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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22332 “Differential
Equations and Continuous-Time Deep Learning”. Neural ordinary-differential equations and
similar continuous model architectures have gained interest in recent years, due to the existence
of a vast literature in calculus and numerical analysis. Thus, continuous models might lead to
architectures with finer control over prior assumptions or theoretical understanding. In this
seminar, we have sought to bring together researchers from traditionally disjoint areas – machine
learning, numerical analysis, dynamical systems and their “consumers” – to try and develop a
joint language about this novel modeling paradigm. Through talks & group discussions, we have
identified common interests and we hope that this first seminar is but the first step on a joint
journey.
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Deep models have revolutionised machine learning due to their remarkable ability to iter-
atively construct more and more refined representations of data over the layers. Perhaps
unsurprisingly, very deep learning architectures have recently been shown to converge to
differential equation models, which are ubiquitous in sciences, but so far overlooked in
machine learning. This striking connection opens new avenues of theory and practice of
continuous-time machine learning inspired by physical sciences. Simultaneously, neural net-
works have started to emerge as powerful alternatives to cumbersome mechanistic dynamical
systems. Finally, deep learning models in conjecture with stochastic gradient optimisation
has been used to numerically solve high-dimensional partial differential equations. Thus, we
have entered a new era of continuous-time modelling in machine learning.
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This change in perspective is currently gaining interest rapidly across domains and
provides an excellent and topical opportunity to bring together experts in dynamical systems,
computational science, machine learning and the relevant scientific domains to lay solid
foundations of these efforts. On the other hand, as the scientific communities, events and
outlets are significantly disjoint, it is key to organize an interdisciplinary event and establish
novel communication channels to ensure the distribution of relevant knowledge.

Over the course of this Dagstuhl Seminar, we want to establish strong contacts, commu-
nication and collaboration of the different research communities. Let’s have an exchange
of each community’s best practices, known pitfalls and tricks of the trade. We will try to
identify the most important open questions and avenues forward to foster interdisciplinary
research. To this end, this seminar will feature not only individual contributed talks, but
also general discussions and “collaboration bazaars”, for which participants will have the
possibility to pitch ideas for break-out project sessions to each other. In the break-out
sessions, participants may discuss open problems, joint research obstacles, or community
building work.
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3 Overview of Talks

3.1 Differential Equations for Causal Inference in Complex Stochastic
Biological Processes

Hananeh Aliee (Helmholtz Zentrum München, DE)
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In my talk, I presented a sparsity-enforcing regularizer for continuous-time neural networks
motivated by causality. Sparsification can help to identify the parameters of the differential
equations and infer the causal interaction between variables. I also discussed an application
of that in single-cell genomics for modeling gene dynamics and inferring gene regulatory
networks using neural ODEs. Finally, I discussed some open problems and challenges in
modeling complex stochastic biological processes and potential directions for future work.

3.2 Computation Theory for Continuous Time. Programming with
Ordinary Differential Equations.

Olivier Bournez (Ecole Polytechnique – Palaiseau, FR)
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In this talk, we will argue that computation theory for continuous time analog models
did not develop at the level as the one for digital models. We will review some examples
of such models, such as the General Purpose Analog Computer (GPAC) from Claude
Shannon, proposed as a model of Differential Analyzers. We will show how this model can
be programmed on several example. We will then discuss about how this model relates to
classical models of computabiility such as Turing machines, both considering computability
theory and complexity theory. We will show the close relation between this model and
polynomial Ordinary Differential Equations (pODEs-. As a side effect of our constructions,
we will see that one can program with pODEs and we will discuss applications.

3.3 Injecting Physics into Differential Equation based Deep Learning
Models

Biswadip Dey (Siemens – Princeton, US)
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This talk focused on demonstrating the usefulness of using a physics-informed inductive bias
in differential equation based deep learning models and highlighted some open problems
on this topic. We discussed Symplectic-ODENet and its extensions which encode energy
conservation into the computation graph to improve model performance, efficiency, and
interpretability. However, these models typically assumes that the systems states can be
directly measured. This leads to the following open questions: (i) Can we learn a suitable
latent representation from high-dimensional observations and then enforce physics (e.g.,
energy conservation) in the learned latent space? and (ii) Can we enforce physics even when
only a subset of the system states can be directly measured?

22332

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


24 22332 – Differential Equations and Continuous-Time Deep Learning

3.4 Equivariant Deep Learning via PDEs
Remco Duits (TU Eindhoven, NL)
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We consider PDE-based Group Convolutional Neural Networks (PDE-G-CNNs) that gen-
eralize Group equivariant Convolutional Neural Networks (G-CNNs). In PDE-G-CNNs
a network layer is a set of PDE-solvers where geometrically meaningful PDE-coefficients
become trainable weights. The underlying PDEs are morphological and linear scale space
PDEs on the homogeneous space of positions and orientations to the roto-translation group
SE(2). The PDEs provide a geometrical and probabilistic understanding of the network.
The network is implemented by morphological convolutions with approximations to kernels
solving nonlinear HJB-PDEs (for morphological α-scale spaces), and to linear convolutions
solving linear PDEs (for linear α-scale spaces). In the morphological setting, the parameter
α regulates soft max-pooling over Riemannian balls, whereas in the linear setting the cases
α = 1/2 and α = 1 correspond to the Poisson and Gaussian semigroup. We prove that
our practical analytic approximation kernels are accurate. In the morphological setting, we
propose analytic approximations of (sub)-Riemannian balls on M(2) which carry the correct
reflectional symmetries globally and we provide asymptotic error analysis. The analytic
approximations allow for efficient, accurate training of fundamental neuro-geometrical as-
sociation field models in the GPU-implementations of our PDE-G-CNNs. The equivariant
PDE-G-CNN network implementation consists solely of linear and morphological convolutions
with parameterized analytic kernels on M(d). Common mystifying nonlinearities in CNNs
are now obsolete and excluded. We present blood vessel segmentation experiments in medical
images that show clear benefits of PDE-G-CNNs compared to state-of-the-art G-CNNs:
increase of performance along with a huge reduction in network parameters and training
data.

3.5 Putting All of Modeling into Adaptive SPDE Solvers
David Duvenaud (University of Toronto, CA)
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My talk presented a roadmap for building spatiotemporal models which can automatically
introduce auxiliary variables. These auxiliary variables can be tuned jointly with the
parameters of the model to find dynamics which are easy to integrate, either by encouraging
approximate spatial factorization, or fast mixing temporally. I also introduced a scheme for
stateless sampling from Brownian sheets.
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3.6 Bayesian Calibration of Computer Models & Beyond
Maurizio Filippone (EURECOM – Biot, FR)
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Bayesian calibration of computationally expensive computer models offers an established
framework for quantification of uncertainty of model parameters and predictions. Traditional
Bayesian calibration involves the emulation of the computer model and an additive model
discrepancy term using Gaussian processes; inference is then carried out using Markov
chain Monte Carlo. In this talk, I present a calibration framework where limited flexibility
and scalability are addressed by means of compositions of Gaussian processes into Deep
Gaussian processes and scalable variational inference techniques. This formulation can be
easily implemented in development environments featuring automatic differentiation and
exploiting GPU-type hardware. I then discuss identifiability issues and cases where the
computer model implements ODEs/PDEs/SDEs. Finally, I draw connections with other
inference frameworks, such as transfer learning, gradient matching for ODEs and SDEs, and
Physics-informed priors for Bayesian deep learning.

3.7 High Order SDE Solvers in Machine Learning
James Foster (University of Oxford, GB)
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From Markov Chain Monte Carlo to Neural SDEs and Score-based diffusions, there has been
a recent uptick in the applications of SDEs in machine learning. However, SDEs have been
studied by the mathematics community for decades and it has been well established that
SDE solvers have fundamental limitations in their convergence rates. In this talk, we will
review this theory and discuss how noise types influence convergence rates for SDEs solvers.
This will naturally lead us to pose the following question:

“Can we construct SDEs that are easy to solve?”
By considering both kinetic Langevin and Score-based diffusions, two prominent examples

of SDEs, we give a positive answer to this question and speculate that finding such “easy-to-
solve” SDEs will be an area of opportunity in future research.

3.8 Interpretable Polynomial Neural Ordinary Differential Equations
Colby Fronk (University of California – Santa Barbara, US)
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Neural networks have the ability to serve as universal function approximators, but they are
not interpretable and don’t generalize well outside of their training region. Both of these
issues are problematic when trying to apply standard neural ordinary differential equations
(neural ODEs) to dynamical systems. We introduce the polynomial neural ODE, which is a
deep polynomial neural network inside of the neural ODE framework. We demonstrate the
capability of polynomial neural ODEs to predict outside of the training region, as well as
perform direct symbolic regression without additional tools such as SINDy.
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3.9 Neural Differential Equations and Operator Learning
Jacob Seidman (University of Pennsylvania – Philadelphia, US)
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My talk presented two categories of methods to learn maps between spaces of functions. The
first is known as Neural PDEs/SDEs and parameterizes PDEs/SDEs to implicitly define
operators through their solutions. The other category is typically known as Operator Learning
and uses compositions of parameterized integral transformations, pointwise transformations,
and function reconstructions from learned basis or nonlinear representations. I posed the
question of which approach works better in different scenarios. This led to a discussion about
the pros and cons of each approach in terms of properties such as expressivity, ability to
encode prior information, and computational efficiency.

3.10 On Practical Inference and Learning in Dynamical Systems
Arno Solin (Aalto University, FI)
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In general spatio-temporal systems, time takes a fundamentally different role from other
(spatial) dimensions as observations can be ordered over time. This talk takes interest in
challenges in online inference and learning problems, where the model admits the form of
a stochastic differential equation (SDE) or stochastic partial differential equation (SPDE).
These types of problems occur naturally in sensor fusion applications where the dynamics
borrow from first principles but also include unknown (stochastic) effects. The talk presents
open problems in designing principled approximate inference methods, with non-linear
continuous-discrete inertial navigation as a practical example.

3.11 Partial Differential Equations and Deep Learning
Nils Thuerey (TU München, DE)
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In my talk I focused on the combination of PDE for applications such as fluids and deep
learning (DL). Despite success of integrating solvers as differentiable components in DL, many
challenges for training remain. Interestingly, the regular gradient has some fundamental
problems, as indicated by its mismatch in terms of units. I discussed potential avenues for
alleviating these problems, such as using inverse solvers of partial inversions.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


David Duvenaud, Markus Heinonen, Michael Tiemann, and Max Welling 27

3.12 Dynamical Systems Cookbook (& their solvers, & their
optimization)

Michael Tiemann (Robert Bosch GmbH – Renningen, DE)
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In many areas of science and engineering, neural ordinary differential equations seem like
natural candidates for extending limited first-principles models. However, retaining an
interpretability in terms of preserved quantities of interest or system properties, such as
volume invariances, preserved first integrals and other conservation laws, requires an algebra
of models that represent a wide variety of dynamical systems, while guaranteeing the
preservation of these quantities by construction. In this call for contributions, we hope to
establish a grass-roots initiative that will contribute to cookbook of building blocks that
represent a wide variety of potential applications, while working reliability “out-of-the-box”
for the majority of modeling problems. Futhermore, this cookbook needs to consider not
only the algebra of the ODE vector fields, but also that of the numerical discretizations and
finally of their identification through means of optimization or other adaptation methods.

3.13 Graph-based Differential Equations, Continuum Limits, and
Merriman-Bence-Osher schemes

Yves van Gennip (TU Delft, NL)
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Ideas and methods from differential equations and variational methods on graphs can also play
a role for neural networks (NN). In particular, we take a look at the Merriman–Bence–Osher
(MBO) scheme and the family of semi-discrete implicit Euler (SDIE) schemes and see that
they can be written as NN. We also discuss discrete-to-continuum limits at the variational
and gradient flow levels and open questions.

4 Working groups

4.1 Brainstorm session
Yves van Gennip (TU Delft, NL), Olivier Bournez (Ecole Polytechnique – Palaiseau, FR),
Joachim M. Buhmann (ETH Zürich, CH), Remco Duits (TU Eindhoven, NL), Sho Sonoda
(RIKEN – Tokyo, JP), and Max Welling (University of Amsterdam, NL)
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Welling

1. local-nonlocal interactions
We asked the question if the PDE models with local derivatives can be generalized to more
general non-local (integral) operators. We believe this is possible and would lead to genuinely
new models that would be better in modeling problems with highly nonlocal interactions.
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2. multi-scale/renormalisation group
We asked if there is merit to introduce a scale-space into the representations. For in-
stance, every layer can represent a full scale space, or the progression through the layers
represents a coarse graining transformation. The former can be viewed as a special case
of scale equivariance (a semi-group!), while the latter is more like a renormalization group
transformation.

3. equivariance/symmetries*/local equivariance (*in continuum formulation and after
discretisation)
We discussed if there are extensions to equivariance to non-group transformations (e.g.
semi-groups see above). Also, if we formulate the NN as a PDE in the continuum limit,
we can model symmetries also as a transformation with a generator that commutes with
the Hamiltonian. Can we think of equivariance as simply finding a homomorphism in the
hidden layers that forms a commuting diagram with the transformations in the input layer:
transformation in input layer –> embedding to hidden layer = embedding to hidden layer –>
transformation in hidden layer. We also discussed the role of local versus global symmetries:
to what extent does a global equivariance also enforce local equivariance. Can this be
formalized? Can this be generalized to diffeomorphisms?

4. quantum extensions (learning unitary operators in quantum computers)
The Schrodinger equation is also a PDE. We can extend the continuum PDE limit of a linear
layer to a quantum layer by evolving an input quantum state using the SE. This maps to a
model for optical quantum hardware. Is this beneficial, or more powerful for ML? Can we
include symmetries?

5. conserved quantities/Noether’s theorem (see also 3)
We discussed what could be at the basis of a general theory and thought the notion of
conserved quantities to be a good candidate. We discussed how to apply Hamiltonian
reduction by stages (Marsden) from classical mechanics to deep learning.

6. (geometrical flow?) interpretations of full networks (example: mean curvature flow)
We saw one particular example of a CNN that appears to be interpretable in terms of mean
curvature flow. This raises a more general question regarding the possibility of interpreting
NNs (not per layer, but as a whole) in terms of geometrical flows.

PDE-G-CNNs provide geometric interpretation of flows in the neural networks. PDE-G-
CNNs, in contrast to CNNs, do not include ad-hoc nonlinearities, but only solutions to linear
and nonlinear PDEs, both solved by equivariant convolutions over different semirings. The
merging of association fields as visible in feature maps of PDE-G-CNNs requires algebraic
geometry (Betti numbers). We discussed Lie group extensions of recent works of Creemers,
but realized it is quite challenging.

7. new operators/integral operators
We discussed if we also want to consider nonlocal operators (besides classical “local” PDEs),
such as non-local derivatives and fractional powers of semi-group evolutions, in the network
layers we consider, or if nonlocalities are only allowed to appear as a result of interactions
between many layers.

8. why is deep better than wide? (linear vs polynomial scaling of “influence” of
neurons?)
Why do deep NNs perform better than wide ones? The initial thought is that interactions
between layers scale nonlinearly in the number of neurons, whereas interactions within a
layer scale linearly.
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9. how to design nonlinearties?
We prefer HJB-PDEs that allow for morphological convolutions, not by (ad-hoc) ReLU’s
that are a non-optimal special case.

10. continuum limits
Techniques exist in the mathematical literature to find continuum limits of (loss) functionals,
such as Gamma-convergence, and limits of gradient flows derived from those functionals.
Can we employ those to prove relevant continuum limits for neural networks?

11. wishlist for PDEs (equivariance; semi-group structure; homogeneity in metric tensor
per “unit”)
We wish for an axiomatic approach to PDE-based equivariant deep learning with Lie-group
domains and semi-ring co-domains.

We started investigations on that after the seminar and will continue to work on this
thoroughly in the coming year.

12. PDE GCNNs on graphs.
We noted that equivariant networks on SE(3) in general require sparsification to become
practical in view of memory management. The PDEs can enter by providing appropriate
kernels for equivariant graph neural networks.
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