerful GNNs that mitigate these limitations.
We argue that these findings are only part of the story since many other factors besides
the model influence learning. To complete the picture we propose a probing framework to
quantify the amount of (semantically meaningful) information captured in learned graph
representations. Our preliminary findings on molecular representations highlight the potential
of this framework for understanding the inductive biases in GNNs and the interplay between
node features and graph structure
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3.3 Graph Neural Networks and Graph Representation Learning
Through the Lens of Curvature

Francesco Di Giovanni (Twitter – San Francisco, US)
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Joint work of Francesco Di Giovanni, Giulia Luise, Jake Topping, Benjamin Chamberlain, Xiaowen Dong, Michael
Bronstein

Curvature is a fundamental object in the analysis of manifolds and intrinsically characterizes
their geometry. It is not surprising then that synthetic notions of curvature have been
introduced on graphs despite the lack of an underlying differentiable structure. In this talk,
I will explore how these ideas have been recently investigated in the context of graph neural
networks and graph representation learning. In the first case, curvature turns out to be the
right tool to monitor the propagation of information inside message passing neural networks
and allows us to properly analyse and formalize the problem of over-squashing. In the second
one, we construct a family of graph embeddings into heterogeneous manifolds that are able
to both match pairwise distances on the graph and the discrete graph curvature with the
one on the ambient space leading to better preservation of higher order structures.

3.4 Graph Representation Learning on Simplicial and Cellular Complexes
Fabrizio Frasca (Twitter – London & Imperial College London)

License Creative Commons BY 4.0 International license
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Joint work of Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montúfar, Michael
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Main reference Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montúfar, Michael
Bronstein: “Weisfeiler and Lehman Go Cellular: CW Networks”, arXiv, 2021.

URL https://doi.org/10.48550/ARXIV.2106.12575

Graphs represent flexible and convenient mathematical abstractions for the modelling of
relational systems. However, pairwise interactions may fail to capture the multi-level system
of relations of many complex systems, and computational schemes embodying such paradigm
are of limited expressive power. We explore topological generalisation of graphs: Simplicial
and Cellular Complexes. We show they constitute natural and valid frameworks to model
higher-order interactions, and how their combinatorial structure lead to the design of novel
hierarchical colouring procedures extending the Weisfeiler-Leman algorithm. Graphs can
be lifted to Simplicial and Cellular Complexes with appropriate transformations, allowing
the application of such colouring procedures for provably more expressive representations.
Finally, these procedures inspire the design of neural counterparts implementing a form of
higher-order message passing. These expressive architectures overcome several limitations
of standard Graph Neural Networks; we show they excel on a variety of graph learning
benchmarks and obtain state-of-the-art results on various molecular datasets.
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3.5 Higher-order MPNNs: A Unifying Approach for Studying
Expressiveness and Approximation Properties of GNNs

Floris Geerts (University of Antwerp, BE)
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Networks”, in Proc. of the International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=wIzUeM3TAU

Characterizing the separation power of graph neural networks (GNNs) provides an under-
standing of their limitations for graph learning tasks. Results regarding separation power are,
however, usually geared at specific GNN architectures, and tools for understanding arbitrary
GNN architectures are generally lacking. We provide an elegant way to easily obtain bounds
on the separation power of GNNs in terms of the Weisfeiler-Leman (WL) tests, which have
become the yardstick to measure the separation power of GNNs. The crux is to view GNNs
as expressions in a procedural tensor language describing the computations in the layers of
the GNNs. Then, by a simple analysis of the obtained expressions, in terms of the number
of indexes and the nesting depth of summations, bounds on the separation power in terms of
the WL-tests readily follow. We use tensor language to define Higher-Order Message-Passing
Neural Networks (or k-MPNNs), a natural extension of MPNNs. Furthermore, the tensor
language point of view allows for the derivation of universality results for classes of GNNs
in a natural way. Our approach provides a toolbox with which GNN architecture designers
can analyze the separation power of their GNNs, without needing to know the intricacies of
the WL-tests. We also provide insights in what is needed to boost the separation power of
GNNs.

3.6 Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Nils Kriege (Universität Wien, AT)
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Main reference Nils M. Kriege: “Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited”, CoRR,
Vol. abs/2205.10914, 2022.
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Random walk kernels have been introduced in seminal work on graph learning and were later
largely superseded by kernels based on the Weisfeiler-Leman test for graph isomorphism. We
give a unified view on both classes of graph kernels. We study walk-based node refinement
methods and formally relate them to several widely-used techniques, including Morgan’s
algorithm for molecule canonization and the Weisfeiler-Leman test. We define corresponding
walk-based kernels on nodes that allow fine-grained parameterized neighborhood comparison,
reach Weisfeiler-Leman expressiveness, and are computed using the kernel trick. From
this we show that classical random walk kernels with only minor modifications regarding
definition and computation are as expressive as the widely-used Weisfeiler-Leman subtree
kernel but support non-strict neighborhood comparison. We verify experimentally that walk-
based kernels reach or even surpass the accuracy of Weisfeiler-Leman kernels in real-world
classification tasks.
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3.7 Stability and Generalization Capabilities of Graph Neural Networks
Gitta Kutyniok (LMU München, DE)

License Creative Commons BY 4.0 International license
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Joint work of Gitta Kutyniok, Holger Boche, Michael M. Bronstein, Lorenzo Bucci, Adalbert Fono, Wei Huang,
Yunseok Lee, Ron Levie, Sohir Maskey

The tremendous importance of graph structured data due to recommender systems or social
networks led to the introduction of graph convolutional neural networks (GCN). We ask the
question to which extent GCN are able to generalize to graphs, which describe a similar
phenomenon as present in the training data set. We consider different notions of similarity,
using random graph models as well as graphons, and analyze both spectral GCNs [1, 2] and
message passing neural networks [3]. In these settings, we will then derive comprehensive
non-asymptotic bounds on the related generalization error. We will finish with a word of
caution when training graph neural networks on classical digital hardware, and present
fundamental limitations [4, 5].

References
1 R. Levie, W. Huang, L. Bucci, M. M. Bronstein, and G. Kutyniok. Transferability of Spectral

Graph Convolutional Neural Networks. J. Mach. Learn. Res., to appear. (arXiv:1907.12972).
2 S. Maskey, R. Levie, and G. Kutyniok. Transferability of Graph Neural Networks: an

Extended Graphon Approach. (arXiv:2109.10096)
3 S. Maskey, Y. Lee, R. Levie, and G. Kutyniok. Stability and Generalization Capabilities of

Message Passing Graph Neural Networks (arXiv:2202.00645)
4 H. Boche, A. Fono and G. Kutyniok. Limitations of Deep Learning for Inverse Problems on

Digital Hardware (arXiv:2202.13490)
5 H. Boche, A. Fono and G. Kutyniok. Inverse Problems Are Solvable on Real Number Signal

Processing Hardware (arxiv:2204.02066)

3.8 Equivariant Subgraph Aggregation Networks
Haggai Maron (NVIDIA – Tel Aviv, IL)
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Main reference Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, Haggai Maron: “Equivariant Subgraph Aggregation Networks”,
in Proc. of the International Conference on Learning Representations, 2022.

URL https://openreview.net/forum?id=dFbKQaRk15w

Message-passing neural networks (MPNNs) are the leading architecture for deep learning on
graph-structured data, in large part due to their simplicity and scalability. Unfortunately, it
was shown that these architectures are limited in their expressive power. This work proposes
a novel framework called Equivariant Subgraph Aggregation Networks (ESAN) to address
this issue. Our main observation is that while two graphs may not be distinguishable by an
MPNN, they often contain distinguishable subgraphs. Thus, we propose to represent each
graph as a set of subgraphs derived by some predefined policy, and to process it using a
suitable equivariant architecture. We develop novel variants of the 1-dimensional Weisfeiler-
Leman (1-WL) test for graph isomorphism, and prove lower bounds on the expressiveness of
ESAN in terms of these new WL variants. We further prove that our approach increases the
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expressive power of both MPNNs and more expressive architectures. Moreover, we provide
theoretical results that describe how design choices such as the subgraph selection policy
and equivariant neural architecture affect our architecture’s expressive power. To deal with
the increased computational cost, we propose a subgraph sampling scheme, which can be
viewed as a stochastic version of our framework. A comprehensive set of experiments on real
and synthetic datasets demonstrates that our framework improves the expressive power and
overall performance of popular GNN architectures.

3.9 Frame Averaging for Invariant and Equivariant Network Design
Yaron Lipman (Weizmann Institute – Rehovot, IL)

Joint work of Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J. Smith, Yaron
Lipman
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Main reference Omri Puny, Matan Atzmon, Heli Ben-Hamu, Edward J. Smith, Ishan Misra, Aditya Grover, Yaron
Lipman: “Frame Averaging for Invariant and Equivariant Network Design”, CoRR,
Vol. abs/2110.03336, 2021.

URL https://arxiv.org/abs/2110.03336

Many machine learning tasks involve learning functions that are known to be invariant or
equivariant to certain symmetries of the input data. However, it is often challenging to
design neural network architectures that respect these symmetries while being expressive
and computationally efficient. For example, Euclidean motion invariant/equivariant graph or
point cloud neural networks.

In this work we introduce Frame Averaging (FA), a general purpose and systematic
framework for adapting known (backbone) architectures to become invariant or equivariant
to new symmetry types. Our framework builds on the well known group averaging operator
that guarantees invariance or equivariance but is intractable. In contrast, we observe that
for many important classes of symmetries, this operator can be replaced with an averaging
operator over a small subset of the group elements, called a frame. We show that averaging
over a frame guarantees exact invariance or equivariance while often being much simpler to
compute than averaging over the entire group. Furthermore, we prove that FA-based models
have maximal expressive power in a broad setting and in general preserve the expressive
power of their backbone architectures. Using frame averaging, we propose a new class of
universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud
networks, and Euclidean motion invariant Message Passing (MP) GNNs. We demonstrate the
practical effectiveness of FA on several applications including point cloud normal estimation,
beyond 2-WL graph separation, and n-body dynamics prediction, achieving state-of-the-art
results in all of these benchmarks.
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3.10 Challenges of Applying Graph Neural Networks
Bryan Perozzi (Google – New York, US)

License Creative Commons BY 4.0 International license
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Joint work of Bryan Perozzi, John Palowitch, Anton Tsitsulin, Brandon Mayer, Qi Zhu, Natalia Ponomareva,
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Main reference Jonathan Halcrow, Alexandru Mosoi, Sam Ruth, Bryan Perozzi: “Grale: Designing Networks for
Graph Learning”, in Proc. of the KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pp. 2523–2532, ACM,
2020.

URL https://doi.org/10.1145/3394486.3403302

Graph Neural Networks are a tantalizing way of modeling data which doesn’t have a fixed
structure. However, getting them to work as expected has had some twists and turns over the
years. In this talk, I discuss three efforts from our group on important (and understudied)
problems applying GNNs to real data including graph construction, model benchmarking,
and model robustness:

Grale, is a scalable method we have developed to address the problem of graph design
for graphs with billions of nodes. Grale operates by fusing together different measures of
(potentially weak) similarity to create a graph which exhibits high task-specific homophily
between its nodes. Grale is designed for running on large datasets. We have deployed Grale
in more than 20 different industrial settings at Google, including datasets which have tens of
billions of nodes, and hundreds of trillions of potential edges to score.

GraphWorld is a novel methodology and system for benchmarking GNN models on an
arbitrarily-large population of synthetic graphs for any conceivable GNN task. GraphWorld
allows a user to efficiently generate a world with millions of statistically diverse datasets.
It is accessible, scalable, and easy to use. GraphWorld can be run on a single machine
without specialized hardware, or it can be easily scaled up to run on arbitrary clusters or
cloud frameworks. Using GraphWorld, a user has fine-grained control over graph generator
parameters, and can benchmark arbitrary GNN models with built-in hyperparameter tuning

Shift-Robust GNN (SR-GNN) is designed to account for distributional differences between
biased training data and a graph’s true inference distribution. SR-GNN adapts GNN models
to the presence of distributional shift between the nodes labeled for training and the rest
of the dataset. We illustrate the effectiveness of SR-GNN in a variety of experiments with
biased training datasets on common GNN benchmark datasets for semi-supervised learning,
where we see that SRGNN outperforms other GNN baselines in accuracy, addressing at least
~40% of the negative effects introduced by biased training data.

3.11 Causal Graph Representation Learning
Bruno Ribeiro (Purdue University – West Lafayette, US)

License Creative Commons BY 4.0 International license
© Bruno Ribeiro

Joint work of Bruno Ribeiro, Beatrice Bevilacqua, Yangze Zhou, S Chandra Mouli

In this talk I discussed the challenges and opportunities in building graph representations
for causal tasks (learning and prediction). We started with the question “Why is causality
relevant for graph machine learning?”, expanding it into three threads: (a) Some graph tasks
are causal, such as link prediction for recommender systems; (b) Extrapolation tasks in deep
learning better defined through causality, since convex hull and other geometric definitions
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in high dimensions tend to be meaningless for machine learning; (c) Out-of-distribution
tasks are a mix of associational and counterfactual tasks (as the work of Bevilacqua et al.
2021 and Mouli et al. 2021 show). For out-of-distribution tasks we reviewed the concept
of counterfactual invariant (graph) representations (Bevilacqua et al. 2021). Explaining
why data augmentations for graphs are difficult to properly implement in practice (e.g.,
what it would look like if graph were larger without changing class label?). The talk ended
stating that counterfactual-invariant representations are task-dependent and that, unlike
associational graph tasks, there are provably no universal approximators for causal tasks.

3.12 Topology-Based Graph Learning
Bastian Rieck (Helmholtz Zentrum München, DE)
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“Topological Graph Neural Networks”, in Proc. of the International Conference on Learning
Representations, 2022.

URL https://openreview.net/forum?id=oxxUMeFwEHd

Topological data analysis is starting to establish itself as a powerful and effective framework in
machine learning, supporting the analysis of neural networks, but also driving the development
of novel algorithms that incorporate topological characteristics. As a problem class, graph
representation learning is of particular interest here, since graphs are inherently amenable
to a topological description in terms of their connected components and cycles. This talk
will provide an overview of how to address graph learning tasks using machine learning
techniques, with a specific focus on how to make such techniques ’topology-aware.’ We will
discuss how to learn filtrations for graphs and how to incorporate topological information
into modern graph neural networks, resulting in provably more expressive algorithms. This
talk aims to be accessible to an audience of graph learning enthusiasts; prior knowledge of
topological data analysis is helpful but not required.

3.13 Universal Graph Neural Networks via Random Data
Augmentations Using Graph Isomorphism Tools

Pascal Schweitzer (TU Darmstadt, DE)
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Message-passing neural networks have provable limitations. Random data augmentations
can be used to overcome these, resulting in provably universal graph neural networks. I
will describe a solver from the realm of practical graph isomorphism testing that is based
on so-called individualization-refinement techniques and uses random sampling. I will then
describe how it can be employed to obtain efficient, scalable, universal graph neural networks.
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3.14 Combining Representation Learning and Logical Rule Reasoning for
Knowledge Graph Inference

Yizhou Sun (UCLA, US)
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Knowledge graph inference has been studied extensively due to its wide applications. It
has been addressed by two lines of research, i.e., the more traditional logical rule reasoning
and the more recent knowledge graph embedding (KGE). In this talk, we will introduce
two recent developments in our group to combine these two worlds. First, we propose to
leverage logical rules to bring in high-order dependency among entities and relations for
KGE. By limiting the logical rules to be the definite Horn clauses, we are able to fully exploit
the knowledge in logical rules and enable the mutual enhancement of logical rule-based
reasoning and KGE in an extremely efficient way. Second, we propose to handle logical
queries by representing fuzzy sets as specially designed vectors and retrieving answers via
dense vector computation. In particular, we provide embedding-based logical operators that
strictly follow the axioms required in fuzzy logic, which can be trained by self-supervised
knowledge completion tasks. With additional query-answer pairs, the performance can be
further enhanced. With these evidence, we believe combining logic with representation
learning provides a promising direction for knowledge reasoning.

3.15 Graph Learning with 1D Convolutions on Random Walks
Jan Tönshoff (RWTH Aachen, DE)
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Main reference Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, Martin Grohe: “Graph Learning with 1D Convolutions

on Random Walks”, CoRR, Vol. abs/2102.08786, 2021.
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We propose CRaWl (CNNs for Random Walks), a novel neural network architecture for
graph learning. It is based on processing sequences of small subgraphs induced by random
walks with standard 1D CNNs. Thus, CRaWl is fundamentally different from typical message
passing graph neural network architectures. It is inspired by techniques counting small
subgraphs, such as the graphlet kernel and motif counting, and combines them with random
walk based techniques in a highly efficient and scalable neural architecture. We demonstrate
empirically that CRaWl matches or outperforms state-of-the-art GNN architectures across a
multitude of benchmark datasets for graph learning.

22132

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ojs.aaai.org/index.php/AAAI/article/view/20310
https://ojs.aaai.org/index.php/AAAI/article/view/20310
https://ojs.aaai.org/index.php/AAAI/article/view/20310
https://ojs.aaai.org/index.php/AAAI/article/view/20310
https://ojs.aaai.org/index.php/AAAI/article/view/20310
https://ojs.aaai.org/index.php/AAAI/article/view/20310
https://doi.org/10.18653/v1/2021.emnlp-main.769
https://doi.org/10.18653/v1/2021.emnlp-main.769
https://doi.org/10.18653/v1/2021.emnlp-main.769
https://doi.org/10.18653/v1/2021.emnlp-main.769
https://doi.org/10.18653/v1/2021.emnlp-main.769
https://doi.org/10.18653/v1/2021.emnlp-main.769
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2102.08786
https://arxiv.org/abs/2102.08786
https://arxiv.org/abs/2102.08786


154 22132 – Graph Embeddings: Theory meets Practice

3.16 Graph Neural Networks are Dynamic Programmers
Petar Velickovic (DeepMind – London, GB)
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Recent advances in neural algorithmic reasoning with graph neural networks (GNNs) are
propped up by the notion of algorithmic alignment. Broadly, a neural network will be better
at learning to execute a reasoning task (in terms of sample complexity) if its individual
components align well with the target algorithm. Specifically, GNNs are claimed to align
with dynamic programming (DP), a general problem-solving strategy which expresses many
polynomial-time algorithms. However, has this alignment truly been demonstrated and
theoretically quantified? Here we show, using methods from category theory and abstract
algebra, that there exists an intricate connection between GNNs and DP, going well beyond
the initial observations over individual algorithms such as Bellman-Ford. Exposing this
connection, we easily verify several prior findings in the literature, and hope it will serve as a
foundation for building stronger algorithmically aligned GNNs.

3.17 Infusing Structure and Knowledge into Biomedical AI
Marinka Zitnik (Harvard University – Boston, US)
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Alsentzer, Sam Finlayson, Matthew McDermott, Joe Loscalzo, Jure Leskovec, Laszlo Barabasi,
Marinka Zitnik

Artificial intelligence has enabled scientific breakthroughs in diverse areas of biology and
medicine. However, biomedical data present unique challenges, including limited annotations
for supervised learning, the need to generalize to new scenarios not seen during training,
and the need for trustworthy representations that lend themselves to actionable hypotheses
in the laboratory. This talk describes our efforts to address these challenges by infusing
structure and knowledge into biomedical AI. First, I outline subgraph neural networks that
can disentangle distinct aspects of subgraph structure. I will then present a general-purpose
approach for few-shot learning on graphs. At the core is the notion of local subgraphs
that transfer knowledge from one task to another, even when only a handful of labeled
examples are available. This principle is theoretically justified as we show that the evidence
for predictions can be found in subgraphs surrounding the targets. Finally, to illustrate the
benefits of modeling structure in non-graph datasets, I will introduce Raindrop, a graph
neural network that embeds complex time series while also learning the dynamics of sensors
purely from observational data. This research creates new avenues for accelerating drug
discovery, fusing biomedical knowledge and patient data, and giving the right patient the
right treatment at the right time to have effects that are consistent from person to person
and with results in the laboratory.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2203.15544
https://doi.org/10.48550/arXiv.2203.15544
https://doi.org/10.48550/arXiv.2203.15544
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Martin Grohe, Stephan Günnemann, Stefanie Jegelka, and Christopher Morris 155

Participants

Francesco Di Giovanni
Twitter – San Francisco, US

Federico Errica
NEC Laboratories Europe –
Heidelberg, DE

Fabrizio Frasca
Twitter – London & Imperial
College London, UK

Floris Geerts
University of Antwerp, BE

Martin Grohe
RWTH Aachen University, DE

Stephan Günnemann
TU München, DE

Nils Kriege
Universität Wien, AT

Gitta Kutyniok
LMU München, DE

Haggai Maron
NVIDIA – Tel Aviv, IL

Christopher Morris
McGill University & MILA –
Montreal

Gaurav Rattan
RWTH Aachen, DE

Bruno Ribeiro
Purdue University – West
Lafayette, US

Bastian Rieck
Helmholtz Zentrum
München, DE

Pascal Schweitzer
TU Darmstadt, DE

Jan Tönshoff
RWTH Aachen, DE

Remote Participants

Pablo Barcelo
PUC – Santiago de Chile, CL

Aleksandar Bojchevski
CISPA – Saarbrücken, DE

Joan Bruna Estrach
New York University, US

Tina Eliassi-Rad
Northeastern University –
Boston, US

Matthias Fey
TU Dortmund, DE

Barbara Hammer
Universität Bielefeld, DE

Stefanie Jegelka
MIT – Cambridge, US

Elias Khalil
University of Toronto, CA

Benny Kimelfeld
Technion – Haifa, IL

Yaron Lipman
Weizmann Institute –
Rehovot, IL

Andreas Loukas
Prescient Design – Schlieren, CH

Bryan Perozzi
Google – New York, US

Siamak Ravanbakhsh
McGill University –
Montréal, CA

Joshua Robinson
MIT – Cambridge, US

Yizhou Sun
UCLA, US

Petar Velickovic
DeepMind – London, GB

Ulrike von Luxburg
Universität Tübingen, DE

Marinka Zitnik
Harvard University – Boston, US

22132


	Executive Summary Martin Grohe, Stephan Günnemann, Stefanie Jegelka, and Christopher Morris
	Table of Contents
	Overview of Talks
	Graph Neural Networks with Local Graph Parameters Pablo Barcelo
	Probing Graph Representations Aleksandar Bojchevski
	Graph Neural Networks and Graph Representation Learning Through the Lens of Curvature Francesco Di Giovanni
	Graph Representation Learning on Simplicial and Cellular Complexes Fabrizio Frasca
	Higher-order MPNNs: A Unifying Approach for Studying Expressiveness and Approximation Properties of GNNs Floris Geerts
	Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited Nils Kriege
	Stability and Generalization Capabilities of Graph Neural Networks Gitta Kutyniok
	Equivariant Subgraph Aggregation Networks Haggai Maron
	Frame Averaging for Invariant and Equivariant Network Design Yaron Lipman
	Challenges of Applying Graph Neural Networks Bryan Perozzi
	Causal Graph Representation Learning Bruno Ribeiro
	Topology-Based Graph Learning Bastian Rieck
	Universal Graph Neural Networks via Random Data Augmentations Using Graph Isomorphism Tools Pascal Schweitzer
	Combining Representation Learning and Logical Rule Reasoning for Knowledge Graph Inference Yizhou Sun
	Graph Learning with 1D Convolutions on Random Walks Jan Tönshoff
	Graph Neural Networks are Dynamic Programmers Petar Velickovic
	Infusing Structure and Knowledge into Biomedical AI Marinka Zitnik

	Participants
	Remote Participants

