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Abstract
The fourth edition of the Computational Metabolomics seminars, Dagstuhl Seminar 22181,
brought together a wide range of computational and experimental experts to share state-of-the
art methodologies and push our collective understanding of how to interpret and maximise insight
of metabolomic data. With increasing amounts of metabolomic data being generated, including
large-scale epidemiological studies, and increasing sensitivity of instrumentation, development
of sophisticated and robust computational solutions is required. Further, community agreement
on which data standards should be used and which data sets are most apt for benchmarking
computational tools is needed in the field. Building upon the previous successful formats of
previous seminars (17491, 15492, and 20051) on this topic, attendees gathered each morning
to collectively agree on the number of sessions and topics to discuss. A summary of the daily
sessions were shared amongst all participants after dinner during each day’s final formal session.
Further, informal evening sessions were spontaneously created to further dive into specific topics.
As with past seminars, this format was very well received and enabled all participants to weigh in.
Of particular note, this seminar was delayed and travel was complicated due to the pandemic.
Despite these setbacks, this seminar brought together a balanced number of previous and new,
seasoned and early career participants. All participants were active in these discussions, and a
true sense of renewed energy ensued from the seminar. This report provides highlights of formal
and informal evening sessions, including future anticipated research directions rooted from this
seminar. Possible future workshops, such as a next phase of this Computational Metabolomics
Dagstuhl seminar in late 2023 or 2024 were also discussed and will be applied for.
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1 Executive Summary

Corey Broeckling (Colorado State University – Fort Collins, US
Timothy Ebbels (Imperial College London, GB)
Ewy Mathé (National Institutes of Health – Bethesda, US)
Nicola Zamboni (ETH Zürich, CH)
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Metabolomics is the study of small molecules in living systems, including those which generate
the energy to sustain life, those that form the building blocks of macromolecules such as
DNA, as well as some originating outside the living system such as pollutants. Biologically,
this field is of increasing importance due to its strong connection to organism function. Meta-
bolomics is rapidly expanding with significant advances in both measurement technology (e.g.
mass spectrometry, chromatography, NMR spectroscopy) and informatics approaches. The
amount and complexity of data routinely exceeds the capacity of typical software and other
computational systems used in bioanalytical labs and there is an ongoing and increasingly
acute need for improvements in computational, informatics and statistical/machine learning
approaches to make sense of it all.

This seminar, the fourth in the series on computational metabolomics, continued some
themes previously well developed, and explored many new ones. A good example of the
former is the problem of how to use mass spectral data to annotate (putatively identify) the
1000s of unknown metabolites typically observed in routine assays. Another example would
be the discussion of new developments in dealing with Data Independent Acquisition which
has diversified considerably in the last 5 years. Many new directions were also discussed. For
instance, the question of pathway analysis – how to generate semi-automated interpretation
of metabolomics data on the level of groups of molecules working together in biological
processes – is becoming more prominent as larger annotated datasets become available.
Another new direction was “metaboproteomics”, looking at the diverse array of interactions
between metabolites and proteins, in particular in how metabolite derived post-translational
modifications of proteins can be picked up in annotation pipelines. Other discussions focused
on software aspects such as visualization of chemical space (a key problem in designing
effective software tools) and the generation/curation of high quality data for benchmarking
new informatics algorithms. A session on extended metabolic models looked at ways to link
data and prediction tools from protein function studies to metabolites in order to gain new
knowledge of unknown metabolic pathways. From a data generation technology perspective,
while mass spectrometry (MS) dominated as expected (e.g. sessions on MS spectral quality
requirements, fragmentation trees etc), the seminar extended beyond previous ones into
a discussion of NMR data processing and modeling. Open databases, repositories and
knowledge representation also featured their own discussions including Wikidata, CxSMILEs
and Wikipathways/RaMP-DB. Finally the important issue of integrating metabolomic data
with other relevant data types (e.g. genomics, proteomics etc) was discussed.

The seminar organization followed a similar flexible format to the previous one, where
topics were both suggested in advance and brainstormed on the Monday. The whole group
participated in brainstorming and prioritization and this was further refined each morning
of the meeting. Parallel discussions were organized with the aim to minimize clashes in
individual interests and at the end of each morning/afternoon session a plenary feedback
session was held to disseminate the main discussion points to the whole group. Evening
sessions were very popular and covered a wide range of topics. Overall the seminar was felt
to be one of the most successful yet, highlighting the growing importance of computational
metabolomics as a field in its own right and emphasizing the need for further meetings to
address the important problems in this exciting area of research.
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3 Overview of Talks

3.1 How to use unlabeled mass spectra for machine learning
Sebastian Böcker (Universität Jena, DE)

License Creative Commons BY 4.0 International license
© Sebastian Böcker

The chemical space of molecules of biological interest is very large, and we have the problem
that labelled datasets only span a fraction of this space; but more importantly regions of
this space are not covered at all. The current trend is to use transformers for this purpose,
and there are already several tools available. We discussed approaches that were brought up
in other areas (natural language processing) but we also discussed the importance of not
repeating what other fields have done. We discussed using fragmentation trees to a) annotate
peaks, allowing us to work with molecular formulas instead of masses, b) data augmentation,
removing subtrees, and c) for generating decoys, we also discussed different representations
of molecular structures, and the merits and dangers of providing information on collision
energies.

3.2 Pathway analysis in metabolomics
Timothy Ebbels (Imperial College London, UK)

License Creative Commons BY 4.0 International license
© Timothy Ebbels

The session started by collecting the different definitions of network and pathway analysis.
One of the approaches is statistical analysis of sets of metabolites against a (difficult-to-come-
by) background distribution, noting that a reference metabolome does not exist. Generally,
a pathway is defined as a set/collection of molecules, and statistical analyses include over-
representation analysis, set enrichment analysis, and topology-based approaches. The input
to these approaches is typically two-fold: 1) molecules of interest, and optionally a metric
that defines their relevance (e.g. p-value, effect size); 2) prior annotations (e.g. biological,
chemical) from knowledge sources associated with these molecules. The session focused on
over-representation and set enrichment-based approaches.

Several broad categories of challenges/questions were consistently brought up: 1) ability
to apply broad methods, including those developed in genomics, to metabolomics without
tailoring to specific peculiarities of metabolomics data; 2) metabolite identification and
annotation (structural resolution); 3) ability to map metabolites to pathways and coverage of
metabolite annotations; 4) ability to develop tools that are not strongly affected by missing
annotations and different levels of uncertainty; 5) difficulty in defining a common language
across communities and how this affects the utility of knowledge sources across different fields
(e.g. human diseases, natural products, etc.). Further, the notion of single-sample pathway
analysis was only mentioned briefly, but could hold great potential to move from univariate
biomarker-type analysis towards more biochemically informed metabolic state analysis.

Despite the title “Pathway analysis in metabolomics/lipidomics and multi-omics” the
session focused on the pathway and network analysis, and the multi-omics aspect was left for
a later occasion.

22181
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3.3 Benchmarking data for metabolomics
Ewy Mathé (National Institutes of Health – Bethesda, US)

License Creative Commons BY 4.0 International license
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Reference samples are critical to evaluate reproducibility of metabolomic measurements across
different platforms or laboratories. Publicly available reference datasets are useful to develop,
test, and benchmark new methods and tools. The goal of this informal evening session was
to survey the various reference samples and datasets that are used by the metabolomics
community and to identify gaps in availability of these samples/datasets.

Several key reference samples include NIST 1950, COMETS reference samples, and
MetQual, that are used to evaluate comparability of metabolite measurements across different
groups/labs. Other efforts, e.g. Metabolomics Workbench and CASMI provide available key
datasets that can be used to develop algorithms, including those that identify metabolites.
Synthetic and simulated datasets are also being used.

There was general consensus that it is difficult to find useful benchmarking datasets, and
that benchmarking data used to develop algorithms often do not publish the benchmarking
data or the process used to generate the data. Possible solutions here include appropriate
tags to datasets so that they could be searchable, or to create a repo of benchmarking
datasets. Also the consensus is that more benchmarking datasets should be made available
to cover various use cases (e.g. time-series, categorical/continuous outcomes, identification,
normalization methodologies), and these should include commonly used platforms. Other
gaps identified in this area include the scarcity of resources that bridge multi-omic data and
the creation of a DREAM-like challenge.

3.4 Extended metabolic models
Juho Rousu (Aalto University, FI)

License Creative Commons BY 4.0 International license
© Juho Rousu

The aim of the session was to discuss the ways to link data and prediction tools from
protein (enzyme) function studies and metabolomics in order to gain new knowledge of
unknown metabolic pathways. Integration of enzyme function data with MS/MS and NMR
measurements from untargeted metabolomics experiments is recognized as a field of great
potential, for example, for enhancing structural annotation accuracy of unknown metabolites.
Given the complexity of the overall task, it is important to identify subtasks that are solvable
given the current state-of-the-art.

The discussions covered several aspects that make the prediction of enzymatic reactions in
a fine-grained resolution challenging and approaches to overcome these aspects. In particular,
the topology of enzyme function spaces is challenging due to the activity cliffs that make
interpolation in the function space hard. Other key challenges include the scarcity and poor
findability of data on the substrate specificity, promiscuity, and mode of action of enzymes
as well as the lack of suitable representations of promiscuous enzyme function. In addition,
the current deep learning approaches are likely not sufficient to cover the needs of enzyme
function prediction at the fine-grained level. It was concluded that work is required on
several fronts. First, writing a review article on the state of the art computational approaches

https://creativecommons.org/licenses/by/4.0/
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(especially deep learning), on enzyme function prediction in metabolomics was seen as
important. The review should aim to provide a common vocabulary and collect information
on data and software availability. Secondly, development of graph neural networks tailored
to the enzyme-function prediction task, was identified as an important task. Thirdly, efforts
will be made to collect useful software packages for tackling the problem.

3.5 Quality control in untargeted metabolomics
María Eugenia Monge (CIBION – Buenos Aires, AR)

License Creative Commons BY 4.0 International license
© María Eugenia Monge

The session covered various aspects and levels of quality control (QC) along the metabolomics
workflow. A number of QC metrics can be calculated on the raw spectral data files. Several
implementations exist, and can be calculated retrospectively, but also during the measurement
process. This allows an instrumental- and lab health dashboard visualization and alerting,
and is a first step to having a digital twin for the physical setup. Good experimental design
includes multiple runs of standard reference materials and pooled sample QC. These are
commonly used in the data analysis stages at the end, to ensure and sometimes correct data
in the matrix prior or as part of the statistical analysis.

3.6 NMR computational approaches in Metabolomics
Panteleimon Takis (Imperial College London, UK)

License Creative Commons BY 4.0 International license
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NMR spectroscopy is one of the dominant analytical approaches for the deconvolution of
complex matrices such as biofluids, which is widely used in the field of metabolomics with
the caveat of low sensitivity. Consequently, there are plenty of challenges to overcome with
computational approaches to interpret and extract as much metabolite information as possible
from the 1H-NMR profile of complex mixtures. In this session, a detailed introduction to
NMR and its application to biofluids was discussed. In addition, a brief explanation of what
could be observed in a typical 1H-NMR profile of serum/plasma samples was discussed along
with the basics of NMR.

22181
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3.7 Wikidata: empowering metabolomics research
Egon Willighagen (Maastricht University, NL)
Adriano Rutz (University of Geneva, CH)
Ewy Mathé (National Institutes of Health – Bethesda, US)

License Creative Commons BY 4.0 International license
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Joint work of Egon Willighagen, Adriano Rutz, Ewy Mathé

Wikidata (https://wikidata.org/) was founded in 2012 as a platform for collaborative
data collection [1]. Similar to other wikis like Wikipedia, it crowdsources knowledge, but
unlike Wikipedia, this new project is data-driven not narrative-driven. Another differ-
ence is the liberal license/waiver, CCZero, which mimics the concept of public domain.
This allows many research domains across the world to adopt Wikidata to easily collect,
curate, and integrate data, including the life sciences [2]. Because Wikidata has applica-
tion programming interfaces to add, update (e.g. curate), and retrieve data many tools
have been developed around it which empowers even more use cases. Notable for data
editing are Mix’n’match, QuickStatements, OpenRefine, and Author Disambiguator. For
visualization the Wikidata Query Service (WDQS, https://query.wikidata.org/) took
Wikidata to a new level, empowered by a continuously updated SPARQL endpoint, which
now hosts over 13 billion RDF triples. Based on the ideas of the WDQS many tools have
been developed, including Scholia (https://scholia.toolforge.org/) which visualizes
data from Wikidata using SPARQL queries [3] around so-called aspects for genes, pro-
teins, metabolites, but also researchers, institutes, and journals and publishers. Scholia
encourages knowledge discovery. In this session, we discussed how Wikidata organizes the
development of the data in Wikidata and we discussed its mechanisms to ensure quality
including the notion of collaborating crowds around WikiProject, like the one for Chemistry
(https://www.wikidata.org/wiki/Wikidata_talk:WikiProject_Chemistry). For meta-
bolomics research Wikidata certainly has potential. It already includes 1.3 million common
chemicals (see https://scholia.toolforge.org/chemical/) and natural products [4] most
with external identifiers to compound databases like PubChem, EPA CompTox dashboard,
KEGG, HMDB, ChEBI, Chemical Abstracts’ Common Chemistry, LIPID MAPS, and Swiss-
Lipids. But it also includes links to databases with experimental data, like MassBank,
NMRShiftDB, the PDB database, or to the primary literature. Databases that have been
using Wikidata include WikiPathways [1], Reactome, Complex Portal [6], and LOTUS [4].

References
1 Denny Vrandečić. Wikidata: A new platform for collaborative data collection. In Proceedings
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3.8 Visualization and graphical user interfaces
Carolin Huber (UFZ – Leipzig, DE)
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Visualization for MS data analysis is necessary for quality control and evaluation steps and
it is preferred outside of vendor software applications. Different approaches for visualization
and their advantages and disadvantages were discussed. Especially for MS scientists and
coworkers without previous programming skills, the use of these tools needs to be as easily
accessible as possible. As a final step, we discussed different workflow frameworks beyond
the command line, and how these can also integrate more interactive visualizations.

3.9 Metaboproteomics
Lennart Martens (Ghent University, BE)

License Creative Commons BY 4.0 International license
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The advent of open modification search engines in proteomics, which allow the discovery of
arbitrarily modified peptides from shotgun proteomics data sets, has enabled a new view
on the proteome. And while specificity of these analyses at first remained an issue, the
use of powerful predictors of peptide behaviour in liquid chromatography and tandem mass
spectrometry (e.g., using DeepLC [1] and MS2PIP [2]) has now led to a new type of search
engine that is entirely machine learning driven (notably ionbot: https://ionbot.cloud,
[3]) and that can utilize these predictors to increase both sensitivity and specificity. By
applying ionbot to a billion spectra from human samples, and 600 million spectra from mouse
samples, both obtained from the PRIDE database [4], the most comprehensive map so far of
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proteome-wide protein modification is obtained for these two organisms. Upon inspection of
the most commonly encountered modifications, several known artefacts of sample processing
are encountered (e.g., carbamidomethylation, oxidation), alongside modifications of known
biological relevance (e.g., phosphorylation), but also modifications that appear tightly linked
to basic metabolism, such as certain acylations. This session discussed these findings,
and looked at some of the modifications and ways to analyse these in a broader context,
notably their mapping onto pathways (e.g., WikiPathways [5]), and the potential effect of the
exposome on proteins as measured by the resulting induced protein modifications, coining
the tentative term “metaboproteomics” to describe this potential new interface between the
metabolomics and proteomics fields.
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3.10 Data independent analysis (DIA)
Corey Broeckling (Colorado State University – Fort Collins, US)

Data independent analysis (DIA) is an MS/MS acquisition approach by which fragmentation
is performed for many precursors simultaneously; the benefit of this approach is that more
(all) precursors can be sampled. Some approaches may sacrifice sensitivity, and all methods
will sacrifice selectivity to enable broad sampling. Discussion revolved around these trade-offs,
and how DIA is being used and perceived across the community. The data analysis challenges
were discussed, noting that target applications are generally a solved problem, but untargeted
analysis remains challenging. The various flavors of DIA were summarized, including ion
mobility spectrometry as a component of the process. Plans to develop R-based tools for a
more “universal” DIA product ion assignment were outlined.
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3.11 Visualization of chemical space
Justin van der Hooft (Wageningen University, NL)
Rui Pinto (Imperial College London, UK)
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Joint work of Justin van der Hooft, Rui Pinto

This session started by asking what chemical space actually means. Naturally, depending on
the context, this can mean different things: all known chemicals, all chemicals identified in
one experiment or in a number of samples, etc. Furthermore, chemical space can be built
based on structural (fingerprints) and analytical data (mass spectral similarity).

Following this, Rui Pinto demonstrated his approach to embedding metabolite features
based on MS1 feature correlations. Rui showed how metabolites could be mapped onto
a UMAP embedding, and how chemical compound classes were separated. Then, Justin
van der Hooft showed various ways to visualize mass spectral embeddings, using treemap,
t-MAP and t-SNE. Also, a 3-dimensional molecule app was demonstrated to explore the
mass spectral embedding.

The group finished the session with a brainstorm on how to connect molecules using
chemical and biological information. We identified many types and realized that both mass
spectral similarity scores and correlation distances could be used to construct a “base network”
or embedding on which other information is then mapped. This is an interesting area for
future research.

3.12 MS/MS spectral quality (part 1)
Michael Andrej Stravs (Eawag – Dübendorf, CH)
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Multiple topics concerning fragmentation spectra and their computational analysis were
discussed. Initial discussion reflected critically a recent publication in the field proposing
entropy metrics as a measure for spectral quality and spectral similarity. On a closer
inspection, the metric penalizes evenness without a stringent justification. Further discussion
sought to clarify the meaning of “spectral quality”, as a measure to express discriminatory
power of a spectrum versus a measure of cleanness i.e. freedom from artefacts/noise.

Combination (merging) and combined acquisition (ramping/stepping) of spectra is an-
ecdotally said to enhance separation metrics, but it remains unclear whether experimental
(ramping/ stepping) combined spectra fulfill the promise expected from ideal, computationally
combined (merged) spectra due to loss of signal. Evaluations are planned to shed light on
the matter.

Mass range: Combinatorially, we expect low mass and high-mass ions to be uninformative,
due to limited combinatorial space. However in practice low-mass ions provide an information
rich structural fingerprint as evidenced by machine learning methods. Weighting curves
based on mass and entropy expectations have shown little use; a curve only penalizing high
mass is worth trying. Further, the “quality” of a spectrum could be approximated by how
well a fragmentation tree, its model, can represent it. We note that reproducible unannotated
peaks still are frequent in multiple libraries. Finally, correlation between scans across an
entire dataset (as opposed to correlations in a single measurement) show promise for fragment
deconvolution both for targeted and broad-range fragmentation.
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3.13 MS/MS spectral quality (part 2)
Adriano Rutz (University of Geneva, CH)
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A visualization tool to explore possibly unexplained fragments (i.e. no molecular formula but
possibly good intensity correlation with other peaks) was showcased. This tool was presented
along with a method to minimize overlap when acquiring reference spectra to build libraries.
The influence of this minimized overlap could help better explain (or minimize) the previously
unexplained fragments. Multiple origins of these unexplained fragments were discussed, such
as complex multi-charged multimers, or fragments originating from instrumental issues such
as “peak ringing” for ToF spectrometers.

A need for a new metric enabling the estimation of the percentage of fragmentation
independently from the collision energy was discussed. This will be a great help for further
machine learning applications. The highest obstacle to the implementation of such a metric
resides in the “left-censored” spectra (e.g. acquisition starting at 50 m/z). Ways to implement
such a metric and overcome this limitation were discussed and cumulative distribution of
intensities from precursor down was proposed.

Finally, some new fragmentation methods (e.g. EAD, UVPD) supposed to improve
spectral quality were discussed. While some of them seem promising, there is actually not
enough data fully evaluated to draw any conclusions at this time.

3.14 CxSMILES: computation ready representation for compound
classes

Egon Willighagen (Maastricht University, NL)
Adriano Rutz (University of Geneva, CH
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Joint work of Egon Willighagen, Adriano Rutz

The 2017 Dagstuhl Seminar 17491 [1] meeting posed the problem that experimental char-
acterization of measured metabolites often has an uncertainty in the annotation of their
chemical identity. However, computational metabolomics often requires a computer rep-
resentation to be able to do calculations with the chemical structures. During the 2020
Dagstuhl Seminar 20051 [2] meeting cheminformatics was explored in more detail. ChemAxon
Extended SMILES (CxSMILES) and Markush Structures were identified as possible solutions
to represent compound classes.

In this 1.5 hour session a group of seven Seminar participants continued to explore the
power and limitations of CxSMILES and continued working on a write-up to explore the use
and cheminformatics implementation in the Chemistry Development Kit [3], online available
at https://egonw.github.io/cdk-cxsmiles/. Particularly, we added a new “Classes of
compounds and where to find a CxSMILES” section with example CxSMILES for a number
of compound classes. Another notable improvement during this Dagstuhl Seminar was
that the CxSMILES property P10718 [4] in Wikidata was accepted, allowing us to archive
and disseminate CxSMILES representations in Wikidata. Enumeration of CxSMILES,
their integration into chemoinformatic pipelines for properties calculations, or conversion to
InChI(-Keys) remains to be explored.
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3.15 Estimating concentration from untargeted MS data
Anneli Kruve (Stockholm University, SE)
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Currently mostly relative quantification of untargeted mass spectrometry data is used on
e.g. follow up studies with identification and quantification. In relative quantification
isotopically labeled C13 for cell cultures, or CO2 for plants is a good measure. Absolute
quantification is used for giving results which are comparable between peaks/chemicals with
different structures. For this, structurally similar standards are used but these can yield
very inaccurate results due to very different behavior in MS. There are efforts to model this,
but more data is needed e.g. calibration graphs. This highlights the importance of data
exchange. It was also discussed that NMR is quantitative, and there have been NMR-guided
MS approaches. This might open up possibilities to create quantification curves for chemicals
which cannot be quantified in any other way.

3.16 WikiPathways and RaMP-DB
Egon Willighagen (Maastricht University, NL)
Ewy Mathé (National Institutes of Health – Bethesda, US)
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WikiPathways is an expert-curated, collaborative biological pathway database [1]. It describes
biological processes for multiple species at many levels. During the meeting we discussed
various aspects of the database: data format (GPML), export formats (RDF, PNG, SBML,
etc), data curation, automated testing (Jenkins), and how it links to other knowledge bases
(via identifier mapping databases using BridgeDb [2]).

WikiPathways is also used by other databases, e.g. for pathway enrichment and data
visualization. RaMP-DB is one of those tools [3, 4]. RaMP-DB aggregates multiple types
of annotations on human metabolites and proteins/genes from multiple sources to provide
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a comprehensive and up-to-date source of biological and chemical annotations. RaMP-DB
provides user-friendly means of interacting with the database for batch queries and enrichment
analyses.

Through the session, thoughts on future maintenance and development of these resources
were brought up, including the need for standards of reporting to ease harmonization across
resources, assessment of the quality of annotations, and the ability to use these resources as
benchmarking data for method development.
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3.17 Data collection considerations for MSn spectral libraries
Tomáš Pluskal (The Czech Academy of Sciences – Prague, CZ)
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We discussed many issues and parameters to consider when building a multi-stage MSn
spectral library, such as ionization modes, chromatography conditions, scanning mass res-
olution, and acquiring preliminary data to inform and optimize data collection. The flow
injection method was debated in more detail to extend the peak width for obtaining more
fragmentation experiments per compound. Here, applying a second LC pump was mentioned
as a way to add an additional makeup flow, which broadens the peak width as the first pump
delivers the sample with a minimal flow rate. Furthermore, we discussed the optimization
of the parameters of the MSn data acquisition method. The first parameter was the mass
resolution and we discussed the community’s expectations for high-quality fragmentation
tree libraries. A lower mass resolution enables fast scanning but loses accuracy. Accordingly,
a higher mass resolution needs more analysis time. As a compromise, the resolution of 30000
for MS1 and 15000 for MSn were suggested as a compromise, because the filling time is
the more crucial step to enhance signal intensities for deeper MSn spectra. Since MS2 data
are already available for many compounds in the library that we are planning to acquire,
these MS2 scans should be limited, spending more time on MS3, MS4, and maybe MS5
experiments. Furthermore, the existing MS2 data can be used to plan the optimal strategy
of MSn data collection for each compound. The depth and breadth of the spectral trees
should be evaluated for multiple compounds as proof of principle and to avoid empty scans.
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In this context, the application of multiple collision energies for one precursor needs to be
examined for its usefulness. As a consequence, we agreed that the first data of hundreds of
different compounds are needed to evaluate the multi-step fragmentation method.

3.18 RT, adduct formation, and calibration curve sharing
Michael Witting (Helmholtz Zentrum München, DE)
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We have discussed GitHub repositories for sharing different types of data, including RT, adduct
formation, and calibration curves. This data will make it possible to develop new machine
learning methods for the prediction of RT, sodium and other adduct formation as well as
ionization efficacy. The repository can be found at https://github.com/michaelwitting/
RtPredTrainingData.

3.19 Metabolomics data integration
Justin van der Hooft (Wageningen University, NL)
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The session started with a collection of scenarios and approaches used by the discussion
group that include metabolomics-based data integration. Based on the group’s input, it
turned out that mostly genomics data is linked to metabolomics data. The main aims
mentioned are to find biomarkers in clinical metabolomics or link genes to molecules in
natural product processing. Sometimes these integrative analyses are further enriched by
the addition of proteome or transcriptome data to assist in forming a systems-wide view
of the data. If clinical or phenotype data is available, predictive analysis is often targeted,
for example in the form of MWAS. Common challenges the group identified include the
available covariates (samples), the number of false positives in correlation analysis, and
the biological interpretation (of data links). The group identified that we usually link
multiple omics using data tables/feature tables, which feed into correlation analysis or
machine learning/multivariate statistical approaches. To make links between molecules, it is
important to use consistent identifiers, and we discussed FAIR integration of data.

We concluded the session with defining the various levels of data integration: early
(concatenate matrices, then model), intermediate (statistical approach with multiple input
matrices to make predictions), and late (model each matrix separately and combine predic-
tions). Finally, several dimensions of integration were discussed: across omics, within omics
(e.g. different metabolomics assays), and across organisms.
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