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Abstract
Machine learning (ML) and logical reasoning have been the two key pillars of AI since its inception,
and yet, there has been little interaction between these two sub-fields over the years. At the
same time, each of them has been very influential in their own way. ML has revolutionized many
sub-fields of AI including image recognition, language translation, and game playing, to name just
a few. Independently, the field of logical reasoning (e.g., SAT/SMT/CP/first-order solvers and
knowledge representation) has been equally impactful in many contexts in software engineering,
verification, security, AI, and mathematics. Despite this progress, there are new problems, as well
as opportunities, on the horizon that seem solvable only via a combination of ML and logic.

One such problem that requires one to consider combinations of logic and ML is the question of
reliability, robustness, and security of ML models. For example, in recent years, many adversarial
attacks against ML models have been developed, demonstrating their extraordinary brittleness.
How can we leverage logic-based methods to analyze such ML systems with the aim of ensuring
their reliability and security? What kind of logical language do we use to specify properties of
ML models? How can we ensure that ML models are explainable and interpretable?

In the reverse direction, ML methods have already been successfully applied to making solvers
more efficient. In particular, solvers can be modeled as complex combinations of proof systems
and ML optimization methods, wherein ML-based heuristics are used to optimally select and
sequence proof rules. How can we further deepen this connection between solvers and ML? Can
we develop tools that automatically construct proofs for higher mathematics?

This Dagstuhl seminar seeks to answer these and related questions, with the aim of bringing
together the many world-leading scientists who are conducting pioneering research at the intersec-
tion of logical reasoning and ML, enabling development of novel solutions to problems deemed
impossible otherwise.
Seminar July 17–22, 2022 – http://www.dagstuhl.de/22291
2012 ACM Subject Classification Theory of computation → Automated reasoning; Computing

methodologies → Knowledge representation and reasoning; Theory of computation → Logic;
Computing methodologies → Machine learning

Keywords and phrases Logic for ML, ML-based heuristics for solvers, SAT/SMT/CP solvers
and theorem provers, Security, reliability and privacy of ML-based systems

Digital Object Identifier 10.4230/DagRep.12.7.80

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Machine Learning and Logical Reasoning: The New Frontier, Dagstuhl Reports, Vol. 12, Issue 7, pp. 80–111
Editors: Sébastien Bardin, Somesh Jha, and Vijay Ganesh

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sebastien.bardin@cea.fr
mailto:jha@cs.wisc.edu
mailto:vijay.ganesh@uwaterloo.ca
http://www.dagstuhl.de/22291
https://doi.org/10.4230/DagRep.12.7.80
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


Sébastien Bardin, Somesh Jha, and Vijay Ganesh 81

1 Executive Summary
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This Dagstuhl seminar is meant to be the first in a series, bringing together researchers from
the two main pillars of AI, namely, logical reasoning and machine learning (ML), with a sharp
focus on solver-based testing, analysis, and verification (TAV) methods aimed at improving
the reliability and security of ML-based systems, and conversely, the use of ML heuristics
in improving the power of solvers/provers. A third, albeit smaller focus is neuro-symbolic
reasoning (NSR), that aims to combine the power of ML to learn deep correlations with the
ability of solvers to perform logical inference as applied to many domains (including but not
limited to math and logic).

While many previous Dagstuhl seminars focus on sub-fields of this particular seminar
(SAT, SMT, CP or machine learning), we focus here on the synergies and interplay between
all them. Our goal is to deepen the understanding of the connections between learning and
reasoning, and draw mutually beneficial research directions.

General context: Bringing ML and Logic Reasoning Closer

Since its very inception, Artificial Intelligence (AI) has largely been divided into two broad
fields, namely, machine learning (ML) and logical reasoning, that have developed relatively
independent of each other. Each of these sub-fields has had a deep and sustained impact
on many topics in computer science and beyond, despite the limited interaction between
them over the years. However, in recent years new problems and opportunities have come to
fore that point towards combinations of ML and logical reasoning as the way forward [1] 1.
In this seminar, we aim to explore combinations of ML and logical reasoning, under the
following three specific themes:

Logic Reasoning for ML. Neural Networks (NN) today are ubiquitous and are being
deployed as part of critical civilian and defense infrastructure, business processes, automotive
software, and governmental decision-making systems. Unfortunately, despite their efficacy
in solving many problems, NNs are brittle, unreliable, and pose significant security/privacy
challenges [2]. The question of safety and security of NNs has therefore become a great
concern to scientists, companies, and governments. In response to this problem, a nascent
field of TAV methods for NNs is developing [3]. Key research directions in this context
include logics aimed at symbolically representing NNs and their properties [4], novel solving
methods [5], as well as solver-based TAV techniques specifically tailored for NNs [6]. A related
set of questions focus on explainability and interpretability of NNs [7]. Finally, researchers
are also exploring methods that combine logical reasoning within NN learning processes,
with the aim of making them adversarially robust [8, 9]. The seminar aims to bring together
leading researchers in these topics, enabling cross-fertilization of ideas at a critical juncture
in the development of the field.

1 It goes without saying that it is infeasible to consider all possible combinations of ML and logical
reasoning in this seminar. Hence, we focus primarily on problems inspired by testing, analysis, and
verification (TAV) of ML and ML-based heuristics for logic solvers, with some forays into neuro-symbolic
(a.k.a., neural-symbolic) AI.
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ML for Logic Reasoning. In recent years, there has been considerable effort aimed at
developing ML-based heuristics for logic reasoning engines such as SAT, SMT, and CP solvers.
The premise of this line of research is that logic solvers are a combination of methods that
implement proof rules and ML-based heuristics aimed at optimally selecting, sequencing, and
initializing such proof rules [10]. This has led to new efficient solving algorithms that can
solve real-world formulas with millions of variables and clauses in them. One of the many
questions that will be explored in the seminar is how can we further deepen and strengthen
this relation between ML and reasoning methods. Yet another line of research being explored
is that of replacing rule-based solvers with NN-based logic reasoning (e.g., NeuroSAT [11]).
Finally, methods are being developed to combine rule-based methods with reinforcement
learning to automatically prove mathematical conjectures [12]. The seminar aims to foster
deeper interaction and collaboration among researchers who are pioneers in this intersection
of ML-based methods and logical reasoning.

Neuro-symbolic Reasoning. The field of neuro-symbolic reasoning (NSR) aims to combine
NNs with symbolic reasoning for the purposes of improving reasoning for many domains
(including but not limited to pure math or logic). While at a high-level the field of NSR
and logic solvers (with ML heuristics) may seem similar, they employ very different kinds
of techniques and have differing goals [1]. For example, NSR researchers have developed
methods for translating logical representations of knowledge into neural networks. Others
have developed neuro-symbolic methods for concept-learning, and yet others have recently
applied NSR to program synthesis. Can these concept-learning methods be adapted to the
setting of logic solvers? Could it be that graph neural network (GNN) based representations
of mathematical knowledge are easier to analyze? The seminar aims to bring these two
disparate communities closer together, that otherwise rarely interact with each other. In
a nutshell, the aim of the seminar is to foster cross-fertilization of ideas between the logic
reasoning, TAV, and ML communities.

In-depth Description of Focus Areas

Logic Reasoning for ML. As stated above, the reliability, safety, and security of NNs is a
critical challenge for society at large. An example of a specific problem in this context is that
of adversarial input generation methods against NNs. Many methods have been proposed
to address this question, from randomized defense mechanisms to adversarial training to
symbolic analysis of NNs via solvers, such as Reluplex [5] that are specifically designed to
reason about NNs with ReLU units. Another line of work proposes verification of Binarized
Neural Networks (BNNs) via SAT solvers [6]. These initial forays into reasoning for ML bring
to fore new challenges, especially having to do with scalability of solvers for NN analysis.
Traditional solver methods that scale well for typical software systems, do not seem to scale
well for NNs. For example, it is known that solvers, such as Reluplex, are capable of analyzing
NNs with only a few thousand nodes. The pressing question of this area of research then is
“How can we develop methods that enable solvers to scale to NNs with millions of nodes in
them?”

A related question has to do with appropriate logics to represent NNs and their properties.
Recent work by Soutedeh and Thakur suggests that NNs can be represented symbolically as
piecewise linear functions, even though they may use non-linear activation functions such as
ReLU [4]. This suggests that there may be efficient solving methods capable of analyzing
very large NNs. Yet another question in this setting is how do logic-based methods aimed at
testing and verifying NNs compare against hybrid methods that do not require translation of
NNs into logic. What are the tradeoffs in this setting?
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Another interesting direction where logic reasoning can play a role is in explainability
and interpretability of ML models. While both these questions have been long studied in AI
and are closely related, they take particular importance in the context of NNs. We say a ML
model is explainable, if there is discernable causal relationship between its input and output.
Explanations for the behavior of NN, when presented in symbolic form, can be analyzed and
debugged using solvers. Researchers have also developed solver-based xAI methods that aim
to provide explanations for behavior of NNs [7]. By contrast, interpretable models are ones
that have mathematical guarantees regarding their approximation or generalization errors.
Solvers can play a role in this context as well via methods for generating counterfactuals (or
adversarial examples) [1].

Strong points:
Adversarial attacks and defense mechanisms
Neural network testing, analysis, and verification methods
Piecewise linear symbolic representation of NNs
Solvers for NNs
Logic-guided machine learning
Adversarial training
Logic-based explainability and interpretability of NNs

ML-based Heuristics for Logic Solvers. In recent years, ML-based methods have had a
considerable impact on logic solvers. The key premise of this line of research is that logic
solvers are a combination of proof systems and ML-based heuristics aimed at optimally
selecting, sequencing, and initializing proof rules with the goal of constructing short proofs
(if one exists) [10]. A dominant paradigm in this setting is modeling branching heuristics as
RL methods to solve the multi-arm bandit (MAB) problem [10]. While this connection seems
quite natural today and MAB-style methods have been shown to be empirically powerful, an
important question remains as to why these heuristics are effective for industrial instances.
A theoretical answer to this question can open up new connections between ML and logic
solvers. Another direction of research that has been explored is solving SAT using NNs,
a la NeuroSAT [11]. Finally, higher-order theorem provers have been developed recently
at Google and elsewhere that combine RL with logic reasoning in order to automatically
prove theorems from a variety of mathematical fields [13, 12]. The seminar will focus on
these recent developments and the next steps in the research on combinations of ML-based
methods with logic reasoning with the goal of achieving greater solver efficiency as well as
expressive power.

Strong points:
ML-techniques for branching and restarts in SAT, SMT, and CP solvers
Supervised learning methods for splitting and initialization in solvers
NN-based methods for logical reasoning
RL for higher-order theorem proving

Neuro-symbolic Reasoning. Researchers in neuro-symbolic reasoning (NSR) have been
independently developing algorithms that combine ML with symbolic reasoning methods
with a slightly different focus than solver and theorem prover developers. NSR research
has been focused on concept learning in a broader setting than math or logic, and the
cross-fertilization of these ideas with logic-based methods can have deep impact both on NSR
as well as solver research [1]. One of the key ideas we plan to explore in this context is that
of concept learning, i.e., learning of relations or concepts represented in a logical language
directly from data. One interesting direction to explore would be how we can incorporate
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these methods in logic solvers? Another direction is to explore the synergy between NSR and
synthesis of programs from examples. The seminar will focus on bringing NSR and solver
researchers closer together, given that they rarely interact in other settings.

Strong points:
Concept-learning, with possible applications in higher-order theorem provers
Neuro-symbolic methods for program synthesis
Concept learning for predicate abstraction

Goals of the Seminar
The aim of this seminar is to bring together the logic reasoning and ML communities, thus
shaping and setting the research agenda for ML-based solvers, TAV methods aimed at NNs,
and NSR for many years to come.

The seminar will highlight the current challenges with symbolic analysis of NNs, scalability
issues with solvers tailored for NNs, state-of-the-art ML-based heuristics for solvers, adapting
NSR ideas to the setting of solvers and vice-versa, as well as bring to fore competing TAV
methods that don’t necessarily rely on symbolic representation of NNs.

Research questions. We highlight some of the main challenges at the intersection of ML and
logic reasoning that will be addressed during the seminar from different research perspectives,
and discuss how we seek to combine or adapt current techniques to attack them.

Symbolic representation of NNs: Recent work suggests that, while NNs are non-linear
functions, they can be effectively modelled symbolically as piecewise linear functions.
This is a significant advance since it dramatically simplifies the design of solvers for
analyzing NNs. Some of the challenges that remain are algorithmic, i.e., how can NNs be
efficiently converted into a symbolic representation.
Solvers for NNs: As of this writing, Reluplex and its successors seem to be among the
best solvers for analyzing the symbolic representations of NNs. Unfortunately, these tools
scale to NNs with at most a few thousand nodes. There is an urgent need for novel ideas
for solving algorithms that enable us to scale to real-world NNs with millions of nodes.
Can hybrid methods that combine ML techniques with solvers scale more effectively than
pure logic methods?
Combining Constraints and NN Learning: Another set of questions we plan to
address is how can we improve the process via which NNs learn using logical constraints.
In other words, can the back propagation algorithm be modified to take constraint or
domain-specific knowledge into account? Can NNs be combined with logic solvers in a
CEGAR-style feedback loop for the purposes of adversarial training?
Next steps in ML-based Heuristics for Solvers: As stated earlier, modern solvers
rely in significant ways on ML-based heuristics for their performance. We plan to focus
on how we could strengthen this interaction further. For example, are there supervised
learning methods for improving the performance of divide-and-conquer parallel SAT
solvers. Can we develop ML-based methods for clause sharing in portfolio solvers? How
about ML-based restarts and clause deletion policies?
Reinforcement learning (RL) and Theorem Provers: There has been some recent
success in combining basic RL methods with reasoning methods in the context of higher-
order theorem provers. How can this combination be strengthened further to prove math
theorems in a completely automated fashion.
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Comparison of NN Verification with Testing and Fuzzing Methods: Researchers
have developed a variety of fuzzing methods aimed at NNs. These methods often scale
better than verification techniques. On the other hand, unlike verification, testing
techniques do not give any guarantees. What are the tradeoffs in this context of complete
verification vs. scalability? Can we develop hybrid methods and light-weight verification
techniques?
Concept Learning and Solvers: Can we lift the ideas of concept learning from NSR
to the setting of solvers, especially in the context of higher-order and combinatorial
mathematics?

Synergies. We have also identified the following potential synergies between the ML, Solver,
TAV, and NSR communities and expect strong interactions around these points:

ML researchers in general (and RL in particular) can help refine the ML-based methods
used by solver developers;
Solver developers can propose constraint-based learning strategies for NNs (e.g., combining
constraints with gradient-descent in the back propagation algorithm);
Researchers who work in the space of TAV for NN can benefit greatly by better under-
standing the realistic security and safety concerns of the ML community;
Solver developer can substantially benefit by better understanding concept learning from
NSR researchers.

Expected results and impact on the research community. One of the core goals of the
seminar is to bring together the many different research communities that work in the logic
reasoning and ML fields, who unfortunately rarely talk to each other. We believe that the
exchange of ideas between them – each with their own methods and perspectives – will help
accelerate the future development of combinations of ML and logic reasoning. In terms of
concrete outcomes, we believe the workshop is likely to lead to several collaboration projects,
especially between members of different communities working on similar or related problems.
Common benchmarks and regular meeting forums will also be discussed and we expect for
some progress there as well.
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2:30 pm – 3:00 pm Inductive Proofs for Probabilistic Verification and Opportunities

in ML (Sebastian Junges)
3:30 pm – 4:00 pm CGDTest: Constraint-based Gradient Descent Fuzzer for DNNs

(Vineel Nagisetty)
4:00 pm – 4:30 pm Logic for Adversarial ML

(Marc Fisher)

Friday July 22: (Synthesis and ML Day)
9:00 am – 10:00 am Functional Synthesis via Combination of Learning and Reasoning

(Kuldeep Meel)
10:00 am – 10:30 am Synthesizing Pareto-Optimal Interpretations for Black-box Models

(Hazem Torfah)
11:00 am – 12:00 pm Panel on Testing, Analysis, Verification, Security, and Synthesis of AI

(Kuldeep Meel, Armando Tacchella, Rajeev Alur, Matt Frederikson)
(Moderator: Hazem Torfah)

4 Overview of Talks

4.1 Formal verification for safe autonomy
Rajeev Alur (University of Pennsylvania – Philadelphia, US)

License Creative Commons BY 4.0 International license
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Autonomous systems interacting with the physical world, collecting data, processing it using
machine learning algorithms, and making decisions, have the potential to transform a wide
range of applications including medicine and transportation. Realizing this potential requires
that the system designers can provide high assurance regarding safe and predictable behavior.
This motivates research on formally verifying safety (such as avoidance of collisions) of
closed-loop systems with controllers based on learning algorithms. In this talk, I will use the
experimental platform of the autonomous F1/10 racing car to highlight research challenges
for verifying safety for systems with neural-network-based controllers. Our solution to safety
verification, incorporated in the tool Verisig at Penn, builds upon techniques for symbolic
computation of the set of reachable states of hybrid (mixed discrete-continuous) systems.
The case study consists of training the controller using reinforcement learning in a simulation
environment, verifying the trained controller using Verisig, and validating the controller by
deploying it on the F1/10 racing car.
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4.2 Automated Program Analysis: Revisiting Precondition Inference
through Constraint Acquisition

Grégoire Menguy (CEA LIST, FR), Sébastien Bardin (CEA LIST, FR)
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Automated program analysis enables to prove code properties like correctness or incorrectness
and more generally to help understanding software. Such methods are usually white-box,
i.e., they rely on the code syntax to deduce code properties through logical reasoning. While
white-box methods have proven to be very powerful, being used for example at Microsoft,
Facebook and Airbus, they also suffer from some limitations. First, they need the source
code, which is not always available (e.g., proprietary software, malware). Second, the code
size and the complexity of data structures manipulated degrade their efficiency drastically.
Third, they are highly impacted by syntactic code complexity, which can be amplified by
optimizations (improving code speed and memory consumption) and obfuscation (impeding
end-users from extracting intellectual property contained in the code).

In this talk, we propose a new method, completely black-box, which infers code annotations
from observed code executions only. Indeed, annotations, under the form of function
pre/postconditions, are crucial for many software engineering and program verification
applications. Unfortunately, they are rarely available and must be retrofit by hand. Thus, we
explore how Constraint Acquisition (CA), a learning framework from Constraint Programming,
can be leveraged to automatically infer program preconditions in a black-box manner, from
input-output observations. We propose PreCA, the first ever framework based on active
constraint acquisition dedicated to infer memory-related preconditions. PreCA overpasses
prior techniques based on program analysis and formal methods, offering well-identified
guarantees and returning more precise results in practice.
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4.3 PL vs. AI: The Case of Automated Code Deobfuscation
Sébastien Bardin (CEA LIST, FR)
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In this talk, we slightly deviate from the main “Logic # Machine Learning” topic of the
seminar, to consider another closely related inference vs. deduction scheme, namely the link
between Program Analysis (PL) and Artificial Intelligence (AI), with a focus on the case of
reverse engineering attacks and code deobfuscation. Especially, we discuss how PL and AI
both hep in the field, highlight their complementarity strengths and weaknesses and draw
lines for future research directions.

Reverse attacks consist in trying to retrieve sensitive information (e.g., secret data, secret
algorithms, sensitive business details, etc.) form a program under analysis. We usually
consider a very strong attacker with unlimited access to the executable code. Hence, the
attacker can for example perform static analysis other the executable, trace the execution,
rewrite part of the binary, etc. The goal for the defender is to delay as much as possible the
information retrieval, through the use of so-called obfuscation techniques aiming at making
the code “hard to understand”. We call deobfuscation the effort of removing obfuscations
from a program, or helping a reverse engineer to understand an obfuscated program.

Since the middle of the 2010’s, several authors managed to adapt PL techniques to
perform deobfuscation, with very strong and unexpected results other standard protections.
Still, as these white-box attacks are based on deduction from the code syntax, they can at
some point be fooled by dedicated protections aiming to increase the syntactic complexity of
the code in such ways that program analyzer become ineffective.

More recently, black-box attacks, based on the observations of input-output relationships
together with AI-based synthesis methods in order to rebuild a simple view of the beahviour
of some obfuscated parts of the code, show very effective against certain kinds of local
obfuscations – even anti-PL obfuscations. Still, these methods are sensitive to semantic
complexity, and we show how dedicated protections can take advantage of that.

Finally, as future direction, it seems natural to try combining these dual trends (AI & PL,
deduction & inference, blackbox & whitebox) into some combined form of hybrid attacks.
From a more theoretical point of view, we could also see this problem as an instance of “AI
vs. PL”, as PL techniques are also used for the protection side, with questions such as how
to train an AI to bypass code protections, or how to create code resistant to AI-augmented
attackers.
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4.4 Safety Assurance, ML, and Logic – Some Lessons Learned
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In this talk, I summarize some of my experiences in engineering ML in safety-critical
applications. Within the industry, the emerging consensus is that one requires a systematic
& holistic approach to address all potential problems that might occur in the complete life
cycle. One can use logic and theorem-proving to tighten the “leap of faith” in the safety
argumentation. For formal verification of DNN in autonomous driving, the real challenge
lies in creating an implicit specification that characterizes the operational design domain.
We use an assume-guarantee reasoning approach, where we learn the operational design
domain via abstracting the feature vectors collected by the training data. The formal proof
is conditional to the assumption that any input in the operational domain falls inside the
abstraction. The abstraction is then deployed in the field as an OoD detector.

4.5 Neurosymbolic AI
Artur d’Avila Garcez (City – University of London, GB), Luis C. Lamb (Federal University
of Rio Grande do Sul, BR)
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Current advances in Artificial Intelligence (AI) and Machine Learning (DL) have achieved
unprecedented impact across research communities and industry. Nevertheless, concerns
around trust, safety, interpretability and accountability of AI were raised by influential
thinkers. Many identified the need for well-founded knowledge representation and reasoning
to be integrated with Deep Learning (DL). Neural-symbolic computing has been an active
area of research for many years seeking to bring together robust learning in neural networks
with reasoning and explainability by offering symbolic representations for neural models.
In [5], recent and early research in neurosymbolic AI is analysed with the objective of
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identifying the most important ingredients of neurosymbolic AI systems. Our focus is on
research that integrate in a principled way neural network learning with symbolic knowledge
representation and logical reasoning. Insights from the past 20 years of research in neural-
symbolic computing were discussed and shown to shed new light onto the increasingly
prominent role of safety, trust, interpretability and accountability of AI. We also identify
promising directions and challenges for the next decade of AI research from the perspective
of neural-symbolic computing, commonsense reasoning and causal explanation.

Over the past decade, AI and in particular DL has attracted media attention, has become
the focus of increasingly large research endeavours and changed businesses. This led to
influential debates on the impact of AI in academia and industry [3]. It has been claimed
that deep learning caused a paradigm shift not only in AI, but in several Computer Science
fields, including speech recognition, computer vision, image understanding, natural language
processing (NLP), and machine translation [2]. Others have argued eloquently that the
building of a rich AI system, semantically sound, explainable and ultimately trustworthy, will
require a sound reasoning layer in combination with deep learning. Parallels have been drawn
between Daniel Kahneman’s research on human reasoning and decision making, reflected in
his book “Thinking, Fast and Slow [1], and so-called “AI systems 1 and 2, which would in
principle be modelled by deep learning and symbolic reasoning, respectively.

We seek to place 20 years of research in the area of neurosymbolic AI, known as neural-
symbolic integration, in the context of the recent explosion of interest and excitement around
the combination of deep learning and symbolic reasoning. We revisit early theoretical results
of fundamental relevance to shaping the latest research, such as the proof that recurrent
neural networks can compute the semantics of logic programs, and identify bottlenecks and
the most promising technical directions for the sound representation of learning and reasoning
in neural networks. As well as pointing to the various related and promising techniques, such
as [4], we aim to help organise some of the terminology commonly used around AI, ML and
DL. This is important at this exciting time when AI becomes popularized among researchers
and practitioners from other areas of Computer Science and from other fields altogether:
psychology, cognitive science, economics, medicine, engineering and neuroscience, to name a
few.

The first wave of AI in the 1980’s was symbolic – based on symbolic logic and logic
programming, and later Bayesian networks; the second wave of AI in the 2010’s was neural (or
connectionist), based on deep learning. Having lived through both waves and having seen the
contributions and drawbacks of each technology, we argue that the time is right for the third
wave of AI: neurosymbolic AI. Specifically, we summarise the current debate around neurons
vs. symbols from the perspective of the long-standing challenges of variable grounding
and commonsense reasoning. We survey some of the prominent forms of neural-symbolic
integration. We address neural-symbolic integration from the perspective of distributed
and localist forms of representation, and argue for a focus on logical representation based
on the assumption that representation precedes learning and reasoning. We delve into the
fundamentals of current neurosymbolic AI methods and systems and identify promising
aspects of neurosymbolic AI to address exciting challenges for learning, reasoning and
explainability. Finally, based on all of the above, we propose the list of ingredients for
neurosymbolic AI and discuss promising directions for future research to address the challenges
of AI.
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In this talk, I will describe how we can extend AlphaZero, a reinforcement learning agent
developed for playing games such as Go and Chess, to mathematical problems. I will go in
detail through the different components of AlphaZero, and focus on some of the challenges
of applying it to mathematical problems. To illustrate my talk, I will focus precisely on
“decomposition problems”, where the task is to decompose a hard mathematical object (e.g.,
a tensor) into a sum of atoms (e.g., rank one tensors).

4.7 Logic & Adversarial Machine Learning
Marc Fischer (ETH Zürich, CH)
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The discovery of adversarial examples, small semantic-preserving perturbations that mislead
neural networks, highlighted the need to study the robustness of machine learning systems.
In this talk, I discuss three perspectives connecting this study of robustness with logic:

First, how can we use techniques for finding and defending against adversarial examples
to query and train neural networks with logic specifications?
Second, how can we leverage relations between different inputs and input specifications
in a robustness analysis based on abstract interpretation – the symbolic propagation of
input sets through programs?
Third, how can we combine these techniques to enforce and verify notions of individual
fairness?
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4.8 Learning Modulo Theories: Leveraging Theory Solvers for Machine
Learning

Matt Fredrikson (Carnegie Mellon University – Pittsburgh, US)
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A recently proposed class of techniques, which aim to integrate solver layers within Deep
Neural Networks (DNNs), has shown considerable promise in bridging a long-standing gap
between inductive learning and symbolic reasoning techniques. This approach brings the
capabilities of a decision procedure to a learned model, both during training and inference.
Such an approach is particularly useful in solving problems that have both a perceptual as
well as logical or combinatorial sub-tasks. Statistical learning excels at the perceptual, while
progress in solver technology continues to open new horizons for the logical.

We will present a new framework, ERM(ϕ), and an associated set of methods for
integrating solver layers that encompass a broad range of symbolic knowledge into an
ML system. Using this framework, we demonstrate several fundamental challenges and
opportunities for this direction. Further, we provide a set of algorithms for computing the
forward (inference) and backward (training) passes of a DNN layer that makes calls to an
SMT solver, with few restrictions on the user-provided constraints that the solver can query.
For example, the theory solver does not need to be differentiable. The talk will conclude by
giving an overview of an implementation of our approach within Pytorch, using Z3 to solve
constraints, and show how to construct vision and natural language models that incorporate
symbolic knowledge during training and inference, and can outperform conventional models –
especially in settings where training data is limited or when the cost of fine-grained labeling
is prohibitive.

4.9 Opportunities for Neurosymbolic Approaches in the Context of
Probabilistic Verification

Sebastian Junges (Radboud University Nijmegen, NL)
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In this overview, we outline some challenges for neurosymbolic approaches in the context of
probabilistic verification. In short, probabilistic verification aims to show that a specification
holds on a system with probabilistic uncertainties. Such systems can be modelled as
probabilistic programs, as stochastic Petri nets, as Bayesian dynamic networks, or any other
description language to describe a Markov models. One step beyond verification is synthesis,
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in this context often policy synthesis, in which the goal is to find policies for agents making
decisions under uncertainty, such that the joint behavior of agent and environment satisfies
the given specification. We discuss two directions: “Solver Inside” and “Learning Inside”.

For solver inside, we discuss shielding in reinforcement learning [1]. In particular, we
report on shielding for partially observable Markov decision processes and the integration
with state-of-the-art deep reinforcement learning [2]. We briefly discuss how shields are
computed by an iterative application of SAT-solvers [3]. We discuss the framework and the
relative strengths and weaknesses of addings shields in sparse-reward settings. Among others,
we show how bootstrapping with a shield can help guide the learning process.

For learning inside, we consider various inductive synthesis frameworks. We may aim to
learn inductive invariants for probabilistic models and programs, alike to learning inductive
invariants for deterministic programs. A major challenge over learning deterministic invariants
is the continuous search space. While results for property-directed-reachability (PDR) on
Markov decision processes are mixed [4], the use of a CEGIS-style loop are more promissing [5].
It remains an important challenge how to guess the right form of templates. Data-driven
approaches may be helpful. We furthermore briefly discuss inductive synthesis for policies
described by small finite-state controllers [6]. Data-driven approaches to come up with good,
diverse policies will be able to boost the state-of-the-art.
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4.10 From Learning to Reasoning in Neurosymbolic AI
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Neurosymbolic AI aims to bring together the statistical nature of machine learning and the
logical essence of reasoning in AI systems. Such integration demands a shift as regards research
methodology, since the connectionist and symbolic schools of AI have been developed under
distinct technical foundations over the last 50 years [1, 4]. Nonetheless, leading technology
companies and research groups have put forward agendas for the development of the field, as
modern AI systems require sound reasoning, interpretability, and improved explainability [7, 5].
Moreover, AI and deep learning researchers have also pointed out that Neurosymbolic AI is
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one of “the most promising approach to a broad AI [..], that is, a bilateral AI that combines
methods from symbolic and sub-symbolic AI” [2]. In this talk, we highlight how the evolution
of Neurosymbolic AI research results can lead to applications and novel developments towards
building robust, explainable AI systems. We summarize how Neurosymbolic AI evolved over
the years and how it might contribute to improved explainability and the effective integration
of learning and reasoning in the construction of robust AI systems. This talk is motivated by
the evolution of our work on the integration of modal, temporal, and intuitionistic logics and
neural learning [4]. Over the years, we showed that the proper integration of logical methods
and neural learning can lead to applications in classical benchmarks in multiagent systems
[3], modelling the evolution of software requirements specifications, and possibly to a better
understanding of the learnability of rich graph-based and optimization problems [1, 6].
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4.11 The Necessity of Run-time Techniques for Safe ML (and how to
deal with the pitfalls)
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Neural networks are increasingly being used as components in systems where safety is a critical
concern. Although pre-deployment verification of these networks with respect to required
specifications is highly desirable, the specifications are not always amenable to verification.
In particular, adversarial robustness, a popular specification, requires that a neural network
f exhibit local robustness at every input x in the support of its input data distribution
D. Local robustness at an input x is the property that ∀x′.||x − x′|| ≤ ϵ ⇒ f(x) = f(x′).
Unfortunately, neither the distribution D nor its support are known in advance. We advocate
for the use of run-time or inference-time (i.e., post-deployment) checks to deal with such
distribution-dependent specifications. For instance, to ensure adversarial robustness, a
network should be used for prediction only if it passes a local robustness check at run-time,
otherwise it should abstain from prediction.
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While run-time checks can ensure that neural networks do not misbehave, each abstention
incurs a cost since one has to default to an expensive fall-back mechanism (typically, human
decision-makers). For run-time checks that encode a class of constraints called safe-ordering
constraints, we propose a mechanism for repairing the outputs of a neural network whenever
the run-time check fails. These constraints relate requirements on the order of the classes
output by a classifier to conditions on its input. Though local robustness cannot be encoded
as a safe-ordering constraint, this fragment is expressive enough to encode various interesting
examples of neural network safety specifications from the literature.

Our repair mechanism is based on a self-repairing layer which performs constraint solving
and provably yields safe outputs regardless of the characteristics of the network input. We
compose this layer with an existing neural network to construct a self-repairing network
(SR-Net), and show that in addition to providing safe outputs, the SR-Net is guaranteed to
preserve the classification accuracy of the original network whenever possible. Our approach
is independent of the size and architecture of the neural network used for classification,
depending only on the specified property and the dimension of the network’s output; thus it
is scalable to large state-of-the-art networks. We show that our approach can be optimized
for a GPU, introducing run-time overhead of less than 1ms on current hardware – even on
large, widely-used networks containing hundreds of thousands of neurons and millions of
parameters. Designing a run-time repair mechanism to handle failures of local robustness
checks is an interesting direction for future research.
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4.12 The importance of memory for mathematical reasoning
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In this talk I was discussing astonishing progress in using large language models for mathem-
atical reasoning. One of the main bottlenecks at the moment is the ability to process long
documents (books, papers, ...) at once instead of looking at small (page-length) snippets
of the data. Our paper on Memorizing Transformers opens a path to equipping existing
large language models with the ability to process book-length data, which we improves the
performance of large language models on code and mathematical data significantly.
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4.13 Blackbox Differentiation: Empower Deep Networks with
Combinatorial Algorithms
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Machine Learning has achieved great successes on solving problems that seemed unsolvable
just a decade ago. Examples are the mastering of the game of Go, automatic machine
translation, and learning in-hand manipulation with a robotic hand. Besides many technical
innovations, these advances have been enabled by two main ingredients: highly flexible
differentiable function approximators (deep networks) and huge amounts of data. While
deep networks can extract very complicated patterns from data, there is a certain sense of
dissatisfaction when it comes to their performance on tasks with combinatorial or algorithmic
complexity. For example, think of learning to find the shortest path in an environment when
provided only with raw birds-eye maps (images). Current, deep networks can learn this task
on maps they were trained on, but perform poorly on new maps. The reason is that part of
the problem has an algorithmic nature: the same shortest path algorithm works on all maps,
if suitably represented as a graph. However a normal deep network cannot perform the same
computations and thus can only learn to imitate the process.

The next big step for researchers in machine learning and artificial intelligence is to
enhance the ability of the methods to reason. This sentiment was for example expressed by
Battaglia et. al. [1] who advocate that “combinatorial generalization must be a top priority
for AI”.

Importantly, there are decades worth of research contributions in graph algorithms and
discrete optimization. We have optimal runtimes for sorting algorithms, clever tricks for
various algorithmic problems over graphs/networks such as for shortest path or various cuts
or matching-based problems. In other words, when faced with combinatorial or algorithmic
problems in isolation and with a clean specification, we already have very strong methods
for solving them. This should not be ignored.

While there is some level of success in designing deep learning architectures with “al-
gorithmic behavior”, the classical methods are still miles ahead when it comes to performance
in purely combinatorial setups. We believe the right approach is to build bridges between
the two disciplines so that progress can freely flow from one to another. In that spirit, we
would rephrase the earlier sentiment as “merging techniques from combinatorial optimization
and deep learning must be a top priority for AI”.

We have recently developed a method [2] that allows to embed a large class of combinatorial
algorithms in deep neural networks while maintaining the usual training procedure unchanged.
In the talk, I will explain the fundamental problem that we had to overcome and show
examples of what can be done with the new architecture. This includes the shortest path
problem on raw images [2], finding correspondences in pairs of images [3], and directly
optimizing for rank-based loss functions [4].
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We have two blog-posts on this topic:
https://towardsdatascience.com/the-fusion-of-deep-learning-and-combinato-
rics-4d0112a74fa7
https://towardsdatascience.com/rambo-ranking-metric-blackbox-optimization-
36811a5f52dd
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Boolean satisfiability is a fundamental problem in computer science with a wide range
of applications including planning, configuration management, design and verification of
software/hardware systems. The annual SAT competition continues to witness impressive
improvements in the performance of the winning SAT solvers largely thanks to the develop-
ment of new heuristics arising out of intensive collaborative research in the SAT community.
Modern SAT solvers achieve scalability and robustness with complex heuristics that are
challenging to understand and explain. Consequently, the development of new algorithmic
insights has been largely restricted to experts in the SAT community.

I will describe our project that aims to democratize the design of SAT solvers. In
particular, our project, called CrystalBall, seeks to develop a framework to provide white-box
access to the execution of SAT solver that can aid both SAT solver developers and users to
synthesize algorithmic heuristics for modern SAT solvers? We view modern conflict-driven
clause learning (CDCL) solvers as a composition of classifiers and regressors for different
tasks such as branching, clause memory management, and restarting, and we aim to provide
a data-driven automated heuristic design mechanism that can allow experts in domains
outside SAT community to contribute to the development of SAT solvers.
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4.15 Functional Synthesis – An Ideal Meeting Ground for Formal
Methods and Machine Learning

Kuldeep S. Meel (National University of Singapore, SG)
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Don’t we all dream of the perfect assistant whom we can just tell what to do and the assistant
can figure out how to accomplish the tasks? Formally, given a specification F (X, Y ) over the
set of input variables X and output variables Y , we want the assistant, aka functional synthesis
engine, to design a function G such that F (X, G(X)) is true. Functional synthesis has been
studied for over 150 years, dating back Boole in 1850’s and yet scalability remains a core
challenge. Motivated by progress in machine learning, we design a new algorithmic framework
Manthan, which views functional synthesis as a classification problem, relying on advances in
constrained sampling for data generation, and advances in automated reasoning for a novel
proof-guided refinement and provable verification. The significant performance improvements
call for interesting future work at the intersection of machine learning, constrained sampling,
and automated reasoning.
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4.16 Verifiable Neural Networks: Theoretical Capabilities and
Limitations

Matthew Mirman (ETH Zürich, CH)
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Famously, deep learning has become an integral part of many high stakes applications,
from autonomous driving to health care. As the discovery of vulnerabilities and flaws in
these models has become frequent, so has the interest in ensuring their robustness and
reliability. In recent years, many methods have been developed to build deep learning models
amenable to analysis with efficient formal methods. However, these techniques, known
together as provability training, have failed to produce models with nearly the empirical
quality as traditional training. This stagnation has opened up questions as to the theoretical
foundations of provability training. In this talk I will explain our theoretical results on both
the possibility and impossibility of constructing verifiable neural networks. To motivate
continued search for provable training methods, I will present our possibility result: a
stronger form of the universal approximation theorem for the case of interval-certifiable
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neural networks. To begin to explain the barriers to provable training, I will present our
impossibility results: (i) that for any neural network classifying just three points, there is
a valid specification over these points that interval analysis can not prove, and (ii) given
any radius, there is a set of points that no one-hidden-layer network can be proven to
interval-robustly classify.

4.17 CGDTest: Constraint-based Gradient Descent Fuzzer for DNNs
Vineel Nagisetty (Borealis AI – Toronto, CA)
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In this work we propose a new Deep Neural Network (DNN) testing algorithm, called the
Constrained Gradient Descent (CGD) method, and an implementation we call CGDTest
aimed at exposing security issues such as testing for adversarial robustness and fairness in
DNNs. Our CGD algorithm is a gradient-descent (GD) method, with the twist that the
user can also specify logical properties that characterize a specific type of input that they
want. This functionality allows us to specify constraints so as to test DNNs for standard Lp
ball-based adversarial robustness as well as other properties such as non-standard adversarial
robustness and individual fairness. We perform extensive experiments where we use CGDTest
to test for both standard and non-standard adversarial robustness in the vision domain,
adversarial robustness in the NLP domain, and individual fairness in the tabular domain,
comparing against 18 state-of-the-art methods over the 3 domains. Our results indicate
that CGDTest is comparable to state-of-the-art tools in testing for standard definitions of
robustness and fairness, and is significantly superior in testing for non-standard robustness,
with improvements in PAR2 score of over 1500% in some cases over the next best tool. Our
evaluation shows that CGD method outperforms all other methods in terms of scalability (i.e.,
can be applied to very large real-world models with millions of parameters), expressibility
(i.e., test for a variety of properties from disparate domains), and generality (i.e., handle a
variety of architectures).
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Satisfiability Modulo Theories (SMT) solvers are powerful tools used to check specifications
of critical systems and to discharge proof obligations in proof assistants. For many such
applications, quantifiers are necessary to express the problems. It often happens that SMT
solvers fail finding proofs when too many quantifiers occur in the input problem. To deal
with quantifiers, SMT solvers rely on instantiation, and use heuristic techniques to generate
instances. Often, thousands of instances are generated and since most of them are useless,
they impede the solver.

We use machine learning to predict the usefulness of an instance in order to decrease
the number of instances generated and handled by the SMT solver. For this, we propose a
meaningful way to characterize the state of an SMT solver, we collect instantiation learning
data, and we integrate a predictor in the core of a state-of-the-art SMT solver. This ultimately
leads to more efficient SMT solving for quantified problems.

4.19 CombOptNet: Fit the Right NP-Hard Problem by Learning Integer
Programming Constraints
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Over recent years, deep learning has revolutionized multiple fields, such as computer vision,
robotics, and natural language processing. This progress has predominantly built on the
astonishing ability of neural networks to extract valuable information from raw data, an
essential skill for approaching real-world problems. However, despite these successes, neural
networks still notoriously struggle at algorithmic and logical reasoning tasks.
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Such tasks can often be solved efficiently by combinatorial solvers, such as SAT or ILP
solvers, which can build on a long development history. However, these solvers usually require
a clean abstract formulation of the problem, such as boolean clauses or cost and constraint
coefficients, instead of operating on raw data.

How can we bridge the gap between these two worlds? Ideally, we would like to use
combinatorial solvers as building blocks of neural networks to build hybrid architectures
that leverage both the feature extraction and the algorithmic reasoning capabilities of neural
networks and combinatorial solvers, respectively. However, as combinatorial solvers typically
operate on discrete structures, there is no continuously differentiable relationship between
the inputs and outputs. In contrast, deep learning at its core relies on differentiability for
end-to-end learning. Overcoming this fundamental conflict poses a significant challenge.

Recently proposed methods have addressed this challenge by considering continuously
differentiable relaxations or by relying on informative gradient replacements that exploit the
structure of the solver [1]. These methods have enabled the integration of dedicated combin-
atorial solvers into end-to-end trainable architectures, which extract the cost coefficients of
the solver from raw data. While achieving promising results in computer vision and natural
language processing applications, the strong prior information required to guide the choice of
the problem-tailored combinatorial solver remains a limiting factor.

As an answer to this limitation, this talk introduces the recently developed method
CombOptNet [2]. The goal of this method is to remove the restriction of a priori specifying
a dedicated solver and to instead rely on a more general combinatorial building block. It
is well known that many combinatorial problems can be formulated as ILPs, in which the
constraint set determines the nature of the problem. Based on this observation, we aim
to integrate a general ILP Solver into deep learning architectures. CombOptNet provides
informative gradient replacements for both the cost and constraint coefficients. By learning
the constraints from raw data, the architecture infers the nature of the combinatorial problem
at hand. Thereby the architecture strives to achieve universal combinatorial expressivity.
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4.20 Machine Learning Algorithm Selection for Logic Solvers
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In this two-part talk, I present recent work in machine learning applied to logic and logic
applied to machine learning.

First, I present some recent results on algorithm selection for logic solvers, specifically
in the context of SMT solvers and neural network verification. As is typical for hard
search problems, no single solver is expected to be the fastest on all inputs. This insight
suggests using algorithm selection techniques that automatically select the fastest solver for
a given input. We present MachSMT, an algorithm selection tool for SatisfiabilityModulo
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Theories (SMT) solvers. MachSMT supports the entirety of the SMT-LIB. We provide an
extensive empirical evaluation of MachSMT to demonstrate the efficiency and efficacy of
MachSMT over three broad usage scenarios on theories and theory combinations of practical
relevance (e.g., bit-vectors,(non-)linear integer and real arithmetic, arrays, and floating-point
arithmetic). Additionally, we present Goose, an adaptive algorithm selection tool, which we
dub a meta-solver, for deep neural network verification. We evaluate Goose by simulating
VNN-COMP ’21 and observe a 37% improvement over the competition winner.

Second, we introduce Logic Guided Machine Learning (LGML), a novel approach that
symbiotically combines machine learning (ML) and logic solvers with the goal of learning
mathematical functions from data. LGML consists of two phases, namely a learning-phase
and a logic-phase with a corrective feedback loop, such that, the learning-phase learns
symbolic expressions from input data, and the logic-phase cross verifies the consistency
of the learned expression with known auxiliary truths. If inconsistent, the logic-phase
feeds back “counterexamples” to the learning-phase. This process is repeated until the
learned expression is consistent with auxiliary truth. Using LGML, we were able to learn
expressions that correspond to the Pythagorean theorem and the sine function, with several
orders of magnitude improvements in data efficiency compared to an approach based on an
out-of-the-box multilayered perceptron (MLP).
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4.21 Two birds with one stone? Successes and lessons in building
Neuro-Symbolic systems
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Deep learning models have achieved remarkable successes in many challenging fields but
suffer from a lack of interpretability, poor generalization ability, and difficulty in integrating
human knowledge. Symbolic systems on the other hand address these limitations by design
but heavily rely on hardcoded knowledge and have a very limited capability of learning. A
promising design is perhaps building neuro-symbolic systems, combining the benefits of both
worlds. However, such a design inevitably combines the challenges from both worlds and also
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faces some unique challenges in itself. In this talk, I will share some successes and lessons
in building two neuro-symbolic systems – a data-driven optimization for symbolic software
model checking and an end-to-end visual sudoku solver.
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4.22 There is plenty of room at the bottom: verification and repair of
small scale learning models
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With the growing popularity of machine learning, the quest for verifying data-driven models is
attracting more and more attention, and researchers in automated verification are struggling
to meet the scalability and expressivity demands imposed by the size and the complexity
of state-of-the-art machine learning architectures. However , there are applications where
relatively small-scale learning models are enough to achieve industry-standard performances,
yet the issue of checking whether those models are reliable remains challenging. Furthermore,
in these domains, verification is just half of the game: providing automated ways to repair
models that are found to be faulty is also an important task in practice. In this talk, I will
touch upon some research directions that I have pursued in the past decade, commenting the
results and providing some connections with related efforts. In particular we consider the
following case studies:

The problem of ensuring that a multi-agent robot control system is both safe and effective
in the presence of learning components. In particular, we focus on a robot playing the air
hockey game against a human opponent, where the robot has to learn how to minimize
opponent’s goals (defense play). This setup is paradigmatic since the robot must see,
decide and move fastly, but, at the same time, it must learn and guarantee that the control
system is safe throughout the process. We attack this problem using automata-theoretic
formalisms and associated verification tools, showing experimentally that our approach
can yield safety without heavily compromising effectiveness.
Verification of Neural Networks known as Multi-Layer Perceptrons (MLPs), where we
propose a solution to verify their safety using abstractions to Boolean combinations of
linear arithmetic constraints. We show that our abstractions are consistent, i.e., whenever
the abstract MLP is declared to be safe, the same holds for the concrete one. Spurious
counterexamples, on the other hand, trigger refinements and can be leveraged to automate
the correction of misbehaviors.
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Verification of Reinforcement Learning, a well-known AI paradigm whereby control
policies of autonomous agents can be synthesized in an incremental fashion with little or
no knowledge about the properties of the environment. We are concerned with safety of
agents whose policies are learned by reinforcement, i.e., we wish to bound the risk that,
once learning is over, an agent damages either the environment or itself. We propose a
general-purpose automated methodology to verify, i.e., establish risk bounds, and repair
policies, i.e., fix policies to comply with stated risk bounds. Our approach is based on
probabilistic model checking algorithms and tools, which provide theoretical and practical
means to verify risk bounds and repair policies. Considering a taxonomy of potential
repair approaches tested on an artificially-generated parametric domain, we show that
our methodology is also more effective than comparable ones.
Verification of deep neural networks, particularly when it comes to enabel state-of-the-art
verification tools to deal with neural networks of some practical interest. We propose
a new training pipeline based on network pruning with the goal of striking a balance
between maintaining accuracy and robustness, while also making the resulting networks
amenable to formal analysis.
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4.23 Synthesizing Pareto-Optimal Interpretations for Black-Box Models
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We present a new multi-objective optimization approach for synthesizing interpretations
that “explain” the behavior of black-box machine learning models. Constructing human-
understandable interpretations for black-box models often requires balancing conflicting
objectives. A simple interpretation may be easier to understand for humans while being less
precise in its predictions vis-a-vis a complex interpretation. Existing methods for synthesizing
interpretations use a single objective function and are often optimized for a single class
of interpretations. In contrast, we provide a more general and multi-objective synthesis
framework that allows users to choose (1) the class of syntactic templates from which an
interpretation should be synthesized, and (2) quantitative measures on both the correctness
and explainability of an interpretation. For a given black-box, our approach yields a set of
Pareto-optimal interpretations with respect to the correctness and explainability measures.
We show that the underlying multi-objective optimization problem can be solved via a
reduction to quantitative constraint solving, such as weighted maximum satisfiability. To
demonstrate the benefits of our approach, we have applied it to synthesize interpretations
for black-box neural-network classifiers. Our experiments show that there often exists a rich
and varied set of choices for interpretations that are missed by existing approaches.

4.24 Data Usage across the Machine Learning Pipeline
Caterina Urban (INRIA – Paris, FR)

License Creative Commons BY 4.0 International license
© Caterina Urban

In this talk, I give an overview of past and ongoing work in developing abstract interpretation-
based static analyses for reasoning about data and input usage across the machine learning
development pipeline. I present work targeting data processing software (Python and Jupyter
Notebooks) or trained machine learning models (neural networks but also decision tree
ensembles and support vector machines), as well as model training itself.
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4.25 On The Unreasonable Effectiveness of SAT Solvers: Logic +
Machine Learning
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In this talk, we discuss a framework for viewing solver branching heuristics as optimization
algorithms where the objective is to maximize the learning rate, defined as the propensity for
variables to generate learnt clauses. By viewing online variable selection in SAT solvers as an
optimization problem, we can leverage a wide variety of optimization algorithms, especially
from machine learning, to design effective branching heuristics. In particular, we model the
variable selection optimization problem as an online multi-armed bandit, a special-case of
reinforcement learning, to learn branching variables such that the learning rate of the solver
is maximized. We develop a branching heuristic that we call learning rate branching or LRB,
based on a well-known multi-armed bandit algorithm called exponential recency weighted
average.

5 Conclusion

In conclusion, this 5-day Dagstuhl seminar on topics at the intersection of machine learn-
ing and logic was very productive, enabling new collaborations and connections between
researchers in the two camps of AI. We had over 25 talks that can be broadly categorized
into the following four categories: 1) Neurosymbolic AI, 2) machine learning for solvers, 3)
the testing, analysis, verification of machine learning systems, and 4) the use of machine
learning in program synthesis. Key takeaways from the seminar included a greater need
for intensification of collaboration between researchers in both camps, especially given the
increasing importance of robust, secure, trustworthy, privacy-preserving, and interpretable AI.
Most participants were very happy with the quality and diversity of the talks, the outcomes,
new collaborations, and with our plan to continue organizing seminars in this series into the
foreseeable future.
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